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Abstract

The automated capability of generating spatial prediction for a variable of interest is desirable 

in various science and engineering domains. Take Precision Medicine of cancer as an example, 

in which the goal is to match patients with treatments based on molecular markers identified in 

each patient’s tumor. A substantial challenge, however, is that the molecular markers can vary 

significantly at different spatial locations of a tumor. If this spatial distribution could be predicted, 

the precision of cancer treatment could be greatly improved by adapting treatment to the spatial 

molecular heterogeneity. This is a challenging task because no technology is available to measure 

the molecular markers at each spatial location within a tumor. Biopsy samples provide direct 

measurement, but they are scarce/local. Imaging, such as MRI, is global, but it only provides 

proxy/indirect measurement. Also available are mechanistic models or domain knowledge, which 

are often approximate or incomplete. This paper proposes a novel machine learning framework 

to fuse the three sources of data/information to generate spatial prediction, namely the knowledge-

infused global-local data fusion (KGL) model. A novel mathematical formulation is proposed 

and solved with theoretical study. We present a real-data application of predicting the spatial 

distribution of Tumor Cell Density (TCD)—an important molecular marker for brain cancer. A 

total of 82 biopsy samples were acquired from 18 patients with glioblastoma, together with 6 

MRI contrast images from each patient and biological knowledge encoded by a PDE simulator-

based mechanistic model called Proliferation-Invasion (PI). KGL achieved the highest prediction 
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accuracy and minimum prediction uncertainty compared with a variety of competing methods. The 

result has important implications for providing individualized, spatially-optimized treatment for 

each patient.

Note to Practitioners—

This paper proposes a machine learning framework to fuse local data, global imaging, and 

domain knowledge to generate spatial prediction for a variable of interest. This methodology 

is relevant to multiple application domains. In Precision Medicine, it will allow for mapping 

the spatial distribution of important, treatment-informing molecular markers across each tumor 

by integrating biopsy data, MRI, and biological knowledge. This capability can help resolve the 

spatial heterogeneity of molecular characteristics and greatly improve the precision of cancer 

treatment. Other applications include early detection of regional fire risk across a forest by 

integrating ground/aerial survey data, satellite imagery, and fire simulator output, as well as 

regional poverty estimation for resource allocation.

Keywords

machine learning; statistical modeling; health care; precision medicine

I. Introduction

In many science and engineering domains, the automated capability for generating a spatial 

prediction map of a variable of interest is critical for decision making. Here we give three 

examples:

• In Precision Medicine of cancer, one leading cause of treatment failure is intra-

tumor heterogeneity [1] [2]. This means that molecular markers, which are 

typically used to guide treatment decisions, do not uniformly distribute across 

a tumor. Existing treatments do not adapt well to this regional heterogeneity, 

leading to sub-optimal treatment outcomes. If the spatial molecular distribution 

could be precisely mapped out for each tumor, cancer treatments could be greatly 

improved.

• In forest fire management, the ability for predicting regional fire risk across the 

forest is important for early detection and prevention [3].

• In poverty management and reduction, one important first step is to map out 

regional poverty status across a developing world. This information can help 

optimally allocate resources [4].

The challenge is that direct measurement for the variable of interest at every spatial location 

is impossible due to feasibility and cost constraints. Related to the above examples, direct 

measurement for molecular markers must be done through biopsy. Due to its invasive nature, 

only a few biopsy samples from a patient can be obtained. Similarly, direct measurement 

for fire risk must be done through aerial or ground survey, which can only sample a few 

locations of the forest. For the same reason, survey data that directly reflects poverty levels 

may only be available for some regions across a developing world. As a result of these 
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constraints, many spatial locations do not have direct measurement data for the variable of 

interest, i.e., these locations are “blank”. This creates a tremendous difficulty for decision 

making.

On the other hand, indirect or proxy measurement data may be available global-wide. One 

typical form of such data is imagery. In medicine, clinical imaging such as CT and MRI has 

been widely used to support diagnosis and treatment. Imaging can be taken non-invasively 

and portrays the entire host organ of the tumor. Also, imaging of different kinds is designed 

to measure microscopic tissue structure, morphology, microvasculature, and metabolism, 

which provide insight into the phenotypic presentation of the molecular characteristics of 

the tumor. In the other two examples, global proxy data is provided by satellite imagery: 

spectroradiometer satellite images can help detect fire risk across a forest; regional poverty 

levels can be reflected in satellite nightlight images portraying power density and daytime 

images portraying infrastructure, housing, etc.

In addition to sparsely-sampled local data and global imagery, another important source of 

information is domain knowledge. For example, in cancer biology, mechanistic models exist 

for some molecular markers based on biological knowledge and principles [5][6]. These 

models take the form of algebraic equations, PDEs, or ODEs, and can produce a prediction 

map for the spatial distribution of some molecular markers across a tumor. However, these 

models are typically based on simplified assumptions. As a result, the prediction map 

may only capture some general trend of the molecular distribution but lacks localized 

precision. In forest fire management, similar forms of domain knowledge exist from forest 

fire simulators and bio-ecological models [7]. Furthermore, domain knowledge may exist in 

a looser form. For example, it may be known that some molecular characteristics are more 

likely to be present at certain regions of a tumor. In the poverty example, there may be 

historical knowledge that certain regions are less or more wealthy than others.

In summary, with the final objective of generating a spatial prediction map for a variable 

of interest, there are three sources of pertinent data and information. Please see Table I for 

what these data/information sources are in different science and engineering applications. 

Using a single data/information source by itself does not lead to an optimal solution. This 

paper proposes a novel computational machine learning framework to optimally fuse the 

multiple sources of data/information, which is called the methodology of knowledge-infused 

global-local data fusion (KGL). Please see Fig. 1 for a schematic overview of the KGL 

framework. The key idea of KGL is to build a predictive model that uses global imagery to 

predict the regional distribution for the variable of interest, where the model parameters are 

optimized to simultaneously serve three purposes: 1) maximizing the accuracy on labeled 

samples (i.e., regions with direct measurement); 2) reducing the prediction uncertainty on 

unlabeled samples (i.e., regions without direct measurement but only imagery); 3) being 

consistent with the trend or patterns conveyed by domain knowledge.

The contributions of this paper are summarized as follows:
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• New fusion framework:

To our best knowledge, KGL is the first methodology that optimally fuses local and global 

data together with domain knowledge. There is no existing machine learning framework that 

immediately targets to achieve this goal.

