Skip to main content
. 2023 Sep 4;9:e1552. doi: 10.7717/peerj-cs.1552

Table 9. Performance of various machine learning methods on NSL-KDD (Binary classification).

Attack type Algorithm Accuracy Precision Recall F1-measure
DoS KNN 0.997 0.996 0.996 0.996
SVM 0.993 0.991 0.994 0.992
Decision tree 0.994 0.991 0.994 0.992
MLP 0.996 0.991 0.994 0.992
Random forest 0.995 0.992 0.996 0.997
Ensemble 0.998 0.998 0.997 0.997
Probe KNN 0.990 0.986 0.985 0.985
SVM 0.984 0.969 0.983 0.976
Decision tree 0.995 0.969 0.983 0.976
MLP 0.991 0.969 0.983 0.976
Random forest 0.991 0.996 0.992 0.995
Ensemble 0.997 0.987 0.989 0.988
R2L KNN 0.967 0.953 0.954 0.953
SVM 0.967 0.948 0.962 0.951
Decision tree 0.979 0.948 0.962 0.949
MLP 0.973 0.948 0.962 0.955
Random forest 0.992 0.964 0.837 0.903
Ensemble 0.973 0.959 0.964 0.961
U2R KNN 0.997 0.931 0.850 0.878
SVM 0.996 0.910 0.829 0.848
Decision tree 0.996 0.910 0.829 0.848
MLP 0.997 0.910 0.829 0.848
Random forest 0.971 0.962 0.971 0.970
Ensemble 0.9972 0.943 0.872 0.895