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Cancer immunotherapy has achieved tremendous successful clinical results and obtained historic victories 
in tumor treatments. However, great limitations associated with feeble immune responses and serious 
adverse effects still cannot be neglected due to the complicated multifactorial etiology and pathologic 
microenvironment in tumors. The rapid development of nanomedical science and material science has 
facilitated the advanced progress of engineering biomaterials to tackle critical issues. The supramolecular 
biomaterials with flexible and modular structures have exhibited unparalleled advantages of high cargo-
loading efficiency, excellent biocompatibility, and diversiform immunomodulatory activity, thereby 
providing a powerful weapon for cancer immunotherapy. In past decades, supramolecular biomaterials 
were extensively explored as versatile delivery platforms for immunotherapeutic agents or designed to 
interact with the key moleculars in immune system in a precise and controllable manner. In this review, we 
focused on the crucial role of supramolecular biomaterials in the modulation of pivotal steps during tumor 
immunotherapy, including antigen delivery and presentation, T lymphocyte activation, tumor-associated 
macrophage elimination and repolarization, and myeloid-derived suppressor cell depletion. Based on 
extensive research, we explored the current limitations and development prospects of supramolecular 
biomaterials in cancer immunotherapy.

Introduction

Cancer is one of the most devastating diseases, with continu-
ously increasing new cases affecting millions of people world-
wide [1–4]. The American Cancer Society publishes its annual 
report on cancer statistics, which shows that the overall fatality 
rate from cancer has diminished by 33% since 1991, with an 
estimated 3.8 million deaths averted attributed to the deeper 
comprehension of oncology, which promotes the high-level 
advancement of tumor diagnosis and antitumor treatment 
[5–8]. Despite huge progress achieved in drug discovery, cancer 
is still reckoned as a thorny problem as the leading cause of 
death [9]. The complicated multifactorial etiology and patho-
logic microenvironment of tumors caused great troubles in the 
treatment of disease.

The immune system plays a crucial role in the occurrence, 
development, and progression of cancer, which should be 
responsible for monitoring and eliminating abnormal cells, such 
as cancer cells [10,11]. However, tumor cells can evade the super-
vision of the immune system through a number of mechanisms, 
including impairment of immune cell response, up-regulation 
of immune checkpoint molecules, attenuation of antigen pres-
entation, and induction of immunosuppressive cell differentia-
tion [12–16]. Tumor immunotherapy is a historic landmark in 
tumor treatment, aiming to recognize and eliminate tumor cells 
by harnessing the power of intrinsic and adaptive immune 

systems [17–19]. The activation of adaptive immune response 
is crucial for predominantly cyto-immune killing [20], with 
sequential steps as the antigens are released from tumors and 
recognized by antigen-presenting cells (APCs) in the immune 
system and form the major histocompatibility complex (MHC) 
[21,22]. Matured APC further presents the antigen peptide to T 
lymphocytes and generates antigen-specific signals to prim the 
cellular immunity dominated by cytotoxic T lymphocytes (CTL) 
[23,24]. Activated CTL traffics and infiltrates into tumor tissues 
to recognize and kill cancer cells by releasing granzyme and 
perforin, and ultimately inhibit tumor growth, invasion, and 
recurrence [25,26]. In recent years, many immunotherapy meth-
ods have achieved promising clinical therapeutic effects, such as 
tumor vaccines [27,28], immune checkpoint blockade (ICB) 
[29,30], immunoregulatory therapy [31,32], adoptive CTL ther-
apy [33], and cytokine therapy [34]. Despite certain scenarios 
success have been achieved, the immune therapy efficacy is 
thwarted by inadequate immunogenicity of antigen, the unen-
durable activity of immune cells, insufficient immune response, 
and disturbance of immunosuppressive cells [35–37]. In addi-
tion, there might be some unavoidable side effects of current 
immunotherapy modalities, which severely limit their clinical 
applications [38,39]. The rapid evolution of nanomedical science 
and material science promotes the advanced development in the 
field of immunotherapy to tackle the above critical issues in past 
decades [40–42].
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Of these, supramolecular chemistry offers a promising tool 
of study in the development of immunotherapies for cancer 
treatment. Supramolecular assembly is that “bottom-up” molec-
ular arrange into well-ordered nanoscale architectures, which 
was driven by noncovalent interactions, including hydrogen 
bonding, hydrophobic interactions, π–π stacking, electrostatic 
interactions, and Van der Waals forces [43–45]. Compared with 
other nanomaterials, supramolecular biomaterials have emer-
gent properties to develop versatile, flexible, and facile nano-
platforms to prevent tumor growth and immune evasion by 
fabricating intelligent drug delivery systems or targeting key 
molecular interactions in immunotherapy [46–48]. In the con-
text of developing novel delivery platforms for immunothera-
peutic agents, such as immune checkpoint inhibitors, tumor 
antibodies, immune activated adjuvants, and cytokines, the supra-
molecular nanoplatform exhibits unique advantages of high 
cargo-loading efficiency, excellent biocompatibility, and diver-
siform immunomodulatory activity due to the modularity 
assembly of the supramolecular structure [49–51]. Surprisingly, 
supramolecular biomaterials can be applied to stimulate immune 
response and regulate immunosuppressive microenvironment 
homeostasis by modulating their structural properties with suitable 
shape, size, and surface patterns [52,53]. Collectively, supramolec-
ular biomaterials provide a versatile platform for the development 
of immunotherapies by enabling the design of molecules and 
materials that can interact with the immune system in a precise 
and controlled manner. In this review, we focused on current 
supramolecular biomaterial systems for immunotherapeutic 
strategies (Fig. 1) and summarized their crucial roles in the mod-
ulation of pivotal steps during tumor immunotherapy, includ-
ing antigen delivery and presentation, T lymphocyte activation, 
tumor-associated macrophage elimination and repolarization, 
and myeloid-derived suppressor cell depletion. Furthermore, 
the current limitations and development prospects of supra-
molecular biomaterials in cancer immunotherapy were also 
explored. Based on extensive research, our review will open a 
promising avenue for researchers in supramolecular biomate-
rial development and also propose potential research directions 
for tumor immunotherapy.

