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ABSTRACT
The voltage-gated potassium channel KV1.3 is an important therapeutic target for the treatment 
of autoimmune and neuroinflammatory diseases. The recent structures of KV1.3, Shaker-IR (wild- 
type and inactivating W434F mutant) and an inactivating mutant of rat KV1.2-KV2.1 paddle 
chimera (KVChim-W362F+S367T+V377T) reveal that the transition of voltage-gated potassium 
channels from the open-conducting conformation into the non-conducting inactivated conforma
tion involves the rupture of a key intra-subunit hydrogen bond that tethers the selectivity filter to 
the pore helix. Breakage of this bond allows the side chains of residues at the external end of the 
selectivity filter (Tyr447 and Asp449 in KV1.3) to rotate outwards, dilating the outer pore and 
disrupting ion permeation. Binding of the peptide dalazatide (ShK-186) and an antibody-ShK 
fusion to the external vestibule of KV1.3 narrows and stabilizes the selectivity filter in the open- 
conducting conformation, although K+ efflux is blocked by the peptide occluding the pore 
through the interaction of ShK-Lys22 with the backbone carbonyl of KV1.3-Tyr447 in the selectivity 
filter. Electrophysiological studies on ShK and the closely-related peptide HmK show that ShK 
blocks KV1.3 with significantly higher potency, even though molecular dynamics simulations show 
that ShK is more flexible than HmK. Binding of the anti-KV1.3 nanobody A0194009G09 to the 
turret and residues in the external loops of the voltage-sensing domain enhances the dilation of 
the outer selectivity filter in an exaggerated inactivated conformation. These studies lay the 
foundation to further define the mechanism of slow inactivation in KV channels and can help 
guide the development of future KV1.3-targeted immuno-therapeutics.
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Introduction

The study of ion channels in immune cells began 
in 1984 with the discovery of voltage-gated potas
sium (K+) currents in human T lymphocytes [1– 
3]. Compounds known to inhibit neuronal K+ 

currents blocked the lymphocyte K+ current in 
a concentration-dependent manner and sup
pressed mitogen-triggered T cell proliferation 
with parallel potencies, suggesting a functional 
role for the K+ current in T cells [1,3–5]. The KV 
1.3/KCNA3 gene encoding this K+ current was 
identified in 1990 [6,7]. In the intervening decades, 
much has been learned about the function and 
structure of the voltage-gated KV1.3 channel. In 
this review, we summarize the functional role of 
KV1.3 in immune cells, its importance as a target 
for immunomodulatory therapeutics for autoim
mune and neuroinflammatory diseases, and dis
cuss recent cryogenic electron microscopy and 
molecular dynamics simulation studies that reveal 
the structure of the channel in different conforma
tional states, as well as in complex with two classes 
of therapeutic leads.

Functional network of ion channels and ion 
transporters in immune cells

KV1.3 is a critical component of a network of ion 
channels and ion transporters that regulate cal
cium signaling, activation, proliferation, cytokine 
secretion and cellular homeostasis of immune cells 
[8,9]. Figure 1 shows the channel-transporter net
work in human T lymphocytes. Calcium entry 
occurs primarily through the calcium release- 
activated (CRAC) channel, which is composed of 
the proteins Orai1 and Orai2 in the plasma mem
brane, and Stim1 and Stim2 in the ER membrane 
[9,11–17]. KV1.3 and the calcium-activated KCa3.1 
channel are the main conduits for K+ efflux 
[8,9,18,19]. Efflux of K+ through the two K+ chan
nels hyperpolarizes the membrane potential, which 
in turn promotes further calcium entry through 
CRAC in a positive feedback loop. The network 
also contains channels and transporters for 
sodium, magnesium, zinc and chloride [9], but 
no functional voltage-gated calcium (CaV) chan
nels are expressed in T cells [10] (Figure 1a). 
While K+ channels promote calcium signaling, 

efflux of chloride or influx of sodium dampens 
calcium entry and the calcium signal via mem
brane depolarization [9]. Similar KV1.3-containing 
channel-transporter networks are present in 
B lymphocytes, monocyte-macrophages, microglia 
and neutrophils [9,20–23] (Figure 2).

KV1.3 as a therapeutic target for autoimmune 
and neuroinflammatory diseases

The expression of KV1.3 and KCa3.1 varies during 
activation and differentiation of T cells 
(Figure 1b). Upon activation by antigen, T cells 
up-regulate KCa3.1, and, when repeatedly stimu
lated by antigen, switch to up-regulating KV1.3 
[24–27] (Figure 1b). This dichotomy in K+ channel 
expression between acutely-activated and chroni
cally-activated T cells underlies the importance of 
KV1.3 as a therapeutic target in autoimmune dis
eases [8,9,18,19]. In patients with diverse autoim
mune diseases (multiple sclerosis, type-1 diabetes 
mellitus, rheumatoid arthritis, psoriasis, autoim
mune vasculitis), pathogenic auto-reactive T cells 
that have undergone repeated stimulation by the 
relevant autoantigen during the course of disease 
exhibit a KV1.3high pattern [8,9,18,19,25,28–33]. 
Studies with KV1.3 gene-knockout mice and phar
macological experiments with KV1.3-specific inhi
bitors demonstrate that KV1.3 is functionally 
important in pathogenic auto-reactive T cells 
[8,9,18,25,28–36]. Mice with the KV1.3 gene 
deleted are resistant to experimental autoimmune 
encephalomyelitis, a model for multiple sclerosis 
induced by immunization with myelin autoanti
gens [34]. In these KV1.3-knockout mice, myelin 
autoantigen-reactive T cells produce lower levels 
of inflammatory cytokines (IFN-γ, IL-17), secrete 
suppressive cytokine IL-10, and behave as FoxP3- 
independent suppressor T cells [34,35]. In other 
studies, KV1.3-specific inhibitors have been shown 
to suppress cytokine production and proliferation 
of pathogenic autoreactive T cells from patients 
with multiple sclerosis, type-1 diabetes mellitus, 
rheumatoid arthritis and autoimmune vasculitis; 
these inhibitors have also been shown to amelio
rate disease in rodent models of multiple sclerosis, 
type-1 diabetes mellitus, rheumatoid arthritis, 
psoriasis and inflammatory bowel disease 
[8,9,18,19,25,28–33,36]. KV1.3 is also recognized 
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as a therapeutic target to modulate the function of 
autoreactive B cells in granulomatosis with poly
angiitis [32], disease-associated microglia in 
Alzheimer’s disease, Parkinson’s disease and 
ischemic stroke [37–45], macrophages [46] and 
neutrophils [22] in autoimmune and neuroinflam
matory diseases [23]. In addition, mitochondrial 

