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Abstract

Prediction of movement intentions from electromyographic (EMG) signals is typically performed 

with a pattern recognition approach, wherein a short dataframe of raw EMG is compressed into 

an instantaneous featureencoding that is meaningful for classification. However, EMG signals 

are time-varying, implying that a frame-wise approach may not sufficiently incorporate temporal 

context into predictions, leading to erratic and unstable prediction behavior.

Objective: We demonstrate that sequential prediction models and, specifically, temporal 

convolutional networks are able to leverage useful temporal information from EMG to achieve 

superior predictive performance.

Methods: We compare this approach to other sequential and frame-wise models predicting 3 

simultaneous hand and wrist degrees-of-freedom from 2 amputee and 13 non-amputee human 

subjects in a minimally constrained experiment. We also compare these models on the publicly 

available Ninapro and CapgMyo amputee and non-amputee datasets.

(Corresponding author: Joseph L. Betthauser.) (jbettha1@jhu.edu). 

HHS Public Access
Author manuscript
IEEE Trans Biomed Eng. Author manuscript; available in PMC 2023 September 12.

Published in final edited form as:
IEEE Trans Biomed Eng. 2020 June ; 67(6): 1707–1717. doi:10.1109/TBME.2019.2943309.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results: Temporal convolutional networks yield predictions that are more accurate and stable 

(p < 0.001) than frame-wise models, especially during inter-class transitions, with an average 

response delay of 4.6 ms (p < 0.001) and simpler feature-encoding. Their performance can be 

further improved with adaptive reinforcement training.

Significance: Sequential models that incorporate temporal information from EMG achieve 

superior movement prediction performance and these models allow for novel types of interactive 

training.

Conclusions: Addressing EMG decoding as a sequential modeling problem will lead to 

enhancements in the reliability, responsiveness, and movement complexity available from 

prosthesis control systems.
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Electromyographic (EMG); stability; latency; sequence; amputee; reinforcement; temporal 
convolutional network (TCN); ED-TCN

I. INTRODUCTION

The fundamental objective of myoelectric prosthesis control for upper-limb amputees is 

to determine a user’s intended arm and hand movement actions from the corresponding 

electromyographic (EMG) muscle activation signals [1]. EMG movement prediction is often 

performed with a frame-wise sliding window approach where a short window of the raw 

EMG signal is individually compressed into a feature representation that spatially encodes 

discrete movement classes. In ideal cases, such as during steady-state muscle contractions, 

prediction models like linear discriminant analysis [2], support vector machines [3], and 

spatial convolutional networks [4] can reliably decode many movement class patterns from 

EMG feature representations [5]. However, these models can also exhibit unstable or erratic 

prediction behavior (Fig. 1A), especially during transient-states when the user transitions 

between movement classes [6], [7].

Improving the error-tolerance and stability of frame-wise models has become a focal point 

of EMG movement decoding research. Majority voting among consecutive predictions [1] 

can stabilize the prediction stream but also causes response delay. Methods like confidence-

based rejection [8], [9] and ensemble voting among binary classifiers [10] have been used to 

improve accuracy and stability by suppressing the output of uncertain and potentially erratic 

predictions. A velocity ramp procedure has been used to both improve stability and apply 

a proportional output to movement predictions [11]. Adaptive models have been developed 

to enhance condition-tolerance with sparse representations [12] and to intelligently update 

movement class boundaries in real-time [13], [14]. These methods all demonstrate that 

EMG movement prediction is a difficult problem where, in all but the most ideal cases, 

erratic and unstable behavior does arise and must be mitigated or suppressed to achieve 

reliable prosthesis control. Furthermore, to improve amputee satisfaction and prosthesis 

embodiment, a major clinical goal is to keep response delays below 100 ms [15]. The 

post-processing methods and optimal window sizes [16] required to stabilize predictions 
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often exceed this bound. Our present inquiry is to determine if stability and response time 

can be improved with under-utilized aspects of EMG signals.

Frame-wise classification of time-series data like EMG is, in the Bayesian sense, a naive 

process wherein single feature windows are predicted independently (Fig. 1B), lacking an 

encoding mechanism for longer-range temporal information. As has been demonstrated 

with Hidden Markov Models in speech recognition [17] and EMG movement prediction 

[18], prior temporal information can be relevant for the prediction of time-series data. 