Application of Supramolecular Biomaterials 
in Boosting Immunogenic Cell Death-Induced 
Immunotherapy
As a representative immunotherapy strategy, immunogenic cell 
death (ICD) could kill the solid tumors in situ, as well as elicit the 
immune response to realize the elimination of tumor cells to the 
maximum extent [54]. ICD is a distinctive pattern of cell demise, 
which achieves activation of antitumor immune responses by 
releasing tumor-associated antigens (TAAs) [55] and damage- 
associated molecular patterns (DAMPs) [56]. Taking the advan-
tages of multifunctionality and tunability, the application of 
supramolecular biomaterials for boosting ICD-induced tumor 
immunotherapy has been greatly explored. Recent works on bio-
active supramolecular nanomaterials as delivery platforms and 
ICD inducers are presented in this section.

Drug-induced ICD is currently the holy grail to achieve 
both cytotoxicity and immune elicitation [57]. However, the 
efficacy of conventional ICD inducers is often limited by short 
circulation time and poor tumor targeting ability [58]. Thus, 
the desired immune activation effect cannot be obtained at 
low dosage, and high-dosage chemotherapeutic drugs would 
lead to leukopenia [59]. Supramolecular biomaterials could 
serve as a nanoplatform to improve the therapeutic efficiency 
of ICD inducers with reduced side effects. Zheng et al. [60] 
proposed a doxorubicin-loaded mesoporous silica nanopar-
ticles (DOX@MSN). In this system, β-cyclodextrin (β-CD) 
was threaded through a benzimidazole–polyethylene glycol 
(PEG)–ferricinium rotaxane gate to realize the acidic and 
redox dual responsive DOX release and amplified the anti-
cancer immune response. Qi et al. [61] reported cell mem-
brane vesicles based on supramolecular technology (SCMVs) 
to load indocyanine green (ICG) through the host–guest com-
plexation between β-CD and adamantane. The SCMVs could 
specifically accumulate in tumors, mediating ICD through pho-
todynamic therapy. This type of supramolecular engineering 
cell membrane vesicles presents a friendly and generalizable 
strategy for precise tumor immune therapy.

In many cases, the therapeutic outcomes of nanomedicines 
show unsatisfactory improvement due to the complicated delivery 
journeys [62]. Different requirements are proposed to satisfy the 
drugs for acting at different sites. Theoretically, larger nano-
particles with a size of around 100 nm tend to accumulate at 
tumor sites under enhanced permeability and retention (EPR) 
effect [63]. However, the malformed vessel and dense extracellular 
matrix of solid tumor tissues cause an interstitial hypertension 
microenvironment, hampering the deep penetration of nanopar-
ticles [64]. Therefore, the nanomedicines with smaller particle 
size (<30 nm) are required to alleviate diffusional resistance and 
potentiate intratumor penetration [65]. It requires even much 
smaller size to cross the nuclear pore (<9 nm) [66]. The supra-
molecular biomaterials could be applied to responsively modulate 
their structural properties with suitable shape, size, and surface 
patterns. Xu and colleagues [67] proposed drug–polymer supra-
molecular nanoparticles (PDNPs) as an ICD inducer to boost the 
immunogenicity of tumor (Fig. 2). PDNPs contain 2 different 
acid-sensitive cleavable linkers, which could display a graded 
response to the increasing acidity of the tumor microenvironment 
(TME). At physiological conditions, the PDNPs exhibited a spher-
ical shape and remained stable with a size of around 129.7 ± 
8.2 nm, ensuring adequate tumor accumulation. The PEG shield-
ing begins to detach from PDNPs, owing to the protonation of 

Fig.  1. Schematic illustration of supramolecular biomaterials in the modulation of 
pivotal steps during tumor immunotherapy.
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the benzoic imine bond at acidic TME (pH ≈ 6.5). In this 
process, the nanoparticles shrink to 37.9 ± 8.2 nm, promoting 
the deep tumor penetration of nanoprodrugs. After endocy-
tosis, second-stage shrinkage of PDNPs occurred due to the 
cleavage of acidic-sensitive hydrazone bond at endolysosome 
environment (pH ≈ 5.0), leading to complete decomposition 
into 8.1 ± 3.2 nm. Multi-stage size regulation strategy pro-
motes the accumulation, retention, and penetration of PDNPs 
and lays the foundation for the accurate release of drugs at 
target sites. Finally, the PDNPs consummately provoke pyrop-
tosis and facilitate ICD procedure, thereby boosting the anti-
tumor immune response.

In addition, the specific supramolecular biomaterial could 
induce direct targeting and disrupt tumor cell membranes, 
leading to quick destruction of the intracellular homeostasis, 
without the requirement of traditional drug delivery systems 
to overcome intracellular delivery barriers [68]. Zhang and 
colleagues [69] reported a tumor cell membrane targeted chi-
meric peptide [C16-cypate-RRKK-PEG8-COOH (CCP)]. The 
CCP could assemble to form a self-delivery system under 
noncovalent forces. Due to the positively charged moiety dis-
playing a high affinity to the negative charged membrane by 
electrostatic interaction, the RRKK peptide could insert into 
the cell membrane (Fig. 3). Subsequently, the self- assembled 
CCPs could be localized to generate reactive oxygen species 
(ROS) and mild heat (<45 °C) under near-infrared (NIR) 
light irradiation, which directly wipes out the tumor cell mem-
brane and induce ICD to achieve immunotherapy. iRGD as a 
cell penetrating peptide could specifically recognize tumor vas-
cular endothelial cells by binding to the excessively expressed 
integrin receptors, thus facilitating the deep penetration of drugs 
into tumor tissues [70]. Therefore, iRGD peptide modification 
could exhibit a high- performance delivery strategy for ICD induc-
ers to effectively initiate the immune response [71].