KV1.3 is recognized as a target for the treatment of 
diverse tumors [47,48]. Since KV1.3-knockout 
mice and rats do not exhibit a deleterious pheno
type, selective pharmacological targeting of KV1.3 
should be safe [27,49–51]. Three KV1.3 inhibitors 
(dalazatide [31], DES-7144, an analog of DES-1 
[36], and sI-544 [52] have progressed to human 

Figure 1. a) Network of ion channels and transporters in human T cells. KV1.3 and KCa3.1 are expressed in both the plasma 
membrane and inner mitochondrial membrane. Although CaV3.2, CaV3.3, CaV2.1 transcripts are present in T cells, they lack many 5’ 
exons and consequently no functional CaV channels are expressed in T cells [10]. This figure is modified and updated from a figure 
published in [9]. b) The number of KV1.3 and KCa3.1 channels per T cell in quiescent, acutely activated (1–3 rounds of antigenic 
stimulation) and chronically activated (>4–5 rounds of antigenic stimulation) cells.
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clinical trials, and other KV1.3 inhibitors (scorpion 
peptides, small molecules, nanobodies, knotbodies, 
and peptide-antibody fusions) are in pre-clinical 
development. The ideal KV1.3-targeting therapeu
tic would be potent, KV1.3-specific, and stable (not 
metabolized to a less selective inhibitor). Recent 
determinations of the structure of KV1.3 have shed 
light on the inactivated conformation of KV1.3 and 
on how peptide inhibitors interact with the 
channel.

Structure of KV1.3

Structure of KV1.3-KVβ2 in non-conducting, 
C-type inactivated conformation

The KV channel in immune cells is formed by four 
KV1.3 subunits assembled in the membrane, which 
bind to four accessory proteins designated KVβ2 
(Figure 3a) [8,9,19]. The structure of human KV1.3 

in complex with KVβ2 was determined recently by 
cryogenic electron microscopy (cryo-EM) [53]. In 
an initial 3D map at 3.1Å resolution, the cytosolic 
regions including KVβ2 and the intracellular tetra
merization domain of Kv1.3 were well resolved, 
but the map displayed a lower resolution in the 
transmembrane region. Resolution was improved 
by subtracting density outside the transmembrane 
region using a soft mask around the detergent 
micelle, followed by 2D and 3D classification. 
From the analysis of signal-subtracted particles, 
a 3D map resolved to 3.4 Å with C4 symmetry 
applied was achieved for the transmembrane 
region. Models built from the maps of the trans
membrane region and the cytosolic regions were 
combined [53] (PDB 7WF3).

Figure 3b shows the cryo-EM density map of 
KV1.3-KVβ2 with fitted model viewed from the 
membrane plane (center) and the extracellular 
side (right). The pore domain (PD) is located at 

Figure 2. Network of ion channels and transporters in human B cells (a) and monocyte-macrophages (b). This figure is modified and 
updated from figures published in [9].
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Figure 3. Structure of KV1.3-KVβ2 in non-conducting, C-type inactivated conformation. a) Schematic view of a single subunit of KV1.3 with 
the transmembrane region in blue and the N-terminal intracellular β-subunit in green. b) The cryo-EM density map of KV1.3-KVβ2 side-view 
(left) and top view (right). The inset shows a superimposition of the VSDs and selectivity filters of KV1.3-KVβ2 (cyan) (PDB 7WF3) and KV 

Chim (gray) (PDB 2R9R). c) Selectivity filter of KVChim (PDB 2R9R) showing the distances between the carbonyl O atoms of two subunits 
and the four K+ in the selectivity filter at S1, S2, S3, S4 positions. d) Overlay of the KV1.3-KVβ2 Tyr447 (cyan) and equivalent aromatic 
residues in the selectivity filter of KVChim Tyr373 (gray), hERG F627 (orange) (PDB 5VA1), Eag-1 Phe439 (purple) (PDB 5K7L) and KcsA Tyr78 
(neon green) (PDB 1K4C). The cryo-EM density of KV1.3-KVβ2 Tyr447 in white mesh is overlapped with the model represented as stick cyan. 
e) the four subunits of KV1.3-KVβ2 (green, cyan, orange and gray) with the new position of Tyr447 and D449 being stabilized by intra- 
subunit hydrogen bond interactions with His451, a residue at the external entrance to the KV1.3 pore. The residues of each subunit are 
represented as sticks. On the right, the cryo-EM density is represented as a transparent green surface. f) Selectivity filter of KV1.3-KVβ2 
showing the difference in the position of the aromatic Tyr447 residue in the selectivity filter compared to KVChim in (c). The widened outer 
selectivity filter of KV1.3-KVβ2 shows K+ at ion-binding sites S1, S3, S4 but S2 is empty.
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the center, with four voltage-sensing domains 
(VSDs) at the periphery [53]. The PD is formed 
by the association of S5 and S6 helices and the 
intervening P-loop from each of the four KV1.3 
subunits. Each VSD is formed by the S1-S4 
transmembrane segments from one KV1.3 subu
nit. The VSD of one subunit interacts with the S5 
helix of a neighboring subunit in a domain- 
swapped configuration. The position of charged 
residues in the VSD indicates that the VSD is 
fully activated. In the PD, the S6 helical inner 
gate is in the open conformation [53]. The depo
larized VSD and open S6 helical inner gate indi
cate that KV1.3 is in the voltage-activated 
state [53].

