Skip to main content
. 2023 Sep 4;9:e1552. doi: 10.7717/peerj-cs.1552

Table 13. Comparison of recent intrusion detection approaches on the UNSW-NB15 dataset (training time on whole dataset while testing time on single data sample).

Study Method Performance measures (%) Multi-class No of features Time required (s) Model size
Feature selection Classifier Accuracy Precision Recall F1-score Training time Testing time
Proposed RF-RFE ML ensemble 98.53 98.79 98.78 98.78 15 ~104 0.006 ~544 kb
CNN 98.01 97.01 98.13 98.12 ~413 0.08 ~1,029 kb
RNN 98 97 98 97 ~228 0.07 ~250 kb
LSTM 98 98 98 98 ~390 0.071 ~978 kb
Belouch, Hadaj & Idhammad (2018) CNN CNN + Dynamic autoencoder 98.5 98.4 98.6 98.5 X ~923 kb
Taher, Jisan & Rahman (2019) IG, PSO,
GA
KNN + RF 99.96 99 99 99 X
Roy et al. (2022) SVM 93.75 X ~500 -
Dora & Lakshmi (2022) K Best RF + XGBoost + DT 93.7 94.5 90.2 92.29 X 20 ~11.65 8 (µs)