The peptide with surface-induced assembly property could 
trigger the formation of supramolecular nanoclusters on cell 
membranes, thus leading to enhanced endocytosis and orga-
nelle distribution and retention [72–74]. According to a previ-
ous report, the lysosomal accumulation of nanoparticles and 
ROS generation could cause lysosomal membrane permeabi-
lization and induce ICD [75]. Based on that, Ding and col-
leagues [76] designed TPA-FFG-LA, which could bind to the 
cell surface through high affinity with epidermal growth factor 
receptor (EGFR). Subsequently, the hydrophobic amino acid 
sequence of TPA-FFG-LA could assemble on the cell mem-
brane, resulting in the uptake and lysosomal accumulation of 
nanoclusters. Under laser irradiation, the AIEgen TPA-S-RDN 
generated lots of ROS and caused cell death. The results imply 
that TPA-FFG-LA could excellently realize synergetic lysoso-
mal membrane permeabilization and ICD by the strategy of 
peptide assembly and AIEgen-based photodynamic therapy to 
eradicate tumor cells.

Applying as Delivery Platform for ICB Therapy
ICB has shown great promise by harnessing the blockage of inhib-
itory signals in the immune system to combat tumors [77]. The 
research on programmed cell death protein 1 (PD-1) and PD-1 
ligand (PD-L1) pathway has gained prominence [78] due to their 
high clinical efficacy. The tumors overexpressed PD-L1 on the cell 
membrane to evade the PD-1+ T cell recognition, resulting in T 
cell exhaustion and anergy [79,80]. Therefore, blocking the inter-
actions between PD-1 and PD-L1 with antibodies [immune check-
point blockers (ICBs)] is considered capable of restoring T cell 
function, leading to the long-term anticancer immune response 
[81,82]. However, only a relatively little fraction of patients obtained 
direct benefit from the ICB treatment, exhibiting less than 30% 
response rate in the clinic [83]. The principal reason is that the 

Fig. 2. (A) Schematic illustration of size-transformable supramolecular nanoprodrug (PDNP)-mediated cancer chemo-immunotherapy. (B) pH-triggered sequential conversion 
of particle size over time. (C) Representative immunofluorescence staining of excised tumor tissues after PDNP treatment for penetration studies. Reproduced with permission 
from [67]. Copyright 2022 Wiley-VCH GmbH.
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infiltration of tumor- specific T cells is deficient in most patients 
[84]. Furthermore, the off- target binding of ICBs with normal 
tissues can even cause serious immune-related adverse events 
[85]. Supramolecular biomaterial- based drug delivery systems 
are highly appealing strategies to controllable and sustainable 
release of various bioactive agents for overcoming these limi-
tations in ICB therapy.

The therapeutic dilemma of immune agent stems from 
the intrinsic or acquired resistance environment within tum-
ors [86]. It is being realized that the co-delivery of thera-
peutic and immune regulation agents might be the optimal 
approach to achieve the maximal antitumor efficacy [87,88]. 
With this appeal in mind, Yang and colleagues [89] reported 
that a supramolecular “trident” (IND-GDFDFDY-DPPA-1), 
consisting of DPPA-1 (as the antagonist against PD-L1), 
indoximod (as the indoleamine 2,3-dioxygenase inhibitor), and 
D-tetrapeptide of GDFDFDY (as self-assembly module), dis-
plays triple functions for boosting the tumor immunother-
apy. Besides, the phosphatidylinositol 3-kinase (PI3K)-AKT 
and mitogen-activated protein kinase (MAPK) pathways have 
been investigated to modulate the expression of PD-L1 in 
different cancers [90,91]. However, the inhibition of PI3K 
or MEK might exist potential toxicities existed for modu-
lating T cell functions [92,93]. Supramolecular technology- 
based nanocarrier development allows the selective delivery 
of therapeutic agent payload to tumor tissues [94]. Sengupta 
and colleagues [95] designed PI3K and MEK inhibitors as 
molecular subunits of quantum mechanical all-atomistic 
simulation-based supramolecular assembly for PD-1–PD-L1 
ligation regulation. The supramolecular nanocarrier could 
be applied for stable and efficient loading therapeutic drugs 
into tumors. Increased intratumoral therapeutic agents resulted 
in a sustained pharmacodynamic effect for enhancing anti-
tumor efficacy. Finally, the combination of supramolecular- based 

targeted therapy and ICB treatment carries out an enhanced 
anticancer outcome in breast and melanoma cancer.