Voltage-activation causes KV channels to transi
tion from the closed to an open-conducting con
formation, and then into a non-conducting C-type 
(slow) inactivated conformation in a time- 
dependent manner [54–57]. The best structural 
example of a KV channel in the open-conducting 
conformation is the rat KV1.2-KV2.1 paddle chi
mera (KvChim; pore region is KV1.2) (PDB 2R9R) 
(Figure 3c). Hydrated K+ flows through the open 
inner gate into a central cavity, where it loses its 
hydration water and then passes in single file 
through a narrow selectivity filter into an outer 
vestibule (Figure 3c) [58,59]. Four K+ are present 
in the selectivity filter at ion-binding sites S1, S2, 
S3, S4 (Figure 3c) [58,59].

Superimposition of KV1.3-KVβ2 with KVChim 
shows good alignment in the VSD, but structural 
differences are clearly visible in the selectivity filter 
(Figure 3b, right-bottom). A major difference is 
observed in the position of the aromatic residue 
in the selectivity filter [53]. This aromatic residue 
is in nearly identical positions in KVChim 
(Tyr373) and other K+ channels, both in the open- 
conducting (human ERG/KV11.1; PDB 5VA1; 
Phe367) or closed (rat Eag-1/KV10, PDB 5K7L, 
Phe439; bacterial KcsA, PDB 1K4C, Tyr78) con
formations [53] (Figure 3d). However, in KV1.3- 
KVβ2, a rotation of the sidechain of Tyr447 by ~ 90 
degrees leads to the hydroxyl oxygen of this resi
due adopting a position shifted 11 Å outwards 
from the position seen in these other K+ channels 
(Figure 3d) [53,57]. Another residue close to 
Tyr447 in the selectivity filter, Asp449, also swings 
outwards (Figure 3e) [53]. The outward positions 

of Tyr447 and Asp449 are stabilized by intra- 
subunit hydrogen bond interactions with His451, 
a residue at the external entrance to the KV1.3 
pore (Figure 3e) [53]. Owing to the changed posi
tion of Tyr447 and Asp449, the outer selectivity 
filter of KV1.3 is significantly wider than in KV 
Chim, while the inner selectivity filter is 
unchanged (Figure 3f) [53]. In the widened outer 
selectivity filter of KV1.3, K+ can be seen at ion- 
binding sites S1, S3 and S4, but S2 is empty 
(Figure 3f) [53]. Loss of the K+ at site S2 occurs 
because the carbonyl groups of residues Gly446 
and Tyr447 are oriented away from the selectivity 
filter [53]. All-atom MD simulations over 1 μs 
following a voltage pulse show stochastic conduc
tion of K+ through an unstable outer pore of KV 
1.3-KVβ2 [53]. This novel conformation with 
a dilated outer selectivity filter and reduced K+ 

occupancy represents the non-conducting C-type 
inactivated state of KV1.3-KVβ2 [53].

Structures of Shaker-IR, KVChim and KV1.3 in 
C-type inactivated conformation

Following the report described above in 
February 2022 [53], three new structures corrobo
rated the finding that the dilated conformation of 
the selectivity filter represents the non-conducting 
slow inactivated state. Figure 4a shows the amino 
acid sequences of the pore regions of these three 
channels. In March 2022, Swartz and colleagues 
published cryo-EM structures of the fly Shaker-IR 
channel (PDB 7SIP) and its rapidly inactivating 
W434F mutant (PDB 7SJ1) [60]. The selectivity 
filter in Shaker-IR is in an open-conducting con
formation resembling KVChim, while in Shaker- 
W434F it is in an inactivated conformation resem
bling KV1.3-KVβ2 (Figure 4b) [60]. In Shaker- 
W434F, Tyr445 and Asp447 in the selectivity filter 
are reoriented outwards and positioned near 
Thr449 (corresponding to Tyr447, Asp449 and 
His451 in KV1.3) (Figure 4a,b, right). Because of 
this rearrangement, the outer selectivity filter of 
Shaker-W434F is dilated and K+ occupancy in the 
outer filter is reduced (Figure 4b, right) [60]. In 
April 2022, Valiyaveetil and colleagues reported 
the structure of the rapidly-inactivating triple 
mutant (W362F+S367T+V377T) of KVChim 
(PDB 7SIT) (Figure 4a,c) [61]. In this structure 
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too, outward reorientation of Tyr373 and Asp375 
toward Thr377 (corresponding to Tyr447, Asp449 
and His451 in KV1.3) (Figure 4a) resulted in 
widening of the outer selectivity filter and loss of 
K+ at the S1 and S2 sites (Figure 4c) [61]. In 
July 2022, Meyerson and collaborators published 
the structure of KV1.3 without KVβ2 [62]. The new 
KV1.3 structure showed a dilated outer selectivity 
filter with reduced K+ occupancy (Figure 4d) [62]. 
Interestingly, two dilated conformations were 

identified, designated D1 (PDB 7SSX) and D2 
(PDB 7SSY) (Figure 4d). In D1 (Figure 4d, left), 
only Asp449 is oriented outwards, while in D2 
(Figure 4d, right), both Tyr447 and Asp449 are 
rotated outwards, and K+ occupancy is reduced 
in the dilated outer filter [62]. The D2 conforma
tion is identical to the C-type inactivated confor
mation in the structures of KV1.3-KVβ2 (PDB 
7WF3), Shaker-IR W434F (PDB 7SJ1) and KV 
Chim (W362F+S367T+V377T) (PDB 7SIT), while 