• Novel machine learning development:

KGL primarily intersects with two sub-fields in statistical modeling and machine learning: 

semi-supervised learning (SSL) and Gaussian Process (GP) model. The intersection with 

SSL is that KGL uses both labeled and unlabeled samples to train the predictive model. 

Leveraging unlabeled samples to alleviate the sample size limitation is the core idea of SSL. 

The intersection with GP is that KGL uses a GP to relate regional image features with the 

regional variable of interest. While in theory this relationship may be built by some other 

models, GP is chosen due to its advantages of being non-parametric, non-linear, and most 

importantly the capacity for generating a predictive probability distribution instead of just a 

point estimator. This allows for uncertainty quantification and reduction. However, as shown 

in the next section of Related Works, the existing models in SSL and GP do not provide the 

capability of KGL.

• Theoretical insight:

We demonstrate that the formulation of KGL belongs to the machine learning paradigm 

called Posterior Regularization (PostReg) [8] [9]. PostReg was motivated by the need 

of integrating domain knowledge with data-driven machine learning algorithms. In 

probabilistic models, a typical way to incorporate domain knowledge is via Bayesian 

inference, in which the knowledge is imposed through specification of the prior. However, 

in many applications such as the examples mentioned in Table I of this paper, it is difficult 

to encode the knowledge in a Bayesian Prior. PostReg provides a flexible mechanism to 

incorporate the knowledge by constraining the posterior distribution. Although PostReg has 

been existing as a theoretical framework, our paper is the first effort that demonstrates its 

practical utility in integrating local data, global data, and domain knowledge for spatial 

prediction.

• Contribution to Precision Medicine of cancer treatment:

We apply KGL to a real-data application for predicting the spatial distribution of an 

important molecular marker called tumor cell density (TCD) for each patient with 

glioblastoma (GBM) – the most aggressive type of brain cancer. KGL generates predictions 

with higher accuracy and lower uncertainty than a variety of competing methods. The results 

have important implication for improving the spatial treatment precision of each GBM 

tumor.

II. RELATED WORKS

KGL primarily intersects with two sub-fields in machine learning: SSL and GP.
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A. Semi-Supervised Learning (SSL)

SSL is used in situations where labeled samples are scarce but unlabeled samples are 

available in a large quantity. A typical supervised learning model would only utilize the 

labeled samples to build a predictive model, whereas SSL can leverage the unlabeled 

samples. The problem we are targeting in this paper has the same nature: the local data 

with direct measurement for the variable of interest such as biopsy samples and survey 

samples are labeled and scarce; the imagery data with indirect measurement is unlabeled and 

available global-wide.

The existing SSL algorithms fall into several main categories. Self-training is a type of 

wrapper algorithm that repeatedly adds those unlabeled samples predicted with the highest 

confidence to the training set [10]. Co-training is an extension of self-training, which 

leverages two views of the data. It assumes that there are two separate datasets which 

contain conditionally independent feature sets. Two classifiers are built on the two datasets 

but with information exchange with each other [11][12]. Low-density separation aims to 

find the decision boundary in low density regions in the feature space based on labeled 

and unlabeled samples [13]. Graph-based models define a graph in which nodes represent 

labeled and unlabeled samples, and edges reflect the similarity between nodes. Label 

smoothness is assumed over the graph to allow label diffusion to unlabeled samples [5][14].

B. Gaussian Process (GP) Model

Gaussian process (GP) belongs to Bayesian non-parametric kernel-based probabilistic 

models [15]. Compared to other predictive models, GP has some unique aspects: Firstly, GP 

makes few assumptions about the shape of the estimator function beyond the assumptions 

associated with the choice of the covariance function [16]. Another major benefit is its 

inherently probabilistic nature. GP can generate a predictive distribution for the response 

variable based on features, instead of just a point estimator of the prediction. This allows for 

uncertainty quantification and more informed decision making based on the prediction result 

[16]. In this paper, we are targeting a prediction problem which in theory might use some 

other predictive models as baseline. However, GP is chosen due to its advantages of being 

non-parametric, non-linear, and most importantly the capacity for generating a predictive 

probability distribution for the variable of interest. This allows for uncertainty quantification 

and reduction.

The standard GP is a predictive model. However, due to the aforementioned advantages, 

GP has been extended to impact multiple sub-fields of machine learning, such as multitask 

learning [17], semi-supervised learning [18], and time series modeling [19]. In terms of 

application domains, GP and extensions have been used for medical decision making [20], 

financial analysis [21], and computer experiments [22].

C. Gaps of the existing research

Given the problem we aim to solve, as described in Introduction, none of the existing 

methods alone would suffice. Here we discuss some options of applying existing methods 

directly to our problem and why they are insufficient. 1) One option is to build a predictive 

model to link local features extracted from imagery with local direct measurement for the 
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variable of interest (i.e., labeled samples). This model can then be used to predict the areas 

of the imagery where direct measurement is not available. This is the typical procedure 

when applying a supervised learning model. The limitations are multi-fold: (a) even though 

we could use GP to build the predictive model, the model can only quantify the predictive 

uncertainty but not reduce it; (b) domain knowledge is not integrated in model training; (c) a 

large portion of the imagery is unlabeled, whose data is not leveraged in the training process; 

2) An SSL model can be used to leverage the unlabeled imagery, which, however, still does 

not tackle the first two limitations in (a) and (b) as mentioned above. In all, we will need to 

develop a new model that can simultaneously leverage labeled, local direct measurement and 

unlabeled, global imagery, reduce uncertainty of the prediction, as well as integrate domain 

knowledge with data-driven model training. This capacity does not currently exist and we 

aim to provide this capacity by the new KGL model.