Supramolecular hydrogels as “smart” delivery system allows 
the site-specific delivery and sustained release of checkpoint 
inhibitors [96]. As a local delivery strategy, supramolecular 
hydrogels could significantly decrease the adverse events of 
ICB therapy caused by off-target[97]. Therefore, Wang et al. 
[98] developed a drug-based supramolecular hydrogel to 
encapsulate anti–PD-1 antibodies for in situ ICB therapy. In 
this work, the amphiphilic peptide hydrogelator can assem-
ble into nanofibers, serving as a reservoir for long-term release 
of camptothecin and anti–PD-1 within the TEM (transmission 
electron microscope) (Fig. 4). The 2-component system dis-
plays a high potency for immune response stimulation and 
cancer regression. Yang and colleagues [99] explored a ther-
mo-responsive hyaluronic acid-based supramolecular hydro-
gel (HA-DEG/UPy), which is formed by both hydrophobic 
interactions and the quadruple hydrogen bonding. HA-DEG/
UPy could facilitate the immunogenic phenotype by DOX 
and amplify the immune response rates via the blockage of 
PD-L1 by the DPPA-1 peptide. Wang and colleagues [100] 
reported a supramolecular nanofiber (TAP) fabricated with 
a hydrophobic AIE agent (tetraphenylethylene) and a PD-L1 
targeted peptide. TAP exhibited a specific affinity to PD-L1 
and assembled into nanofibers under the noncovalent inter-
actions. Under laser irradiation, TAP enabled thermal abla-
tion of the tumor to generate TAAs and trigger immunological 
events against cancer. The abovementioned supramolecular 
hydrogels are highly appealing strategies to achieve enhanced 
tumor immunotherapy with minimized immune-related side 
effects.

Moreover, the compensative expression of PD-L1 on the tumor 
membrane remains continuous even after conformational blockade 
by anti–PD-L1 antibody [26]. Recently, genome- editing technology 

Fig.  3.  (A) Schematic illustration of cell membrane-targeting self-delivery nanodrugs for high-efficient and anti-metastatic combinational LTPTT/PDT (low-temperature 
photothermal therapy/photodynamic therapy). (B) CLSM images of 4T1 cells treated with CP (Cypate-RRKK-PEG8-COOH) and CCP (2 μM) for 30 min. (C) CLSM images of 
the cell membrane disruption of CCP (2 μM) pretreated 4T1 cells under high power intensity of NIR laser. Reproduced with permission from [69] . Copyright 2022 Elsevier Ltd.
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has shown great promise as powerful tactics for changing 
targeted protein genomes from the genomic level [101]. The 
precise silencing of PD-L1 genome by clustered, regularly 
interspaced, short palindromic repeats (CRISPR) and CRISPR-
associated protein 9 (Cas9) offers a reliable approach for cir-
cumventing the dilemmas of traditional ICB therapy [102–104]. 
Ping and colleagues [105] established supramolecular cati-
onic gold nanorods that simultaneously serve as a carrier to 
deliver CRISPR/Cas9 for PD-L1 genome- editing and second 
NIR-window (NIR-II) thermotherapy (ANP/HSP-Cas9) (Fig. 
5). The gold nanorod harvested the NIR-II light and generated 

mild hyperthermia (42 °C) to activate ICD, as well as pro-
vided an optimal environment temperature for transcrip-
tional activation of Cas9. The mild hyperthermia can precisely 
induce the ICD to circumvent the high temperature-related 
unfavorable inflammatory responses and damage of the healthy 
tissues [106]. The ICB-enhanced immunotherapy proved the 
superior ability for killing the remaining tumor cells and 
inhibiting the metastasis of cancer. Collectively, the synergetic 
strategy of photothermal therapy and genome-editing tech-
nology readily reprograms the TEM to realize ICB-based tumor 
immunotherapy.

Fig. 4. (A) Schematic illustration of localized CPT and anti–PD-1 delivery using an in situ formed supramolecular hydrogel to attain bioresponsive drug release and TME regulation. 
(B) Experimental schedule. (C) Representative flow cytometric analysis of CD3+ T and (D) CD8+ T cell infiltration within the tumor by different treatment groups. Reproduced 
with permission from [98]. Copyright 2020 The Authors, some rights reserved; Exclusive licensee American Association for the Advancement of Science. No claim to original 
U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
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Using as an Immune Response Enhancer for 
Dendritic Cell Maturation
Dendritic cells (DCs) are professional APCs, with unique abil-
ity to capture, process, and present the antigens in tissues and 
peripheral blood, considered as critical factors in antitumor 
immunotherapy [107–109]. In general, immature DCs are 
skilled in ingesting and converting antigen proteins into pep-
tides. Then, the DCs initiate their migration from peripheral 
tissues to lymphoid organs, as well as transition to matured 
APCs by presenting the antigen peptide on the MHC molecules 
[110,111]. The formation of MHC-peptide complexes, expres-
sion of chemokine receptors, regulation of costimulatory mol-
ecules, and production of cytokines from DCs are crucial for 
antigen-specific T cell activation [112–115]. The tumor could 
create a hostile environment that leads to immune evasion by 
weakening DC activity or conditioning DCs to form suppres-
sive T cells [29,116]. Therefore, improving the maturation and 
antigen presentation level of DCs can be marshaled as a prom-
ising strategy for the prevention and therapy of tumors. With 

decades of efforts, many distinctive hallmarks of the DCs are 
gradually getting clear, which brings opportunities to regulate 
the cell function and vitality to facilitate anticancer therapeutic 
efficacy [117–119]. There are several factors that proved to be 
effective in inducing DC maturation and facilitating the proin-
flammatory phenotype. It is demonstrated that the components 
of pathogen-associated molecular patterns from viruses and 
bacteria, such as CpG, viral nucleic acids, and lipopolysaccha-
rides, could promote DC maturation through Toll-like receptor 
(TLR) pathway [120–122]. The environmental cytokines, includ-
ing interleukin-10 (IL-10) and tumor necrosis factor-β (TNF-
β), also act as important contributors to the regulation of 
DC phenotype [123,124]. Based on previous research, the 
DC-mediated therapeutic approaches are currently presented.