Figure 4. Transition from the open-conducting to the non-conducting C-type inactivated state of Shaker-IR, KVChim and KV1.3. 
a) amino acid sequence alignment of fly Shaker, rat KVChim and human KV1.3. Residues highlighted in gray are involved in the 
formation of hydrogen bonds that stabilize the open-conducting conformation. b) Shaker-IR (PDB 7SIP) selectivity filter is in an 
open-conducting conformation (left), while Shaker-W434F (PDB 7SJ1) selectivity filter is in a dilated C-type inactivated 
conformation (right). c) KVChim (PDB 2R9R) is in the open-conducting conformation (left) and the rapidly inactivating triple 
mutant (W362F+S367T+V377T) (PDB 7SIT) is in a dilated C-type inactivated conformation (right). d) KV1.3 with two dilated 
conformations designated D1 (PDB 7SSX) (left) and D2 (PDB 7SSY) (right). The D2 conformation is identical to the C-type 
inactivated conformation in the KV1.3-KVβ2 structure (cyan).
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the D1 conformation appears to be an intermedi
ate. KVβ2 does not appear to affect the inactivated 
conformation of the selectivity filter because struc
tures containing this subunit (KV1.3-KVβ2, PDB 
7WF3) and those lacking this subunit (Shaker-IR 
W434F, PDB 7SJ1; KVChim W362F+S367T 
+V377T, PDB 7SIT; KV1.3, PDB 7SSY) all exhibit 
the D2 inactivated conformation of the filter. In 
summary, comparison of the KV1.3, Shaker-IR and 
KVChim structures suggests that the three chan
nels use similar mechanisms for C-type 
inactivation.

Another structure of KV1.3-KVβ2 (PDB 7EJI) 
with an overall resolution of 3.4 Å was published 
in 2021 [63]. However, the transmembrane region 
of this structure had low resolution, resulting in 
missing or weak side-chain densities in the EM 
density maps for critical residues in the selectivity 
filter (particularly Tyr447 and Asp449), pore 
domain and VSD (Arg364, Arg367, Arg373, 
Lys376 and Arg379 in the S4 helix; Phe306, 
Glu309 and Asp332 in the charge-transfer center). 
As this structure had limited resolution in the pore 
region and VSD, it has not been included in our 
structural comparisons.

High external K+ concentration is known to 
slow C-type inactivation of KV1.3 [64,65] and 
Shaker-IR [66]. Despite this dampening effect on 
C-type inactivation, the structure of KV1.3 deter
mined in high K+ concentration and at 0 mV 
showed the inactivated dilated conformation of 
the selectivity filter, and a narrower conducting- 
conformation was only seen when peptide pore- 
blockers stabilized that conformation (as discussed 
below) [53,62]. In contrast, the structures of 
Shaker-IR and KVChim determined in elevated 
K+ concentrations and at 0 mV were in the open 
conducting conformation, and the dilated inacti
vated conformation was only seen in structures of 
these channels containing inactivation-promoting 
mutations [60,61]. These results suggest that KV1.3 
is more prone to transition from the open- 
conducting conformation to the dilated inactivated 
conformation than either Shaker-IR or KVChim. 
Electrophysiological studies on Shaker-IR and KV 
1.2 mutants suggest that Shaker-IR is more sus
ceptible to inactivation than KV1.2, and a key resi
due underlying this difference is Thr449 in Shaker- 
IR, corresponding to Val381 in KV1.2 (Val377 in 

KVChim) [67]. The corresponding residue in KV 
1.3, His451, stabilizes the dilated conformation of 
the inactivated channel by forming hydrogen- 
bonds with externally rotated Tyr447 and Asp449 
(Figure 3e) [53]. Replacement of this His in KV1.3 
with Val (corresponding residue in KV1.2 and KV 
Chim) or Thr (corresponding residue in Shaker- 
IR) slows C-type inactivation, while replacement 
with Asn or Ser accelerates C-type inactivation, 
highlighting the importance of this residue for 
inactivation [68–70]. It would be interesting to 
determine if substitution of His for Thr449 in 
Shaker-IR or Val377 in KVChim (Val381 in KV 
1.2) rendered these channels as sensitive to C-type 
inactivation as KV1.3.

Mechanism of transition from open-conducting 
to non-conducting C-type inactivated 
conformation

Analysis of the structures described above suggests 
a mechanism for the transition from the open- 
conducting to the non-conducting C-type inacti
vated state. In the open-conducting conformation, 
a network of intra-subunit (Shaker-IR: Trp434- 
Asp447; KVChim: Trp362-Asp375; KV1.3: Trp436- 
Asp449) and inter-subunit (Shaker-IR: Trp435- 
Tyr445; Thr439-Tyr445; KVChim: Trp363- 
Tyr373; Ser367-Tyr373; KV1.3: Trp437-Tyr447, 
Thr441-Tyr447) hydrogen bonds stabilizes the 
outer pore (Figure 4), allowing optimal flow of 
K+ [53,57–62,71,72]. In Shaker-IR, rupture of the 
intra-subunit bond (Trp434-Asp447) speeds up 
C-type inactivation, while disruption of the two 
inter-subunit bonds renders the channel nonfunc
tional [71,72]. Similarly, rupture of the two inter- 
subunit bonds in KV1.2 results in nonfunctional 
channels [73]. In mouse KV1.3, the Asp402Asn 
mutation (Asp449 in human KV1.3) renders the 
channel nonfunctional, presumably by rupturing 
the intra-subunit bond, but concatenated dimers 
comprised of wild-type− and Asp402Asn−contain
ing subunits exhibit rapid inactivation [74], like 
the Asp447Asn mutation in Shaker-IR [71]. 
Taken together, these results suggest that the intra- 
subunit bonds in KVChim, Shaker-IR and KV1.3 
stabilize the open-conducting conformation and 
prevent C-type inactivation, while the two inter- 
subunit bonds are essential for structural integrity. 
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The critical intra-subunit bond (Shaker-IR: 
Trp434-Asp447; KVChim: Trp362-Asp375; KV1.3: 
Trp436-Asp449) (Figure 4) ties the selectivity filter 
to the pore-helix. Its rupture causes the untethered 
selectivity filter to swing outwards (Figures 3d,e,f, 
4b,c,d), allowing Tyr447 and Asp449 in KV1.3 to 
form intra-subunit hydrogen bonds with the exter
nal residue His451 (Figure 2e) (corresponding to 
KVChim: Val377; Shaker-IR: Thr449) (Figure 4). 
This outward positioning of Tyr447 and Asp449 
widens the outer selectivity filter and perturbs ion 
coordination at sites S1 and S2, leading to the non- 
conducting C-type inactivated state.