III. Preliminaries

Let f be a random variable corresponding to an input vector x. GP is a collection of the 

random variables, any finite number of which have a joint Gaussian distribution. Consider a 

set that includes L labeled samples, xi, yi i = 1
L , and an unlabeled sample, x* ∈ xi i = L + 1

L + U . The 

joint Gaussian distribution of this set is:

f
f* = N 0,

K XL, XL K XL, x*
K XL, x* T K x*, x*

, (1)

where K contains covariances between the corresponding samples, computed based on the 

input variables using kernels. Furthermore, introducing the noise term, the joint distribution 

of response variables corresponding to the labeled and unlabeled samples is:

yL

y*
= f

f* + σ2I(L + 1) × (L + 1), (2)

To predict the response of the unlabeled sample x*, we can obtain the predictive distribution 

of f * by combining (1) and (2), i.e.,

f* ∣ XL, yL, x* N μ*, σ * 2 , (3)

where

μ* = K XL, x* T K XL, XL + σ2IL × L
−1yL

σ * 2 = K x*, x* − K XL, x* T K XL, XL + σ2IL × L
−1

K XL, x* .
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(3) contains parameters to be estimated, including parameters in the kernel function and σ2. 

Let θ be the set of all parameters. θ can be estimated by maximizing the marginal likelihood 

of the labeled samples, i.e.,

minθ l(θ) = minθ − logp yL ∣ XL, θ (4)

IV. KNOWLEDGE-INFUSED GLOBAL-LOCAL DATA FUSION (KGL) MODEL

A. Mathematical formulation

Adopt the notation in the Preliminaries section and let xi, yi i = 1
L  be L labeled samples. Let 

xi i = L + 1
L + U  be U unlabeled samples, e.g. image features extracted from U locations of an area of 

interest (e.g., a tumor, a forest, a developing world). y ∈ ℝ is the measurement of a variable 

of interest (e.g., a molecular marker, fire risk, poverty level). Our objective is to build a 

model using xi, yi i = 1
L  and xi i = L + 1

L + U  together with domain knowledge in order to predict 

y i i = L + 1
L + U .

Recall that the advantage of a GP model is that it can produce a predictive distribution, in 

which the predictive variance σ*2 reflects the certainty/uncertainty of the prediction. Also 

note that σ*2 can be computed using only the image features of an unlabeled sample. This 

leads us to an SSL extension of the GP:

minθ
1
Ll(θ) (5)

s . t . 1
U ∑i = L + 1

L + U V ar fi ≤ t, (6)

which minimizes the average negative marginal likelihood under a constraint that upper-

bounds the sum of predictive variances on unlabeled samples. Compared with the supervised 

learning model in (4), the SSL considers uncertainty reduction in predicting the unlabeled 

samples, not just maximizing the likelihood of labeled samples.

Furthermore, considering that domain knowledge may exist, we add additional constraints to 

(6) on the predictive means of unlabeled samples, i.e., (10)–(12) below:

minθ
1
Ll(θ) (7)

s . t . 1
U ∑i = L + 1

L + U V ar fi ≤ t, (8)

g E fL + 1 , …, E fL + U ≤ ξ, (9)
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ξ ≥ 0, (10)

ξT1 ≤ ϵ . (11)

where 1 is a vector of m ones. g(·) contains m different functions, g1 (·),..., gm (·). Each gj 

(·) is a function of the predictive means of unlabeled samples, j = 1,...,m. ξ = (ξ1,...,ξm) 

contains the upper bounds of these functions. A special case is when m = 1. Then, (9) 

reduces to a single function of g (E (fL+1),..., E (fL+U)) ≤ ξ. Sometimes, a single function 

is not enough to represent different kinds of domain knowledge. Thus, we use a general 

notation in (9) to allow for m functions of different forms. Also note that when the 

domain knowledge is in the form of an equation but not an inequality, i.e., g (E (fL+1),..., 

E (fL+U)) = ξ, the equation can always been represented by two inequalities of g1 (E 
(fL+1),..., E (fL+U)) ≤ ξ and −g2 (E (fL+1),..., E (fL+U )) ≤ ξ, which can be added to the 

constraint set in (9). Additionally, we consider that domain knowledge may not always be 

completely accurate. To accommodate this uncertainty, we use slack variables in specifying 

the constraints corresponding to domain knowledge, as shown in (9)–(11). ϵ controls the 

extent to which the domain k knowledge constraints can be violated. This adds the flexibility 

of allowing some small violations of these constraints. To summarize, please see Fig. 2 for a 

graphical illustration of the afore-described constrained optimization framework for KGL.

B. Optimization algorithm for KGL model estimation

To solve the optimization problem in (7)–(11), we first write the corresponding Lagrangian 

function, i.e.,

ℒ = 1
Ll(θ) + α1

1
U ∑i = L + 1

L + U V ar fi − t

+∑j = 1

m μj gj · − ξj − ∑j = 1

m vjξj + α2 ∑j = 1

m ξj − ϵ ,
(12)

with Lagrange multipliers μ = (μ1,...,μm), v = (v1,...,vm), α1 ∈ ℝ and α2 ∈ ℝ, and gj (·) used to 

represent gj (E (fL+1),..., E (fL+U)) for notation simplicity. Then, the optimal solution of the 

primal problem in (7)–(11) is equivalent to the solution of the following optimization:

infθ, ξsupμ ≥ 0, v ≥ 0, α1 ≥ 0, α2 ≥ 0ℒ. (13)

Theorem 1: Let 

L′ = 1
L l(θ) + λ1

1
U ∑i = L + 1

L + U V ar fi + ∑j = 1
m μj gj( ⋅ ) − ξj − ∑j = 1

m vjξj + λ2 ∑j = 1
m ξj  where λ1 and λ2 

are tuning parameters. Then, for any λ1 > 0 and λ2 > 0, there exist t > 0 and ϵ > 0 such that 

the optimal solution of infθ, ξsupμ ≥ 0, v ≥ 0, α1 ≥ 0, α2 ≥ 0ℒ is equal to that of infθ, ξsupμ ≥ 0, v ≥ 0ℒ′ and vice 

versa. (Proof in Appendix A.)