One promising therapeutic strategy is ex vivo generating 
DCs loaded with tumor antigens and re-injected back to 
patients, thereby inducing the antigen-specific T cells against 
cancer [125]. After intradermal administration, the matured 
DCs tend to migrate and recognize the T cells to induce 
strong immunity [126]. In general, the DCs represented an 

Fig. 5. Schematic illustration of the photothermal genome-editing strategy for cancer immunotherapy. (A) Process of preparation of ANP/HSP-Cas9 plasmid complex. 
(B) Illustration of photothermal activation for PD-L1 genome editing in tumor cells. (C) Photoactivable CRISPR-Cas9 strategy reprograms immunosuppressive tumor 
environment. Reproduced with permission from [105]. Copyright 2021 Wiley-VCH GmbH.
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inefficient homing capability, with less than 5% of intrader-
mally injected DCs targeting draining lymph nodes [127]. 
Direct injection of matured DCs into lymph nodes could 
circumvent the skin migration issues, achieving the enhanced 
efficacy of immune response [127,128].

Another DC-based therapeutic strategy in tumor treatment is 
mobilizing DCs directly in vivo, usually targeting the DCs within 
tumors or lymphoid organs. Vaccines have been widely investi-
gated against tumors by modulating the body’s immune activity 
[129]. Proteins and peptides were considered as suitable antigens 
to generate cellular or humoral immunological responses 
[130,131]. However, the poor stability and immunogenicity are 
major limitation for their clinical transformation [132,133]. 
Varieties of adjuvants have been proposed to enhance the DC 
maturation, such as TLR agonist and proinflammatory cytokines 
engineered proteins [134,135]. Therefore, the antigen and adjuvant 

are required in vaccine fabrication to efficiently generate immune 
response [136]. Yang and colleagues [137] found that the hydro-
phobic short peptides could fabricate supramolecular hydrogels 
and nanofibers through co-assembly with proteins. Then, the 
adjuvant potency for vaccine formation of both L- and D-peptide-
based supramolecular hydrogels was further evaluated [138]. As 
indicated in the results, compared with the traditional alum adju-
vant, the supramolecular hydrogels fabricated in this work could 
folds increase the immunoglobulin G (IgG) production rate 
by ovalbumin (OVA). Li and colleagues [139] showed a well- 
established DNA supramolecular hydrogel network containing 
unmethylated cytosine–phosphate–guanine (CpG) single- 
stranded DNA for TLR9 activation [DNA supramolecular hydro-
gel vaccine (DSHV)]. The fabricated DSHV system could mimic 
the physiological function of lymph nodes, providing a place rich 
in CpG to facilitate DC recruitment and maturation. In short, the 

Fig. 6. Schematic preparation of the programmable immune activation nanomedicine (PIAN) for immune activation and tumor inhibition. PIAN is fabricated through a one-
step supramolecular assembly process via β-CD/adamantine (Ad) host–guest interactions among various components. Reproduced with permission from [46]. Copyright 
2021 Wiley-VCH GmbH.
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supramolecular system could serve as a nanoplatform to generate 
strong immune response and benefit antitumor therapy. Although 
nanotechnology has made great strides in accelerating the develop-
ment of immunotherapy, there are still obstacles and paradoxes in 
fulfilling all demands for intricate immune activation [114,140–142]. 
Therefore, a programmable supramolecular nanomedicine assembly 
for multiple steps of immune activation was reported [46]. Zhang 
et al. proposed a programmable supramolecular nanomedicine 
(PIAN), which formed a complicated nanostructure with simple 
modules under the host–guest interactions between cyclodextrin 
and adamantane. As demonstrated in Fig. 6, the PIAN consists 
of poly-[(N-2-hydroxyethyl)- aspartamide]-Pt (IV)/β-CD, CpG/
polyamidoamine- thioketal- adamantane, and methoxy poly(eth-
ylene glycol)-thioketal-adamantane. After intravenous injection, 
the PIAN can lead to sequential multistage transformation for 
antitumor immunotherapy, including remaining stable in circu-
lation and efficiently accumulating in the tumor tissues, as well 
as detachment of the protective layer of CpG/PAMAM (polyam-
idoamine) and PEG in response to intratumoral ROS to obtain 
enhanced cellular endocytosis for tumor killing. Then, CpG/
PAMAM captures the antigens released from dying tumor cells 
and migrate to tumor- draining lymph nodes for exerting anti-
tumor immune response. Collectively, the PIAN could act as a 
nanovaccine to meet the multifunctional requirement of immune 
activation and anticancer therapy.

Applying as Regulator of Macrophages
Tumor-associated macrophages (TAMs) account for approxi-
mately half of a tumor mass [143]. There exist 2 distinct subtypes 
of TAM: pro-inflammatory M1 polarized phenotype and immu-
nosuppressive M2 phenotype [144,145]. Therefore, TAMs could 
act like a double-edged sword in the modulation of tumor 
growth, metastasis, and invasion [146–148]. Of which, the M1 
TAMs display a marked tumoricidal effect to support prolonged 
patient survival [149]. On the contrary, the M2 macrophages 
could induce the tumor invasion by suppressing the cytotoxicity 
of T cells and causing tumor favorable TEM, especially during 
the early tumorigenesis process [150,151]. Therefore, the devel-
opment of biological strategies for eliminating M2 TAMs or 
repolarization of the M2 phenotype to M1 TAMs to modulate 
tumor growth has been increasing as the forefront of tumor ther-
apeutic research [152–154]. Encouragingly, the supramolecu-
lar-based nanomedicines could be explored to selectively target 
the TAMs and modulate their properties [155]. Hence, the recent 
progress achieved in TAM regulation based on supramolecular 
technology to elicit optimal tumor immunotherapy was summa-
rized in this section.