In the next sections, we discuss KV1.3 inhibitors 
that operate by two distinct mechanisms, the first 
by narrowing the selectivity filter and occluding 
the pore, and the second by enhancing dilation of 
the selectivity filter in the non-conducting C-type 
inactivated conformation. We also discuss the 
importance of conformational dynamics in deter
mining the interaction of pore-blocking peptides 
with KV1.3.

Structure of KV1.3 bound to pore-blocking 
peptides

Peptide inhibitors of KV1.3

Several classes of peptide toxins are potent block
ers of KV1.3 [18,19,23]. ShK, a peptide produced 
by the Caribbean sea anemone Stichodactyla 
helianthus, blocks KV1.3, KV1.1 and KV1.6 with 
picomolar potency and KV1.2, KV3.2, KCa3.1 with 
nanomolar potency [75–77]. ShK contains 35 
amino acid residues that are cross-linked by three 
disulfide bonds into a structure consisting of two 
short α-helices (residues 14–19 and 21–24), and an 
N-terminus with an extended conformation up to 
residue 8, followed by a pair of interlocking turns 
that resembles a 310-helix (Figure 5a, left) [78]. It 
contains no β-sheet and is quite distinct from the 
αβ fold found in scorpion toxins such as HsTX1 
(PDB 1QUZ) (Figure 5a, right), which also block 
KV1.3 with picomolar affinity [79,80]. The struc
tures of BgK, a peptide from the sea anemone 
Bunodosoma granuliferum, (PDB 1BGK) [81], 
and AcK1, a peptide from the human-infecting 
hookworm Ancylostoma caninum (PDB 2MD0) 
[82] are similar to that of ShK. Both BgK and 

AcK1 block KV1.3, albeit with significantly lower 
potency than ShK [82]. Over 20,000 peptides and 
protein domains with structures similar to ShK 
have now been identified, and are referred to as 
ShKT domains [83,84]. Proteins containing ShKT 
domains include metallopeptidases, prolyl- 
4-hydroxylases, tyrosinases, peroxidases, oxidore
ductases. One such protein, human matrix metal
loprotease 23 (MMP-23), uses a ShKT domain 
(PDB:2K72) to block KV1.3, while using other 
domains to trap the channel in intracellular com
partments [85–87].

The exquisite potency of ShK made it an attrac
tive template for the development of drugs targeting 
KV1.3. However, its lack of selectivity necessitated 
development of analogs to improve selectivity for 
KV1.3 over other channels. As a first step, the sur
face of ShK involved in binding to KV1.3 was 
probed using alanine scanning, which identified 
a cluster of residues on one surface of ShK that 
interact with KV1.3 (Figure 5a) [88]. 
Complementary mutagenesis and double mutant 
cycle analysis then defined the ShK binding site in 
the external vestibule of KV1.3 [76,88,89], with 
a key interaction being occlusion of the outer selec
tivity filter by Lys22. Guided by this knowledge, 
nearly 400 ShK analogs were produced, including 
many with changes at the N-terminus. ShK-170, 
which incorporates a L-phosphotyrosine attached 
via an aminoethyloxyethyloxy-acetyl linker to the α- 
amino group of Arg1, blocked KV1.3 with an IC50 
of 69 pM and > 100-fold selectivity for KV1.3 over 
other channels [90]. ShK-186, an analog of ShK-170 
with the C-terminal carboxyl replaced with an 
amide to minimize digestion by carboxypeptidases, 
retained the selectivity of ShK-170 [91]. Another 
analog with the N-terminus extended by the resi
dues EWSS ([EWSS]ShK), blocked KV1.3 with an 
IC50 of 34 pM and ~ 160-fold selectivity for KV1.3 
over KV1.1 [92]. Analog ShK-192, with an 
N-terminal non-hydrolyzable para-phosphonophe
nylalanine (Ppa), norleucine at position 21, and 
C-terminal amidation, blocked KV1.3 with an IC50 
of 140 pM and ~ 160-fold selectivity over KV1.1 
(Figure 5a) [91]. Of all these analogs, only ShK- 
186, now renamed dalazatide, has progressed to 
human clinical trials. In a phase I clinical trial in 
patients with plaque psoriasis, dalazatide signifi
cantly suppressed inflammatory cytokines and 
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Figure 5. Structure of KV1.3 bound to pore-blocking peptides. a) KV1.3 inhibitory peptides. ShK represented as wheat-colored 
cartoon with the disulfide-bonds as orange sticks. The cluster of residues that interact with KV1.3 are represented as a surface: Arg11 
and Arg24 in blue, His19 and Ser20 in green, Lys22 in pink, Tyr23 in cyan. ShK-192 (PDB 2K9E) is shown as a wheat-colored cartoon 
(middle) and HsTx1 (PDB 1QUZ) as a cyan-colored cartoon. b) Pore region of two subunits of the C-type inactivated apo KV1.3-KVβ2 
(cyan) (PDB 7WF3) and dalazatide-KV1.3-KVβ2 (pink) (PDB 7WF4). The selectivity filter residues are shifted compared to the apo KV1.3- 
KVβ2, where the new position of Tyr447 formed inter-subunit hydrogen bonds Trp437-Tyr447 and Thr441-Tyr447. An inter-subunit 
Asp449-His451 hydrogen bond also stabilizes this conformation of the selectivity filter. c) Overlay of aromatic residues in the open- 
conducting conformations of KVChim (green), Shaker-IR (purple), apo KV1.3-KVβ2 (cyan) and dalazatide-KV1.3-KVβ2 (pink). d) KV1.3 
bound to Fab-ShK (PDB 7SSV) with Lys22 inserted into the selectivity filter to occlude the channel pore.
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chronically-activated T cells in the blood, and 
reduced the Psoriasis Area and Severity Index 
(PASI score) [31]. Dalazatide is now progressing 
to phase II clinical trials in patients with secondary 
progressive multiple sclerosis.