According to Theorem 1, (13) can be further simplified as:

infθ, ξsupμ ≥ 0, v ≥ 0ℒ′ . (14)
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Since ℒ′ is a convex function of ξj, μ, v (non-convex of θ), Equation (14) is equivalent to

infθsupμ ≥ 0, v ≥ 0infξℒ′ . (15)

Focus on the inner minimization in (15). The minimizer of ξj must satisfy

∂ℒ′
∂ξj

= λ2 − μj − vj = 0, j = 1, …, m (16)

From (16), we can write v j = λ2 − μj. Inserting this into (15), we get

infθsupμ ≥ 0J μj; j = 1, …, m (17)

s . t . 0 ≤ μj ≤ λ2, j = 1, …, m (18)

where

J uj; j = 1, …, m = 1
Ll(θ) + λ1 ∑i = L + 1

L + U V ar fi

+ ∑j = 1
m μjgj( ⋅ )

It is clear that the solution of the inner maximization of (17) with (18) is 

μj =
λ2, if gj( ⋅ ) > 0
any value in 0, λ2 , if gj( ⋅ ) = 0
0, if gj( ⋅ ) < 0

. Then, the final objective function becomes

infθL(θ) = infθ
1
Ll(θ) + λ1 ∑i = L + 1

L + U V ar fi

+λ2∑j = 1

m gj( ⋅ )I gj( ⋅ ) > 0 ,
(19)

The gradient of objective function in (19) can be written as

∇Lθ = 1
L ∇l(θ) + λ1 ∑i = L + 1

L + U ∇V ar fi

+λ2∑j = 1
m ∇gj( ⋅ )I gj( ⋅ ) > 0 .

In this paper, this optimization is solved by a gradient descent algorithm implemented in R.

Discussion on the insight of the optimization:  Note that the optimization in (19) 

simultaneously balances three aspects: maximizing the average marginal likelihood on 

labeled samples (recall that l (θ) is the negative marginal likelihood as defined in (4)); 

minimizing the predictive variances/uncertainty on unlabeled samples; optimizing the 

consistency with domain knowledge. The last term in (19) is particularly interesting: I(gj 

(·) > 0) is an indicator function that takes the value of one if gj (·) > 0 and zero otherwise. 

Recall that in the KGL formulation in (7)–(11), the consistency with domain knowledge is 

imposed by having the constraints of gj (·) < ξj,ξj ≥ 0, j = 1,...,m, where we consider m 
different types of domain knowledge. The utility of the indicator functions is to find which 
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subset of these constraints must be satisfied. This is the subset corresponding to gj (·) ≤ 0 

or equivalently I gj (·)·> 0 = 0. For the remaining constraints corresponding to gj (·) > 0 

or equivalently I (gj (·) > 0) = 1, the model will try to satisfy these constraints as much as 

possible, but this needs to be traded off with the first two terms in the optimization, i.e., 

some degree of violations for these constraints is allowed. The appealing part of the model 

is that it does not require pre-specifying which subset of constraints must be satisfied and 

which not, and how much violation is allowed. All these will be automatically resolved 

through solving the optimization problem.

A final note is that since the optimization problem in (19) is non-convex, the converged 

solution may not be the global optimal. This is a common problem for non-convex 

optimization problems. A typical strategy is to use different initial values. More 

sophisticated non-convex optimization algorithms may be used but are left for future 

investigation.

V. Another view: KGL as Posterior Regularization (Postreg)

To incorporate domain knowledge in probabilistic models, a common approach is to specify 

a prior of the model M that reflects the domain knowledge, i.e., π (M). This prior is then 

integrated with the data likelihood p (D|M) using the Bayes’ rule to obtain the posterior p 
(M|D). In this approach, domain knowledge does not directly impact or regularize the final 

model estimate, but only indirectly through prior specification. Due to the indirect nature, 

the final model estimate may not fully comply with the knowledge. In some applications, 

it may be preferred that domain knowledge can be used to directly regularize the posterior. 

This has led to the development of the PostReg framework [9]. The basic idea of PostReg is 

to use a variational distribution q (M | D) to approximate the posterior p (M|D), while at the 

same time regularizing q (M | D) according to domain knowledge. That is, PostReg aims to 

find the solution q* (M | D) for the following optimization

infq ∈ PprobKL (q (M ∣ D) p (M ∣ D)) + Ω(q (M ∣ D)) . (20)

The first term is the Kullback–Leibler (KL)-divergence, defined as the expected log-

difference between the posterior and approximate distributions. Ω (·) is a function of 

the approximate distribution, which regularizes this distribution to comply with domain 

knowledge. Because of the regularization effect, q (M | D) cannot be exactly equal to the 

posterior p (M|D), but is made close to p (M|D) while at the same time being consistent 

with the domain knowledge. Pprob denotes a proper variational family of distributions. The 

PostReg optimization in (20) is a general formulation. It has been realized for specific 

models such as latent variable models under the EM framework [8], multi-view learning [9], 

and infinite Support Vector Machines [23].

We demonstrate that solving the optimization in (7)–(11) is equivalent to solving a specific 

form of the PostReg optimization. In this specific form, the choice of the regularizer Ω (q 
(M | D)) corresponds to variance minimization and consistency with domain knowledge in 

expectation. This theoretical result is summarized in Theorem 2.
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Theorem 2:

The optimization in (7)–(11) is equivalent to a PostReg optimization taking the form of, i.e.,

infq ∈ PprobKL (q (M ∣ D) p (M ∣ D)) + Ω(q (M ∣ D)), (21)

with the following specific definitions for the notations: M = (f,θ) is the model; 

D = xi, yi i = 1
L , xi i = L + 1

L + U  is the data; Pprob = q ∣ q(f, θ ∣ D) = p(f ∣ θ, D)δθ(θ ∣ D), θ ∈ Θ  is 

a variational family of distributions where q (f |θ, D) = p (f |θ, D) and q(θ ∣ D) = δθ(θ ∣ D)
which is a Dirac delta function centered on θ in the parameter space Θ; (q (f,θ | D)), denoted 

by a simple form of Ω (q) hereafter, is given by

Ω(q) = inf t, ξ (λ1t + λ2∑j = 1

m ξj)
1
U ∑i = L + 1

L + U ∫
f, θ

q × f xi

−Eq f xi
2dη (f, θ) ≤ t;

g ∫
f, θ

q × f xL + 1 dη (f, θ), …,∫
f, θ

q

× f xL + U dη (f, θ) ≤ ξ;
ξ ≥ 0

(22)

By demonstrating that KGL is a specific instance within the general PostReg framework, 

we can gain two insights: First, we obtain another angle to explain how domain knowledge 

is integrated with global and local data in KGL, i.e., domain knowledge is imposed to 

regularize the posterior of the model (not the prior nor by any other means). Second, 

KGL provides a realization of the general PostReg framework and enriches the problem 

set PostReg can potentially address. Although PostReg has been existing as a theoretical 

framework, KGL is the first effort that demonstrates practical utility of using the concept of 

PostReg to integrate local data, global data, and domain knowledge for spatial estimation.