Recent works have demonstrated positive results of repo-
larization of TAMs into M1 phenotype to decrease tumor pro-
gression [156–158]. Therefore, several kinase inhibitors have 

Fig. 7. (A) Schematic shows that cancer cells exploit CSF1R signaling to polarize macrophages to the immunosuppressive M2 phenotype and SIRPα–CD47 interactions to inhibit 
phagocytosis. (B) Schematic illustration of efficient repolarization of an M2 macrophage to the effector M1 phenotype by dual-function supramolecular therapeutic mediated 
sustained inhibition of CSF1R signaling and enhanced phagocytosis of cancer cells following inhibition of SIRPα. (C) Representation of the quantum mechanical-optimized 
structure of the molecular subunit of the supramolecular nanostructure. (D) Snapshot of an all-atomistic simulation. Reproduced with permission from [174]. Copyright 2018 
Macmillan Publishers Limited, part of Springer Nature.
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been investigated to adjust the cytokines and chemokines of TAMs, 
which are crucial in macrophage recruitment and differentiation 
[159–161]. Supramolecular-based nanoparticles are employed as 
delivery platforms for these TAM-modulated inhibitors and 
antibodies. The macrophage colony-stimulating factor (MCSF) 
cytokines are produced by tumor cells with the function to 
recruit and polarize TAMs into M2 phenotype by binding with 
colony-stimulating factor 1 receptor (CSF1R) [162,163]. Kinase 
inhibitors, such as pexidartinib, emactuzumab, and IMC-CS4, 
were used to target the CSF1R axis in clinical and preclinical trials 
[164–166]. However, the single therapeutic agent application dis-
played limited efficacy in CSF1R pathway regulation and even 
induced serious toxicities [167,168]. Kulkarni and colleagues [169] 
realized that, in addition to CSF1R, sustained modulation of the 
downstream pathways is also required to achieve high-performance 
repolarization of M2. The MAPK pathway has recently been 
reported to act crucial role in M2 TAM growth and proliferation 
[170–172]. Therefore, the researchers utilized a supramolecular 
nanoplatform to rationalize synergistic inhibition of both MAPK 
and CSF1R pathways. The proposed dual inhibitor-loaded supra-
molecular nanomedicines could efficiently repolarize M2 TAMs 
to M1 phenotype, thus carrying out a superior antitumor efficacy. 
Besides, supramolecular nanomaterials assembled from modular 
bifunctional therapeutics have been reported, which could block 
both SIRPα-CD47 and MCSF-CSF1R [173]. Such bifunctional 
supramolecular nanoplatform could be utilized to bind with M2 
macrophages and sustained shutdown of the CSF1R signal, 
leading to a skew of M2 to M1 phenotype (Fig. 7) [174]. In 
another work, the local immuno stimulatory supramolecular 
hydrogel was proposed for in situ delivery (R848) as a potent TLR 
agonist to enable TAM repolarization [175]. Weissleder’s research 
group further modified R848 with adamantane by aromatic linkage, 

which could be readily carried with β-CD nanoparticles, as well as 
retained the TLR agonist capability. The fabricated R848-Ad@
CDNP represented as a hopeful approach to arresting cancer 
growth with minimal side effects. Besides, the application of in vit-
ro-transcribed mRNA to reprogram M2 TAMs displayed tremen-
dous achievement in the suppression of tumor invasion [176].

Depletion of M2 phenotype TAMs has been approved as 
another effective strategy to boost anticancer immune response. 
However, nontargeted treatments might cause several issues 
[177,178]. Ai and colleagues [179] designed a targeting nano-
particle (HA-AuNR/M-M2pep NP), which constructing with 
M2pep fusion peptides (M-M2pep) coated gold nanorods 
(HA-AuNRs) for specific targeting and depleting M2 TAMs for 
promoting the photothermal and immunotherapy effect (Fig. 8). 
In this work, the matrix metalloproteinase-2-responsive M2pep 
could respond to the tumoral matrix and specifically bind with 
M2 phenotype TAMs, subsequently consuming M2 to reshape 
the immunosuppressive TME. Meanwhile, the hyaluronic- 
mediated efficient endocytosis of AuNR and precise PTT can 
be achieved under laser irradiation. The synergistic strategy of 
M2pep-elicited TAM eradication and PTT-based immune acti-
vation highlight the great potential to realize the combinatorial 
anticancer therapeutic in the clinic.

Application of Supramolecular Biomaterials in 
Stimulation and Activation of T Lymphocyte

Nanotechnology has concentrated on utilizing the natural 
capacity of the immune system in eliminating exogenous 
components to enhance specific immune responses [180,181]. 
As the most potent immune killers, the cytotoxic T cells have 

Fig.  8.  (A) Schematic illustration of enhanced photo-immunotherapy by the combination effect of PTT-induced immune activation and M2-TAM depletion-induced ITME 
(immunosuppressive tumor microenvironment) modulation based on HA-AuNR/M-M2pep. (B) Representative flow cytometry results and percentages of M2-TAMs in total 
CD11b+ F4/80+ cells. Reproduced with permission from [179]. Copyright 2021 Published by Elsevier B.V.
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received increasing attention [182]. For instance, chimeric 
antigen receptor T cell (CAR-T) has been applied to activate 
T cells to achieve promising tumor immunotherapy [183]. 
However, the potent and long-term effectiveness of immune 
response based on this therapy needs to be further improved, 
due to the limited magnitude of T cell transfusion [184]. 
Therefore, in situ stimulation and activation of antigen- specific 
cytotoxic T cells play a critical role in tumor immunother-
apy, which has been proven to be a powerful weapon to fight 
against cancer.