Interestingly, C-type inactivation reduces the 
affinity of dalazatide for KV1.3 [53], which was 
also the case for kaliotoxin, a scorpion peptide 
[93]. Kaliotoxin binding to a KV1.3-KcsA chimera 
grafted with the selectivity filter of KV1.3 has been 
shown by solid-state NMR and all-atom molecular 
dynamics simulation studies to narrow the outer 
selectivity filter, similar to changes that might 
occur as a channel recovers from C-type inactiva
tion [94]. Since the KV1.3-KVβ2 structure is in the 
dilated C-type inactivated conformation, and 
because dalazatide’s potency is reduced by C-type 
inactivation, like kaliotoxin, it was of interest to 
determine if binding of dalazatide would narrow 
the outer selectivity filter of KV1.3, analogous to 
the effect of kaliotoxin on KV1.3-KcsA.

KV1.3-KVβ2 bound to dalazatide

The structure of dalazatide bound to KV1.3 was 
determined at a resolution of 3.4 Å (PDB 7WF4) 
[53]. This structure showed large shifts in the 
positions of Tyr447 (11.8Å), Gly448 (2.0Å), 
Asp449 (3.7Å), Met450 (13.3 Å) and His451 
(7.9 Å) in the outer pore region compared to 
C-type inactivated KV1.3-KVβ2 (Figure 5b) (PDB 
7WF3) [53]. Most importantly, Tyr447 swung 
back toward the interior of the selectivity filter 
and superimposed well with the corresponding 
aromatic residues in the open-conducting con
formations of KVChim and Shaker-IR 
(Figure 5b,c) [53]. In its new position, Tyr447 
formed inter-subunit hydrogen bonds with 
Trp437 and Thr441 (Figure 5b), which corre
spond to the inter-subunit hydrogen bonds that 
stabilize the open-conducting conformation of 
KVChim (Trp363-Tyr373; Ser367-Tyr373) and 
Shaker-IR (Trp435-Tyr445; Thr439-Tyr445) 
[53,57,60] (Figure 4a). Inward movement of 
Asp449 was not sufficient to make the intra- 
subunit hydrogen bond Trp436-Asp449 that pre
vents C-type inactivation [53,71,72], but 
a compensatory inter-subunit hydrogen bond 
Asp449-His451 contributed to stabilizing the 

conformation (Figure 5b) [53]. The dalazatide- 
induced rearrangement caused the selectivity fil
ter to narrow to the dimensions seen in the 
open-conducting conformation of KVChim and 
Shaker-IR (Figures 3c, 5b). Within the narrowed 
selectivity filter, K+ was seen at sites S2, S3 and 
S4, while the density observed at S1 was likely 
a pore-occluding dalazatide residue. Thus, bind
ing of dalazatide stabilizes the KV1.3 selectivity 
filter in an open-conducting conformation, with 
K+ efflux prevented by the peptide occluding the 
outer entrance of the pore.

KV1.3 bound to Fab-ShK

Although EM density maps revealed a clear den
sity for dalazatide in close proximity to residues 
in the outer pore of KV1.3 (His451, Met450, 
Asp449, Gly448), a model of dalazatide could 
not be built into the density because of the 
symmetry mismatch problem arising from an 
asymmetrical dalazatide molecule binding to 
a four-fold symmetrical KV1.3 [53]. Meyerson 
and colleagues solved this problem using an 
antibody-ShK fusion produced by Minotaur 
Therapeutics [62]. Since the antibody-ShK is 
divalent and could potentially crosslink Kv1.3 
molecules, they generated a monovalent Fab- 
ShK for cryo-EM studies [62]. In electrophysio
logical studies, this Fab-ShK was found to com
pletely block KV1.3 current at 10 nM [62]. They 
then solved the structure of KV1.3 bound to Fab- 
ShK at a resolution of 3.39 Å and successfully 
modeled ShK-Fab into the EM density. ShK 
bound to the outer vestibule of KV1.3, with 
Lys22 of ShK inserted into the pore and its 
ammonium group making contact with the 
backbone carbonyls of Tyr447 from all four KV 
1.3 subunits (Figure 5d) (PDB 7SSV) [62]. This 
configuration confirms our earlier results deter
mined by electrophysiology, complementary 
mutagenesis and double mutant cycle analysis 
[76,88,89], and our recent molecular dynamics 
(MD) simulation studies described below [95]. 
Binding of Fab-ShK caused a narrowing of the 
outer selectivity filter and stabilization of the 
conductive conformation by inter-subunit 
hydrogen bonds Trp437-Tyr447 and Thr441- 
Tyr447, confirming our findings with dalazatide 
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[53,62]. Thus, dalazatide and Fab-ShK stabilize 
the open-conducting conformation of the selec
tivity filter and block K+ flow by occluding the 
external pore.