VI. Experiment

A. Data collection and preprocessing

Glioblastoma (GBM) is the most aggressive type of brain tumor with median survival 

of 15 months [24]. Intra-tumor molecular heterogeneity has been found to be one of the 

leading causes of treatment failure. Tumor cell density (TCD) is an important molecular 

marker to inform surgical intervention and radiation therapy. TCD is the percentage of 

tumor cells within a spatial unit of the tumor. It is well-known that TCD is spatially 

heterogeneous, meaning that TCD varies significantly across different sub-regions of each 

tumor [1] [2]. Mapping out the spatial distribution of TCD across each tumor is important 

for a neurosurgeon to determine where to resect. The mapping will also help radiation 

treatment planning by informing a radiation oncologist on how to optimize the spatial 

dose distribution according to the regional TCD. Such optimal decision is critical to avoid 

overtreating some areas of the brain – causing functional impairment, and undertreating 

other areas – leading to tumor recurrence. To know the TCD at each sub-region of a tumor, 
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biopsy is the gold-standard approach. However, due to its invasive nature, only a few biopsy 

samples can be taken. MRI portrays the entire brain non-invasively. But MRI does not 

directly measure TCD while only providing proxy data. In this experiment, we apply KGL 

to predict regional TCD of each tumor by integrating MRI, biopsy samples, and mechanistic 

model/domain knowledge.

Patients and biopsy samples: This study includes the data of 18 GBM patients 

provided by our collaborators at Mayo Clinic with IRB approval. Each patient has 

2–14 biopsy samples, making a total of 82 samples. Pre-operative MRI including T1-

weighted contrast-enhanced (T1+C) and T2-weighted sequences (T2) was used to guide 

biopsy selection. The neurosurgeons recorded biopsy locations via screen capture to allow 

subsequent co-registration with multiparametric MRI. The TCD of each biopsy specimen 

was assessed by a neuropathologist.

MRI pre-processing and feature extraction: Each patient went through an MRI 

exam prior to treatment. The MRI exam produced multiple contrast images such as T1+C, 

T2, dynamic contrast enhancement (EPI+C), mean diffusivity (MD), fractional anisotropy 

(FA), and relative cerebral blood volume (rCBV). Detailed MRI protocols and image co-

registration can be found in our prior publications [2] [5]. To extract features, an 8 × 8 pixel2 

window was placed at each pixel as the center within a pre-segmented tumoral Region of 

Interest (ROI), which is the abnormality visible on T2. The window was slid throughout the 

entire ROI, and at each pixel, the average gray-level intensity was computed within the 8 × 

8 pixel2 window from each of the six contrast images and used as features. Therefore, six 

image features were included in model training.

Labeled and unlabeled samples: Biopsy samples are labeled samples as they have 

TCD. Samples corresponding to the sliding windows, except the windows at biopsy 

locations, are unlabeled as they only have image features not TCD.

Mechanistic model: We integrate a well-known mechanistic model called Proliferation-

Invasion (PI) [5] [6]. PI is a PDE-based simulator driven by biological knowledge of how 

GBM tumor cells proliferate and invade to sounding brain tissues. The PDE for the PI model 

is:

∂c
∂t

Rate of Changeof Cell Density

= ∇ ⋅ (D(x)∇c)
Invasion of Cellsinto Nearby Tissue

+ ρc 1 − c
k

Proliferationof cells
,

where c (x,t) is the TCD at location x of the brain and time t, D (x) is the net rate of 

diffusion, ρ is the net rate of proliferation and K is the cell carrying capacity. Solutions 

to this model are known to asymptotically set up a traveling wave in spherical symmetry. 

This wave has two key properties 1) the radial wave speed, known to be 2 Dρ, and 2) the 

gradient of the wave front, which is known to be related to the ratio D/ρ. By assuming 

different imaging sequences of T1+C and T2 correlate with different thresholds of density 
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on the traveling wave, one can estimate the D/ρ and generate estimations of the current 

gradient/shape of the tumor cell density profile [25][26]. In line with previous papers, the 

T1+C and T2 images of a patient are used to calibrate the model parameters assuming the 

abnormality on the T1+C image corresponds to the 80% tumor cell density threshold and 

the T2 image to the 16% tumor cell density. By estimating D/ρ, we can generate the current 

TCD estimate at each pixel. The PI map can capture some general trend of the spatial TCD 

distribution but may lack localized precision due to simplified assumptions and with only 

D/ρ estimated cannot be used to predict future growth. We run the PI simulator for each 

patient and generate a PI map to be integrated with KGL for this single time point of interest 

(see the next section).

B. Application of KGL

B.1 Integration of domain knowledge encoded by PI map—In KGL, domain 

knowledge is incorporated through imposing constraints on the predictive means of 

unlabeled samples, i.e., g(E (fL+1),..., E (fL+U)) ≤ ξ. Due to the aforementioned properties 

of the PI map, we propose to use it to regularize the general spatial trend of the TCD 

predictions. Specifically, based on the pixel-wise estimates of TCD generated by PI, we 

compute the average estimate over 64 pixels within each 8 × 8 pixel2 window corresponding 

to an unlabeled sample. Denote this average estimate for each unlabeled sample i by PI i,i = 

L + 1,..., L + U. The proposed constraints are:

g1 E fL + 1 , …, E fL + U ≜ E fL + 1 − PIL + 1 ≤ ξ1

⋮
gU E fL + 1 , …, E fL + U ≜ E fL + U − PIL + U ≤ ξU,

(23)

gU + 1 E fL + 1 , …, E fL + U

≜ ∑i = L + 1, …, L + U; j > i wij E fi − E fj
2 ≤ ξU + 1,

(24)

ξ1, …, ξU + 1 ≥ 0, ∑i = 1

U + 1 ξi ≤ ϵ, (25)

where wij = e− PIi − PIj
2
. The constraints in (23) encourage similarity between the 

predictive mean and the PI estimate at the same location (unbiopsied sample). Additionally, 

the constraint in (24) encourages the predictive means of two samples to be similar if their 

PI estimates are similar, where the PI similarity is reflected by wij. Furthermore, considering 

that the PI map only provides approximates of the TCDs, a slack variable approach is used 

in (25) to make these constraints soft instead of hard constraints.

B.2 Model training and competing methods—Model training needs to determine 

the optimal parameter estimates θ* of KGL and select the tuning parameters, λ1 and λ2. 

