Skip to main content
. 2023 Sep 4;9:e1552. doi: 10.7717/peerj-cs.1552

Table 5. Hyperparameters values to train the algorithms.

Classifier Parameters
RF Number of Trees = 10; Max Features = 13
KNN Number of Neighbors = 5; Algorithm Solver = Auto
SVM Kernel = Linear and Poly (for multiclass) ; Regularization parameter (C = 1.0)
DT Max Depth = Auto; Max Features = 13
MLP Number of iterations = 300; Hidden Layer Size = 100; Activation = ReLU; Optimizer = Adam; Learning Rate = 0.001
CNN Epochs = 30, Optimizer = Adam, Conv1D layers = 4, Loss Function = Sparse Categorical Cross Entropy, Batch Size =128, Learning Rate = 0.001
RNN Epochs = 30, Optimizer = Adam, RNN layers = 3, Loss Function = Sparse Categorical Cross Entropy, Batch Size =128, Learning Rate = 0.001
LSTM Epochs = 30, Optimizer = Adam, LSTM layers = 3, Loss Function = Sparse Categorical Cross Entropy, Batch Size =128, Learning Rate = 0.001