Role of conformational dynamics in the 
interaction of ShK and the closely-related 
peptide HmK with KV1.3

In the course of defining the structure of dala
zatide bound to KV1.3, it became apparent that 
conformational dynamics in the peptide had to 
be taken into account. Disulfide-rich peptides 
are generally thought to be relatively rigid, but 
NMR spectroscopy and MD simulations have 
demonstrated the presence of conformational 
dynamics and their potential importance for 
molecular recognition [96]. In the case of 
ShK, NMR has revealed significant flexibility 

in solution that also affects the dyad Lys22- 
Tyr23, which is important for KV1.3 block 
[97–99]. In the major conformation of ShK, 
Tyr23 is partially buried, but as 
a consequence of conformational dynamics, 
ShK samples at least one minor state where 
Tyr23 is more exposed. HmK, from the sea 
anemone Heteractis magnifica [100], shares 
60% identity with ShK across their 35 amino 
acids and three disulfide bonds. Their 
C-terminal regions are largely identical but 
the N-terminal regions show different charge 
distributions (Figure 6a). They have similar 
secondary structure and both peptides display 
the key Lys-Tyr dyad [76,81,88,89]. Although 
the two peptides share high sequence identity 
and structural similarity, ShK blocks KV1.3 
with much higher potency than HmK (ShK 
IC50 11 pM [76,101], HmK IC50 3 nM [102]).

Figure 6. Role of conformational dynamics in the interaction of ShK and HmK with KV1.3. a) Structure and sequence of ShK (teal) and 
HmK (green). The disulfide bonds are represented as orange sticks and the Lys-Tyr dyad is shown as sticks. b) The 20 structures 
derived from PC1 and PC2 show that the dynamics of ShK are distributed throughout the peptide, with the helix 21–24 having 
a higher contribution, while HmK does not display significant dynamics, except at the N- and C-termini. The final frames of the 100 
ns MD simulations show the interaction of KV1.3 (subunits A, and C colored pink and purple, respectively) with c) ShK (teal) and d) 
HmK (green). The residues in the selectivity filter and the outer vestibule of KV1.3 are the main residues interacting with the α-helix 
21–24 of ShK, except for Arg11, which is located in the N-terminal region of the toxin. Both models show Lys22 occupying the pore.
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ShK is more flexible than HmK

Using a combination of docking and long MD 
simulations (5 μs) we investigated the implica
tions of conformational dynamics of ShK and 
HmK for binding to KV1.3 [95]. The ensemble 
of solution structures of ShK determined by 
NMR shows a range of configurations with dis
parate Lys22 Nη-Tyr23Oζ dyad heavy atom dis
tances (PSB 1ROO) [78], but it was not known 
which configuration bound to KV1.3. In MD 
simulations of ShK in water the dyad distance 
varied between 3 and 12.5 Å, assuming three 
main configurations over the 5 μs trajectories 
[95]. In configuration 1, the dyad residues were 
close together (˜3 Å), associated with a partial 
unwinding of the helix residues 14–19 (adjacent 
to the helix 21–24 where the dyad is located), in 
configuration 2, an intermediate separation (˜5 
Å) was observed, whereas in configuration 3, 
Lys22-Tyr23 were far apart (>7.5 Å). The same 
set of MD simulations were performed for HmK, 
but, in contrast with ShK, HmK has 
a considerably more rigid structure, with Lys22 
Nζ and Tyr23 Oη remaining ˜3.25 Å apart over 
the 5 μs trajectory [95]. We used Principal 
Component Analysis (PCA) to investigate the 
fundamental motions in ShK and HmK by 
extracting the atomic positions of all atoms and 
building a covariance matrix, where the diago
nalization gives the eigenvectors and eigenvalues 
that represents the principal motions [103]. 
Extracting the 20 structures from PC1 and PC2 
for both peptides (Figure 6b), a clear difference 
in the dynamics is observed. While ShK dis
played flexibility throughout its structure, with 
the helix 21–24 showing the greatest conforma
tional changes, HmK was quite rigid except at N- 
and C-termini (Figure 6b). The C-terminal 
regions of ShK and HmK are largely identical, 
whereas several charge differences are present in 
the N-terminal region: Ile4 → Lys, Lys9 → Val, 
Arg11 → Glu, Ala14 → Asp, Gln16 → Arg, and 
His19 → Thr (ShK → HmK) (Figure 6a). These 
charge differences may strengthen intramolecu
lar interactions in HmK compared to ShK, and 
thereby contribute to its greater rigidity.

Docking configurations of ShK and HmK in KV1.3 
and comparison with cryo-EM structures