The training procedure is depicted in Fig. 3. The search for the optimal turning parameters is 

used as the outermost iteration. At fixed λ1 and λ2, the KGL optimization is solved for each 

patient. The input to the patient-specific optimization includes labeled samples from other 

patients, unlabeled samples from this patient, and the PI map of this patient. To improve 
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efficiency and robustness, a subset of the first 100 unlabeled samples with the smallest 

average distances from the labeled samples is included. The output is optimal parameters, 

θ* (λ1,λ2). Then, the model under the optimal parameters is used to generate a predictive 

distribution of the TCD for each biopsy sample of this patient. The predictive means of 

all the biopsy samples are compared with the true TCDs to compute the Mean Absolute 

Prediction Error (MAPE). This process is iterated with every patient in the dataset treated 

as “this patient”, known as leave-one-patient-out cross validation (LOPO-CV). While other 

types of CV schemes may be adopted, LOPO-CV aligns well with the natural grouping 

of samples in our dataset. Finally, the best tuning parameters λ1
* and λ2

* are selected as the 

ones minimizing the average MAPE over all the patients. Under the λ1
* and λ2

*, the KGL 

optimization is solved for each patient to generate the final optimal parameters θ* for the 

patient.

For comparison, we applied a range of competing algorithms to the same dataset, including:

1. The mechanistic model, i.e., PI;

2. The standard GP [15], i.e., a GP model trained using only biopsy samples;

3. Semi-GP: A semi-supervised GP model based on a data-dependent covariance 

function for unlabeled data [18];

4. Co-training SVR-KNN: an SSL algorithm based on co-training with support 

vector regression (SVR) and k-nearest neighbors (KNN) [12];

5. SSRR-AGLP: semi-supervised ridge regression with adaptive graph-based label 

propagation [14];

6. SS-RT: semi-supervised regression trees [13];

7. SAFER: SAFE semi-supervised Regression [27];

8. KGL with no variance reduction: this is a special case of KGL without the 

constraint on predictive variances;

9. KGL with random unlabeled sample selection: this is a special case of KG by 

randomly selecting 100 unlabeled samples to include in model training.

The two GP models in 2) and 3) were chosen to form the baseline to compare with KGL. 

4)-7) are existing SSL algorithms, each representing a major category of SSL: co-training, 

graph-based, and low-density separation for 4)-6), respectively, and an integrated framework 

to combine multiple SSL algorithms for 7). These algorithms were developed in recent 

years. 8) and 9) are two special cases of KGL: 8) intends to show the benefit of bias-variance 

tradeoff of KGL. 9) adopts an alternative strategy by randomly selecting 100 unlabeled 

samples to include in training, as opposed to selecting the top 100 unlabeled samples with 

the smallest average distances from the labeled samples. The parameters of each algorithm 

were optimized based on the same LOPO-CV criterion as KGL.

B.3 Generation of predicted TCD maps and uncertainty quantification—For 

the three GP-based methods, the trained model of each method can be used to generate a 

predictive distribution of the TCD for each sample (i.e., each sliding window) within the 
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ROI. The predictive means of all the samples can be visualized by a color map overlaid on 

the ROI. Also, we can use the predictive variances to quantify prediction uncertainty.

C. Results

Table II compares all methods for MAPE. Only GP-based methods can produce predictive 

variance, so they are additionally compared in terms of average predictive variance for 

biopsy samples. The last three KGL methods have the smallest MAPE. Their average 

predictive variances are also much smaller than the two existing GP-based methods. Among 

the three KGL methods, the last one performs the best, implying the benefit of including the 

variance constraint and adopting a more robust unlabeled sample selection strategy.

Fig. 4 compares standard GP, semi-GP, and KGL in terms of the average predictive variance 

for all samples (i.e., sliding windows) within the ROI for each patient. KGL has a smaller 

MAPE. The predictive variances by KGL are much reduced for all samples and across all 

patients, implying greater certainty in the prediction.

Furthermore, Fig. 5 shows the predictive TCD maps from two patients as examples. Colors 

represent predictive means of the TCD from 0 (darkest blue) to 100% (darkest red). Below 

each map, we also show the distribution of the predictive variances for samples within 

the ROI. Patient A has one biopsy sample shown on this slice of the MRI. Both standard 

GP and semi-GP underestimate the TCD of this sample by a large margin, whereas KGL 

has a higher accuracy. Patient B has two biopsy samples for which KGL estimates with 

higher accuracy. Also, the color maps produced by KGL show better spatial smoothness and 

aligns better with the expected tumor cell distributions from known biology, especially for 

the color map of patient B. This is a benefit due to incorporation of the PI map/domain 

knowledge in model training. Furthermore, the predictive variance distribution by KGL is 

much more concentrated at the low variance range, whereas standard GP and semi-GP 

produce predictions with large variances (large uncertainty). In all, KGL outperforms the 

other two methods in both prediction accuracy, prediction certainty, and compliance to 

biological knowledge.

D. Discussion on utilities of the results to decision making in Precision Medicine

With the predicted TCD map for each patient, the neurosurgeon can have a better reference 

to decide where of the brain to take out more (or less) cancerous tissues. Areas with high 

TCD should be maximally resected. Areas with little TCD should be preserved so as to 

protect the integrity of brain functions. This level of spatial precision is highly valuable 

for optimizing the surgical outcomes of GBM. Furthermore, the predicted TCD maps 

can also help radiation oncologists decide how to optimize the spatial radiation dose in 

radiation therapy. Areas with higher TCD should be irradiated more to kill the cancer cells, 

whereas areas with lower TCD should receive less dose to minimize radiation-induced 

complications. This level of spatial precision is much desirable for radiation treatment 

planning optimization. Finally, we like to point out that since KGL also generates a 

predictive variance in addition to the mean for each sample, the variance can be used to 

quantify the uncertainty of the prediction to guide more informed and risk-conscious clinical 

decision making.
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VII. Conclusion

We proposed a novel machine learning framework, KGL, to optimally fuse multiple 

sources of data/information to predict the spatial distribution for a variable of interest. 