For example, prediction of a word from speech audio can be done more accurately by 

using a contextual language model [17]. Herein, we use the term sequential models to 

broadly refer to models that leverage temporal sequences of consecutive data-frames in their 

predictions (Fig. 1C). Sequential models such as long short-term memory (LSTM) recurrent 

neural networks [19] have achieved state-of-the-art results in many time-series prediction 

applications like speech recognition [20] and EMG movement decoding [21]. Recurrent 

networks have also been used for movement prediction from primate cortical signals [22].

We began this investigation to explore the benefits of using sequential models for EMG 

movement prediction. In our prior work [23], sequential models indeed increased accuracy, 

but a model architecture called temporal convolutional networks (TCN) [24] yielded 

other benefits warranting further exploration. In addition to being more accurate, TCN 

predictions were very stable, producing smooth, clean transitions between classes [23]. 

Furthermore, TCN models are highly interpretable [24], [25] and can be trained many 

times faster than LSTM [24], [26]. Herein, we focus on an enhanced TCN model called 

encoder-decoder temporal convolutional networks (ED-TCN) [26] for EMG movement 

prediction that are more accurate and stable than prevailing models, with reduced prediction 

latency. We present our results in two contexts:(i) public databases using standard 

movement-cue protocols, and (ii) a minimally constrained subject-driven experiment. We 

also demonstrate how a subject might continue to significantly improve performance with 

adaptive reinforcement training.

II. METHODS

A. Encoder-Decoder Temporal Convolutional Networks

Single-layer TCNs can learn hidden temporal patterns [24], smoothed via temporal-

dimension convolution filters, and have demonstrated superior results on video recognition 

datasets [24], [26], [27] and our own prior work in EMG decoding [23]. ED-TCN [26] was 

developed as a temporal variation of SegNet [28], a powerful encoder-decoder framework 

for image segmentation that smoothly delineates object boundaries by employing max-

pooling operations in the encoder to down-sample the image prior to up-sampling in the 

decoder. Similarly, ED-TCN is an encoder-decoder framework, using temporal max-pooling 

and up-sampling layers to deeply connect multiple TCN layers (Fig. 1D), designed to 

smoothly delineate temporal class boundaries for video activity recognition.

Each layer in the encoder has a corresponding layer in the decoder, and we found that a 

depth of 2 layers per network provided a good balance between accuracy and stability. Each 

encoding layer is defined by E(l) ∈ ℝF l × T l, where F l is the number of convolutional filters 
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in the l-th layer and T l is the number of time-steps. T l is dependent on the sequence length 

of the input, T0 ∈ ℤ ≥ 4, and is shortened with max pooling operations in each encoding layer 

and lengthened with up-sampling operations in each decoding layer. Through preliminary 

testing, we chose the number of filters F1 = 128 for the first layer, F2 = 288 for the second, 

and filter length d = 25. F0 is the feature dimension of the input. The output of each encoding 

layer E(l) is a set of temporal feature maps produced when the collection of filters for that 

layer, W = W(i)
i = 1

Fl
 where W(i) ∈ ℝd × F l − 1, is convolved with the output of the previous 

layer:

E(l) = f W ∗ E(l − 1) + b (1)

where b ∈ ℝF l − 1 is a bias term. Rectified linear unit (ReLU) activations [29] are applied 

to each element, and 2-point temporal max pooling is performed. Each decoding layer, 

D(l) ∈ ℝF l × T l, up-samples the feature maps by factor 2, performs temporal convolution with 

a decoder filter bank, and applies element-wise ReLU activations. The final decoder output 

is fed to a fully-connected time-distributed layer with softmax activation [30] to produce C
class probabilities, yt, at each time, t:

yt = softmax UDt
(l) + c (2)

where U ∈ ℝC × F2 and c ∈ ℝC are the weight matrix and bias, respectively, of the fully 

connected layer. All ED-TCN layers are trained together in end-to-end fashion, and training 

can be greatly accelerated with multicore GPUs.

1) Measuring Model Stability: In our previous work [23], we defined a stability metric 

to complement accuracy by quantifying how inclined a model is to predicting erratic inter-

class switches and transitions that were not intended by the human subject. Given a vector p
representing a series of N consecutive predictions, we count how many times the prediction 

model switches its class output:

cp = ∑
i = 2

N
1 − δ pi, pi − 1 (3)

where δ( ⋅ , ⋅ ) ∈ 0, 1  is an equivalence indicator. After computing cp, and computing ct from 

a ground truth vector t, our prediction stability metric is defined as

Sp ∣ t = 1 − cp − ct

N − 1 . (4)

Accuracy estimates a model’s true probability of success as N ∞, whereas stability 
estimates the probability that a model’s inter-class transitions are based on a subject’s intent.