We further investigated whether the docking 
program HADDOCK [104] would be informa
tive in comparing the three major configurations 
of ShK identified in MD simulations with the 
experimentally observed cryo-EM electron den
sity map (PDB 7WF4). There are several litera
ture reports suggesting that the binding of ShK 
to KV1.3 occurred by Lys22 occluding the chan
nel pore [89,105] although alternative bound 
configurations have been proposed involving 
Lys22 lying between subunits of the KV1.3 chan
nel instead of physically blocking the channel 
pore [106]. In contrast, electrophysiological 
assays of free- and membrane-tethered ShK 
were interpreted to indicate that Arg24 played 
a key role in channel blockade [102]. We there
fore investigated the three major configurations 
of ShK using HADDOCK docking to KV1.3 
[104]. The ShK configuration with best 
HADDOCK score and fewest violations com
pared to the cryo-EM density (PDB 7WF4) [53] 
had a dyad distance < 7.5 Å, which corresponds 
to configurations 1 or 2 in our MD simulations 
of ShK free in solution [95]. For HmK, where 
only one major state was identified, better 
HADDOCK scores were also found for config
urations with Lys22 occupying the channel pore, 
suggesting that the difference in affinity is not 
due to alternative binding poses. We compared 
both ShK and HmK binding to KV1.3 through 
100 ns MD simulations and monitored the pep
tide-channel interactions over the trajectories. 
This showed that in both ShK and HmK, the 
Lys22 side chain Nζ is stabilized in the pore 
through interactions with Tyr447 carbonyl oxy
gens of all four KV1.3 subunits (Figure 6c,d). 
The docked configuration of ShK is supported 
by the cryo-EM based structure of Fab-ShK 
bound to KV1.3 (Figure 5d) [62]. Intriguingly, 
the more flexible peptide ShK binds KV1.3 with 
higher affinity than the more rigid HmK, sug
gesting an interplay between peptide dynamics 
and channel binding that remains to be fully 
elucidated.
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A nanobody stabilizes the C-type inactivated 
conformation of KV1.3

Van Hoorick and colleagues at Ablynx have 
developed and patented nanobodies targeting 
KV1.3 (patent WO2015193452A1) [107]. 
Meyerson and colleagues showed that one of 
these nanobodies, A0194009G09, significantly 
accelerated C-type inactivation of KV1.3, and 
determined the structure of KV1.3 bound to 
A0194009G09 to a resolution of 3.25 Å (PDB 
7SSZ) [62]. Four nanobody molecules were 
attached to the KV1.3 tetramer, each bound to 
residues in the KV1.3 turret (Ala421, Pro424, 
Ser426, Gly427) and external loops of the VSD 
(Tyr265, Pro266) of one subunit (Figure 7a) 
[62]. Despite the lack of direct interaction 
with the selectivity filter, the nanobodies 
induced significant conformational changes in 
the outer selectivity filter, consistent with an 
exaggerated C-type inactivated conformation 
[62]. The selectivity filter residue Asp449 was 
oriented outwards, while Tyr447 adopted two 
positions, one similar to the D1 conformation 
of KV1.3 (PDB 7SSX), and the second with the 
hydroxyl group of Tyr447 oriented toward the 
extracellular space, a conformation designated 

D3 (PDB 8DFL), distinct from both D1 and D2 
(PDB 7SSY) [62] (Figure 7b,c). The result was 
a widened outer selectivity filter with reduced 
K+ occupancy, a non-conducting C-type inacti
vated conformation. Although four nanobodies 
were seen bound in the structure, electrophy
siological studies suggested that fewer nanobo
dies could bind to KV1.3, and higher 
occupancies sped up and promoted durable 
C-type inactivation [62].

Conclusion

Publication of the crystal structure of the bacter
ial potassium channel KcsA in 1998 [108] repre
sented a major step forward in our 
understanding of the structural basis for K+ con
duction. This structure enabled the development 
of more accurate homology models of the pore 
domains of voltage-gated potassium channels 
such as KV1.3, which in turn enhanced our 
understanding of how peptide ligands blocked 
the channel. Several of the current peptide inhi
bitors of KV1.3 were designed on the basis of 
these models. Subsequent structures of potas
sium channels further enhanced our under- 

Figure 7. KV1.3 bound to the anti-KV1.3-nanobody A0194009G09. a) Four A0194009G09 nanobody molecules (pink) attached to the 
KV1.3 tetramer (yellow). A0194009G09 nanobody binds to residues in the KV1.3 turret and external loops of the VSD (A, right) (PDB 
7SSZ). b) and c) Tyr447 adopted two conformations upon nanobody binding; the first conformation (yellow) is similar to D1 (PDB 
7SSX, blue), while in the second conformation the hydroxyl group of Tyr447 is oriented toward the extracellular space in 
a conformation designated D3 (green) (PDB 8DFL), distinct from both D1 (PDB 7SSX) and D2 (PDB 7SSY).
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standing of the open [59,109] and closed 
[110,111] conformations of KV channels. The 
recent determination by cryo-EM and X-ray 
crystallography structures of KV1.3, Shaker-IR 
(wild type and W434F mutant) and the inacti
vating KVChim mutant (W362F+S367T+V377T) 
reveal the mechanism whereby KV channels 
transition in a time-dependent manner from 
the open-conducting conformation into the non- 
conducting C-type inactivated state. This tem
poral change involves the breaking of a key 
intra-subunit hydrogen bond that tethers the 
selectivity filter to the pore-helix, allowing the 
selectivity filter to move outwards, resulting in 
dilation of the outer pore and the disruption of 
ion permeation. The recent structures of KV1.3 
bound to various ligands enhance our under
standing of KV1.3 pharmacology. Binding of 
the peptide blockers dalazatide and Fab-ShK to 
the KV1.3 outer vestibule was shown to narrow 
and stabilize the selectivity filter in the open- 
conducting conformation, with K+ efflux pre
vented by pore occlusion via the interaction of 
Lys22 of ShK with the backbone carbonyl of 
Tyr447 of KV1.3. Electrophysiological studies 
show that ShK blocks KV1.3 with considerably 
higher potency than its closely related analog 
HmK, despite being more flexible (as shown by 
MD simulations). In contrast, binding of anti-KV 
1.3 nanobody A0194009G09 to the turret and 
residues in the external loops of the VSD widens 
the outer selectivity filter in an exaggerated 
C-type inactivated conformation. These studies 
provide the framework for future studies to 
define the mechanism of slow inactivation and 
determine how small molecule and peptide inhi
bitors promote the slow inactivated conforma
tion in KV channels, and will facilitate the design 
and development of next-generation KV1.3-tar
geted immuno-therapeutics.
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