KGL was demonstrated in an application of predicting the spatial TCD distribution 

for GBM, and showed superior performance over competing methods. Future research 

includes methodological extension to non-numerical response variables, optimal selection of 

unlabeled samples, and development of more efficient optimization solvers.
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Appendix A: Proof of theorem 1

According to the derivation process from (15) to (19), inf
θ, ξ

sub
μ ≥ 0, v ≥ 0

ℒ′ can be simplified as
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inf
θ

1
Ll(θ) + λ1

1
U ∑i = L + 1

L + U V ar fi

+λ2∑j = 1

m gj( ⋅ )I gj( ⋅ ) > 0 .
(26)

Similarly, inf
θ

sub
μ ≥ 0, v ≥ 0, α1 ≥ 0, α2 ≥ 0

ℒ can be simplified as

inf
θ

sub
α1 ≥ 0, α2 ≥ 0

{ 1
Ll(θ) + α1

1
U ∑i = L + 1

L + U V ar fi − t

+α2(∑j = 1

m gj( ⋅ )I gj( ⋅ ) > 0 − ϵ)} .
(27)

To prove Theorem 1, we need to prove (26) and (27) are equivalent.

a. For any choice of λ1 > 0 and λ2 > 0, consider the optimal solution θ* from 

(26). It is not hard to see that θ* will also be the optimal solution to (27) 

if t = 1
U ∑i = L + 1

L + U V arθ* fi  and ϵ = ∑j = 1
m gj; θ*( ⋅ )I gj; θ*( ⋅ ) > 0 ; otherwise, if there is 

some other θ′ with 1
U ∑i = L + 1

L + U V ar fi ≤ t and ∑j = 1
m gj( ⋅ )I gj( ⋅ ) > 0 ≤ ϵ but a better 

objective value than θ* (note that since t and ϵ are pre-set, it becomes a 

hard-constraint optimization and it is easy to know that α1 = 0, α2 = 0, and 
1
L l θ′ < 1

L l θ* , then

1
Ll θ′ + λ1

1
U ∑i = L + 1

L + U V arθ′ fi

+λ2∑j = 1
m gj, θ′( ⋅ )I gj, θ′( ⋅ ) > 0

< 1
Ll θ* + λ1t + λ2ϵ

= 1
Ll θ* + λ1 ∑i = L + 1

L + U V arθ* fi

+λ2∑j = 1
m gj, θ*( ⋅ )I gj, θ*( ⋅ ) > 0 .

This contradicts the optimality of θ* in (26). Hence θ* is also optimal in (27).

b. Conversely, for any choice of t > 0 and ǫ > 0, let θ* the optimal solution from 

(27), accompanied with the optimal α1
* and α2

*. Hence θ* is optimal in

inf
θ

1
Ll(θ) + α1

* 1
U ∑i = L + 1

L + U V ar fi − t

+α2
*(∑j = 1

m gj( ⋅ )I gj( ⋅ ) > 0 − ϵ) .

Removing the constant term α1
*t and α2

*ϵ, and setting λ1 = α1
* and λ2 = α2

*, we have 

that θ* is the optimal solution for (26). ■

Wang et al. Page 18

IEEE Trans Autom Sci Eng. Author manuscript; available in PMC 2023 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Appendix B: Proof of theorem 2

Our proof aims to show that the optimization in (21) is equivalent to (7)–(11). For notation 

simplicity, define Ωi
1(q) ≜ ∫f, θq × f xi − Eq f xi

2dη(f, θ) and Ωi
2(q) ≜ ∫f, θq × f xi dη(f, θ)

Then the constraints in (22) become 1
U ∑i = L + 1

L + U Ωi
1(q) ≤ t and gj ΩL + 1

2 (q), …, ΩL + U
2 (q) ≤ ξj. Using 

the Lagrange multiplier method, we know that (21) is equivalent to

inf
q ∈ Pprob

inf
t, ξ

sub
α1, μ, v ≥ 0

KL(q‖p(f, θ ∣ D)) + λ1t + λ2 ∑j = 1

m ξj

+α1
1
U ∑i = L + 1

L + U Ωi
1(q) − t +

∑j = 1

m μj gj ΩL + 1
2 (q), …, ΩL + U

2 (q) − ξj

−∑j = 1

m vjξj

.
(28)

Since (28) is a convex function of ξ,t,α1,μ,v, (28) is equivalent to

inf
q ∈ Pprob

sub
α1, μ, v ≥ 0

inf
t, ξ

KL(q p(f, θ ∣ D)) + λ1t + λ2 ∑j = 1

m ξj

+α1
1
U ∑i = L + 1

L + U Ωi
1(q) − t +

∑j = 1

m μj gj ΩL + 1
2 (q), …, ΩL + U

2 (q) − ξj

−∑j = 1

m vjξj

.
(29)

Denote the function within the { } in (29) by φ. Focus on solving the inner-most 

optimization with respect to t,ξ by equating the derivatives of φ to zeros, i.e.,

∂φ
∂t = λ1 − α1 = 0,

∂φ
∂ξj

= λ2 − μj − vj = 0, j = 1, …, m .

From these equations we can get α1 = λ1 and v j = λ2−u j. Putting these back to (29), we get

inf
q ∈ Pprob

sub
μ ≥ 0

KL(q‖p(f, θ ∣ D)) + λ1
1
U ∑

i = L + 1

L + U
Ωi

1(q)

+∑j = 1
m μjgj ΩL + 1

2 (q), …, ΩL + U
2 (q)

s . t . 0 ≤ μj ≤ λ2, j = 1, …, m.

That can be simplified as
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inf
q ∈ Pprob

KL(q‖p (f, θ ∣ D)) + λ1
1
U ∑i = L + 1

L + U Ωi
1(q) +

λ2∑j = 1

m gj ΩL + 1
2 (q), …, ΩL + U

2 (q)
I gj ΩL + 1

2 (q), …, ΩL + U
2 (q) > 0

. (30)

Denote the function within { } in (30) by χ. Comparing (30) to that in Theorem 1, we know 

that the remaining task of this proof is to show that inf
q ∈ Pprob

χ is equivalent to

min
θ

1
Ll(θ) + λ1

1
U ∑i = L + 1

L + U V ar fi

+λ2∑j = 1
m gj( ⋅ )I gj( ⋅ ) > 0 .