Autophagy has been reported to contribute greatly to the 
presentation of tumor antigens and subsequent T cell activation 
to eliminate tumor cells [185]. Hence, taking a well-designed 
harness of autophagy might provide a powerful tool in cancer 
immunotherapy. Wang et al. [186] proposed a supramolecular 
assembled nanoplatform with the ability to activate the auto-
phagy pathway for facilitating the cross-presentation of antigens 
and producing specific cytotoxic T cells. It has been mentioned 
above that PD-1 is overexpressed on the surface of exhausted 
T cell [187]. The PD-L1 ligand expressed on tumor cells can 
interact with PD-1 to inhibit the kinase signal and dampen T 
cell proliferation. Besides, the overexpression of indoleamine 
2,3-dioxygenase (IDO) in tumoral tissues also blunts the activ-
ity of T cells due to the overdecomposition of tryptophan [188]. 
Cheng et al. [189] constructed a multifunctional supramolec-
ular nanoparticle for co-delivery of the inhibitor of PD-L1 
(DPPA-1) and NLG919 as selective inhibitor of IDO to syner-
gistically settle the challenge in tumor immunotherapy. The 
supramolecular assembly nanoparticle provided a platform for 

incorporating IDO inhibitor and PD-L1 trap to activate cyto-
toxic T cells. Subsequently, the drug release behavior of dual 
tumoral stimulation response ensures the biocompatibility and 
bioavailability of nanomedicines to facilitate anticancer immu-
notherapy with minimal adverse effects. Similarly, B cell CLL/
lymphoma 9 (Bcl9) is a transcriptional cofactor relative to the 
tumor progression, which is overexpressed in tumoral tissues 
with the activity of initiating the Wnt/β-catenin pathway. 
Toward this mechanism, He et al. engineered a supramolecular 
nanohybrids with inhibitors of β-catenin/Bcl9 and Au-peptide 
precursor (Fig. 9). Benefiting from superior biocompatibility, 
the peptide-mediated nanohybrids have displayed tremendous 
potential in Wnt/β-catenin signaling inhibition for cancer 
immunotherapy [190].

The surface properties of self-assembled supramolecular 
biomaterials are able to modulate immunogenicity. Wen and 
Collier [191] focus on the research of self- assembling peptide 
Q11 (QQKFQFQFEQQ), which could allow the formation of 
supramolecular nanofibers or hydrogels to generate robust 
antigen-specific immune responses with minimal side effects. 
It has been confirmed that epitopes within the peptide sequence 
on T cells are important for supramolecular biomaterial- induced 
immunogenicity [192]. Peptide Q11 could self- assemble into 
regular nanofibers without interference from N-terminal prop-
erties [193]. Therefore, the influence of surface properties on 
immunogenicity was further investigated. There were surpris-
ing and important findings that the negative surface charge 
might abolish immune responses against epitope- containing 
nanofibers. Conversely, the peptide nanofibers with positive 

Fig. 9. Schematic depiction for synthesis and function of pCluster. Reproduced with permission from [190]. Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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surface charge would display enhanced uptake behavior by 
APCs, maintaining the ability to activate T cell responses.

Application of Supramolecular Biomaterials in 
Depletion of Myeloid-Derived Suppressor Cells
High myeloid-derived suppressor cell (MDSC) infiltration is 
one of the major factors in the formation of immunosuppres-
sive TME to affect tumor immunotherapeutic efficacy [29]. 
Various drugs have been applied to settle the dysfunction of 
MDSCs, including 5-fluorouracil, sunitinib, and gemcitabine 
[194–196]. However, the MDSCs also play positive roles in 
maintaining physiology homeostasis in normal tissues and 
organs [197,198]. Accordingly, systemic treatment of chemo-
therapeutics to suppress MDSCs might induce off-target effects, 
accompanied by severe side effects. Therefore, nanotechnology- 
based drug delivery systems have been widely utilized to real-
ize precise depletion of MDSCs in TME with great biocompatibility 
[199]. The PDE5 inhibitor tadalafil was approved by U.S. Food 
and Drug Administration to be clinically applied in the treatment 
of cardiac hypertrophy, pulmonary hypertension, and erectile 
dysfunction [200]. Fortunately, tadalafil is also reported as a 
promising candidate to inhibit MDSC activity and restore the 
immune response function of cytotoxic T cells to facilitate anti-
tumor immunotherapy [201].

Xu and colleagues [202] rationally designed a supramolecu-
lar self-assembly system for the co-delivery of tadalafil and ICG 
(marked as FIT nanoparticles). The obtained supramolecular 
nanomedicines could improve targeting and delivery efficiency 
and prolong the blood circulation time of small molecular ICG 
and tadalafil (Fig. 10). In addition, the photothermal therapy 
induced by (ICG) was confirmed to generate abundant tumoral 
antigens, which serve as a personalized tumor vaccine to trigger 
T cell activation [203,204]. Therefore, the Fe3+ coordinated ICG 
nanoparticles would disintegrate and liberate the therapeutic 
agents to generate ICD effects and provide an immune stimu-
lation for T cells. Afterward, the tadalafil was released to exhaust 
MDSCs, as well as reinvigorate cytotoxic T cells. Collectively, 
the simultaneous immune stimulation and MDSC reduction by 
co-delivering tadalafil and ICG highlight a superior potential 
in boosting synchronized cancer immunotherapy.

Conclusion and Future Perspectives
Supramolecular chemistry-based nanotechnology represents 
a promising approach for cancer immunotherapy by targeting 
key molecular interactions involved in tumor growth and 
immune evasion. This review summarized the recent devel-
opments and basic requirements for supramolecular immu-
notherapy according to the target action of nanomedicines. 