Next, we show steps to prove this equivalency.

inf
q ∈ Pprob

χ

= inf
q ∈ Pprob

∫
f, θ

qlog q
p(f, θ ∣ D)dη(f, θ) + λ1

1
U ∑i = L + 1

L + U Ωi
1(q)

+λ2∑j = 1

m gj ΩL + 1
2 (q), …, ΩL + U

2 (q)
I gj ΩL + 1

2 (q), …, ΩL + U
2 (q) > 0

= inf
q ∈ Pprob

∫
f, θ

p(f ∣ θ, D)δθ(θ ∣ D)log p(f ∣ θ, D)δθ(θ ∣ D)
p(f, θ ∣ D) dη

(f, θ) +

λ1
1
U ∑i = L + 1

L + U Ωi
1(q) +

λ2∑j = 1

m gj ΩL + 1
2 (q), …, ΩL + U

2 (q)
I gj ΩL + 1

2 (q), …, ΩL + U
2 (q) > 0

.

(31)

Now focus on the third term within the inf{ } in (31):

Ωi
2(q) = ∫

f, θ
p (f ∣ θ, D)δθ(θ ∣ D)f xi dη (f, θ)

= ∫
f

f xi ∫
θ

p (f ∣ θ, D)δθ(θ ∣ D)dη (f, θ)

= ∫
f

f xi p (f ∣ θ, D)dη (f) = Ep f xi ,

(32)

which is not related to f or θ. Similarly,
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Ωi
1(q)

= ∫
f, θ

p (f ∣ θ, D)δθ(θ ∣ D) × f xi − Ep f xi
2dη (f, θ)

= ∫
f

f xi − Ep f xi
2∫

θ
p (f ∣ θ, D)δθ(θ ∣ D)dη (f, θ)

= ∫
f

f xi − Ep f xi
2p(f ∣ θ, D)dη (f) = V arp fi .

(33)

Then, (31) becomes:

inf
θ

∫
f, θ

p(f ∣ θ, D)δθ(θ ∣ D)logδθ(θ ∣ D)
p (θ ∣ D)dη (f, θ) +

λ1
1
U ∑i = L + 1

L + U V arp fi +

λ2∑j = 1
m gj( ⋅ )I gj( ⋅ ) > 0

= inf
θ
∫

θ
δθ(θ ∣ D)logδθ(θ ∣ D)

p (θ ∣ D)dη (θ) + λ1
1
U ∑i = L + 1

L + U V arp fi + λ2∑j = 1
m gj( ⋅ )I gj( ⋅ ) > 0

= inf
θ

−∫
θ

δθ(θ ∣ D)logp (θ ∣ D)dη (θ) + λ1
1
U ∑i = L + 1

L + U V arp fi + λ2∑j = 1
m gj( ⋅ )I gj( ⋅ ) > 0

= inf
θ

−∫
θ

δθ(θ ∣ D)log p yL, θ ∣ XL
p yL ∣ XL

dη (θ) + λ1
1
U ∑i = L + 1

L + U V arp fi + λ2∑j = 1
m gj( ⋅ )I gj( ⋅ ) > 0

= inf
θ

−∫
θ

δθ(θ ∣ D)logp yL, θ ∣ XL dη (θ) + λ1
1
U ∑i = L + 1

L + U V arp∑ fi + λ2 ∑
j = 1

m
gj( ⋅ )I gj( ⋅ ) > 0

= inf
θ

−log p yL, θ ∣ XL + λ1
1
U ∑i = L + 1

L + U V arp fi +λ2∑j = 1
m gj( ⋅ )I gj( ⋅ ) > 0

= inf
θ

−log p yL ∣ XL, θ p θ ∣ XL + λ1
1
U ∑i = L + 1

L + U V arp fi +λ2∑j = 1
m gj( ⋅ )I gj( ⋅ ) > 0

= inf
θ

−log p yL ∣ XL, θ − log p θ ∣ XL + λ1
1
U ∑i = L + 1

L + U V arp fi + λ2∑j = 1
m gj( ⋅ )I gj( ⋅ ) > 0

= inf
θ

−log p yL ∣ XL, θ + λ1
1
U ∑i = L + 1

L + U V arp fi +λ2∑j = 1
m gj( ⋅ )I gj( ⋅ ) > 0

= inf
θ

− 1
L log p yL ∣ XL, θ + λ1

L
1
U ∑i = L + 1

L + U V arp fi + λ2
L ∑j = 1

m gj( ⋅ )I gj( ⋅ ) > 0

= inf
θ

− 1
L log p yL ∣ XL, θ + λ1

1
U ∑i = L + 1

L + U V arp fi +λ2∑j = 1
m gj( ⋅ )I gj( ⋅ ) > 0 .
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Fig. 1. 
A schematic overview of the multi-data/information fusion framework by the proposed KGL 

methodology. The framework is illustrated using the application of Precision Medicine, but 

it is generalizable to other applications given in Table I.
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Fig. 2. 
Mathematical formulation of KGL as a constrained optimization
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Fig. 3. 
Model training procedure for KGL
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Fig. 4. 
Comparison of methods on average predictive variance of unlabeled samples for each 

patient. Averages across all patients: Standard GP=0.032; Semi-GP=0.032; KGL=0.014 

(56% variance reduction compared with the other two methods).
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Fig. 5. 
Predicted means of TCD within a ROI are shown as a color map overlaid on the patient’s T2 

MRI; predicted variances are shown in distribution.
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TABLE I

Examples in science and engineering domains that demand the proposed KGL methodology to support critical 

decision making

Variable of interest Available sources of data/information

Local data (direct 
measure)

Global data (proxy) Domain knowledge

Precision Medicine 
of cancer

Regional molecular 
status

Biopsy samples Clinical imaging Mechanistic models

Early detection of 
forest fire

Regional fire 
potential

Ground or aerial survey Spectroradiometer satellite 
images

Forest fire simulators; 
ecological model

Resource allocation 
for poverty 
reduction

Regional poverty 
level

Household survey Daytime and nightlight satellite 
images

Macro-level statistics 
(country-level GDP)
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TABLE II

Comparison of methods on prediction of biopsy samples

Methods MAPE Average predictive variance

PI 0.252 -

Standard GP 0.191 0.038

Semi-GP 0.189 0.039

Co-training SVR-KNN 0.243 -

SSRR-AGLP 0.201 -

SS-RT 0.231 -

SAFER 0.223 -

KGL (no variance reduction) 0.174 0.023

KGL (random unlabeled sample selection) 0.171 0.018

KGL 0.165 0.015
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