Fig. 10. Schematic illustration showing the deductive procedure of FIT nanoparticle for immunotherapy. The preparation process of FIT nanoparticle, and the mechanism of MDSC 
regulation, ICD induction process, and dual-imaging medicated enhanced cancer immunotherapy. Reproduced with permission from [202]. Copyright 2021 Wiley-VCH GmbH.

https://doi.org/10.34133/research.0211


Liang et al. 2023 | https://doi.org/10.34133/research.0211 12

The supramolecular nanomedicines could be designed to selec-
tively target the tumor antigens, immune checkpoints, TME, 
and the broader immune system, serving as direct inducers, 
immune response enhancers, and intelligent delivery systems 
(Table). (a) Supramolecular agents with therapeutic activities 
precisely target tumor cells and disrupt tumor cell membranes, 
thus quickly destructing intracellular homeostasis and kill-
ing them. The supramolecular assembly medicines could act 
as a direct ICD initiator to induce ICD and transfer immune- 
defective “cold” tumors into immune-activated “hot” tumors, 
which avoids the requirement of traditional drug delivery systems 
to overcome intracellular delivery barriers. (b) Supramolecular-
based nanoplatforms can be designed to target and stabilize 
tumoral neoantigens and enhance antigen presentation by pro-
moting the endocytosis and processing of APCs or modulating 
the expression of MHC molecules on the surface of tumor cells. 
(c) Supramolecular chemistry-based nanotechnology is a highly 
appealing strategy to the control and sustainable release of various 
bioactive agents to block the immune escape of tumor cells by 
immune checkpoint inhibitor therapy. (d) Supramolecular nano-
medicines can also be designed to modulate the activity of the 
immune system, such as promoting the proliferation and differ-
entiation of cytotoxic T cells, elimination of M2 TAMs, or repo-
larization of the M2 phenotype into M1 TAM cells, regulating 

the biofunction of MDSCs, and facilitating the activity of 
immune effector cytokines. Collectively, the engineered supra-
molecular nanomedicines could be considered promising can-
didates for relieving immune resistance and boosting anticancer 
immunity to realize the tremendous potential merits of tumor 
immunotherapy.

Despite that the successful cases of supramolecular bio-
materials in promoting tumor immunotherapy have been 
demonstrated, there are still several challenges that need to 
be addressed to optimize and translate these therapeutic 
strategies into clinical applications. From the perspective of 
supramolecular agents, the current application mainly focuses 
on the research field of tumor cell killing and immune cell 
regulation. One challenge is the heterogeneity and complex-
ity microenvironment molded by both tumor cells and stro-
mal cells, which creates barriers to designing supramolecular 
agents that selectively target specific molecular interactions. 
Another challenge is the potential instability of supramolec-
ular nanomaterials due to the highly dependent noncovalent 
bonding forces. The instability of supramolecular assemblies 
might cause off-target effects and immune- related adverse 
events, which can limit the efficacy and safety of supramo-
lecular agents. Therefore, in order to ensure the effective deliv-
ery of bioactive drugs and antigens, it is necessary to develop 

Table. Supramolecular biomaterials for cancer immunotherapy.

Immunotherapeutic 
strategy

Supramolecular bio-
material

Function Morphology Immune agents Reference

Immunogenic cell death β-CD/ferricinium Responsive domain Nanoparticle DOX [57]

β-CD/adamantane Carrier Nanoparticle ICG/I-MT/resiquimod [58]

Drug-polymer Inducer Nanoparticle DOX [64]

C16-cypate-RRKK-
PEG8-COOH

Inducer Nanoparticle Cypate [66]

FFG Assembly domain Nanoclusters TPA-S-RDN [73]

Immune checkpoint 
blockade

GDFDFDY Assembly domain Hydrogel DPPA-1/indoximod [86]

SOPC Carrier Nanoparticle Selumetinib/suprati-
nib

[92]

PLGLAG Assembly domain Nanotubes/hydrogel Camptothecin/anti–
PD-1

[95]

HA-DEG/UPy Carrier Hydrogel DPPA-1 [96]

FFVLK Assembly domain Nanofiber/hydrogel Tetraphenylethylene [97]

β-CD/adamantane Carrier Nanorod CRISPR/Cas9/Au [102]

DC maturation NapGFFpY-OMe Assembly domain Hydrogel OVA [135]

DNA network Carrier Hydrogel CpG [136]

β-CD/adamantane Carrier Nanoparticle Pt(IV)/CpG [43]

Macrophage regulation DSPE-PEG2000 Carrier Nanoparticle BLZ-945/selumetinib [170]

β-CD/lysine Carrier Nanoparticle Resiquimod [172]

M2pep Responsive domain Nanorod M2pep/Au [176]

T lymphocyte activation PEG2000 Carrier Nanoparticle OVA/Bec1 [183]

PLGLAG Assembly domain Nanoparticle DPPA-1/NLG919 [186]

Poly-l-lysine Carrier Nanoparticle Au/VC/carnosic acid [187]

MDSC depletion Tadalafil/ICG/Fe3+ Inducer/carrier Nanoparticle Tadalafil/ICG/Fe3+ [199]
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novel self-assembly strategies for the purposes of improving 
the stability and bioactivity of supramolecular biomaterials. 
From the perspective of drug development, the clinical trans-
formation of supramolecular nanomedicines is extremely dif-
ficult for their inherent properties, including the complicated 
fabrication process, difficulty in mass production, as well as 
the lack of quality control standards. In addition, there is a 
requirement for further preclinical and clinical studies to 
evaluate the efficacy and safety of supramolecular agents in 
tumor immunotherapy. It commonly includes the develop-
ment of reliable preclinical models to accurately reflect the 
complexity and heterogeneity of TME, as well as the conduct 
of well-designed clinical trials to assess the efficacy and safety 
of supramolecular agents in patient populations. Collectively, 
the development of supramolecular biomaterials not only con-
sists in the progress of biomaterials themselves, but also in 
the exploration of their further clinical application and eval-
uation. While challenges remain, with continued innovation 
and collaboration between researchers and clinicians, supra-
molecular biomaterials have the potential to make a signifi-
cant impact on the field of cancer immunotherapy in the years 
to come.
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