To avoid fully relying on our own metric, we computed the edit score [31] which penalizes 

incorrect class order and over-segmentation in a prediction sequence while ignoring minor 

timing shifts. Edit score is defined as
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Ep ∣ t = 1 − L p′, t′ (5)

where p′ and t′ are formed by removing repeated consecutive labels from vectors p and 

t, and L( ⋅ , ⋅ ) ∈ [0, 1] is normalized Levenshtein or edit distance [32]. For example, if the 

vector p = AAABBACC  then p′ = ABAC , and L p′, t′  finds the fraction of insertions, 

deletions, and replacements needed to convert p′ into t′. We also computed the F1 score [33], 

which is the harmonic mean of precision and recall.

B. Experiment Set-Up

1) Experimental Considerations for Sequential Models: It is important to 

examine how a standard experimental approach might influence sequential models. 

Typically, a subject is shown a movement cue for a specified amount of time, performs 

the movement, and this process repeats for a given set of cues. Each aspect of this approach– 

the cues, their order, and their duration– is constrained by the experiment. Subjects are often 

restricted to class transitions to and from a neutral “rest” class [6], [7], [34] in part because 

the number of transitions grows combinatorially with the number of classes. Sequential 

models learn temporal relationships and, if care is not taken, they may learn specific 

experimental constraints. For example, an experiment restricted to 3 s duration classes into 

and out of “rest” may teach a sequential model that movements always last for 3 s, and 

inter-class transitions involving “rest” are the only type that can occur. Thus, the model 

might learn distorted, experiment-centric relationships but fail to learn more generalizable 

temporal and transition information.

In our field, the terms stability and responsiveness are only meaningful insofar as they 

relate to a human subject’s volition or intent. Since we are evaluating these concepts, we 

preferred that our experimental data originate from a subject’s voluntary choices rather than 

from his delayed responses to movement cues. The unique properties of sequential models 

inspired and allowed us to pursue new subject-driven approaches to experimentation. For 

completeness in our comparisons, we also report results on two public EMG databases, 

Ninapro [34] and CapgMyo [35], collected with more traditional experimental approaches.

2) Human Subjects: Our experiments were conducted with protocols approved by the 

Johns Hopkins Medicine Institutional Review Boards. 13 non-amputee and 2 transradial 

amputee subjects participated in these experiments. Amputee subjects were familiar with 

EMG movement prediction, whereas most non-amputee subjects were unpracticed or 

unfamiliar. Non-amputee subjects (10 male, 3 female) were ages 23.4 ± 3.0 years. The 

specific traits of amputee subjects were:

ID Age Sex Status Amputation Time Residual

A1 49 yr M unilateral right transradial 16 yr 18 cm

A2 54 yr M unilateral right transradial 16 yr 14 cm
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3) Data Acquisition, Feature Extraction, and Visualization: Eight channels of raw 

EMG sampled at 200 Hz were obtained from a Myo Armband (Thalmic Labs, Ontario, 

Canada) placed around the circumference of the forearm. For frame-wise models, a sliding 

window of 150–250 ms is considered optimal [16] so 200 ms windows with 25 ms step-size 

were used to extract time-domain (TD5) features from the raw EMG signals: mean absolute 

value (MAV), waveform length, variance, slope sign change, and zero crossings [1]. We note 

that EMG signals are often recorded above a 1 kHz threshold to prevent raw signal aliasing, 

and this threshold may be necessary to discriminate fine motor movements like individual 

fingers. However, when classifying gross motor movements like those in our experiments, 

features extracted from the 200 Hz Myo Armband have yielded performance similar to that 

of recording systems sampling at ≥ 1 kHz [36], [37]. We also demonstrate that our results 

are consistent on data recorded with high sampling rates from two public EMG databases.

Angular hand position data were recorded with the Cyberglove II (CyberGlove Systems 

LLC, San Jose, CA). Angular wrist position data were recorded with 9-axis MPU-9150 

inertial sensors (InvenSense, San Jose, CA), one mounted on the back of the subject’s hand 

and referenced to another which was placed under the computer display (Fig. 2A). We 

created a user interface to control the virtual Modular Prosthetic Limb (vMPL) developed 

by the Johns Hopkins University Applied Physics Laboratory [38]. The vMPL environment 

approximates the physical Modular Prosthetic Limb (MPL) by incorporating its dynamic 

properties such as mass and momentum. This interface provided subjects with a real-time 

display of their hand and wrist movements, and it provided us with visual confirmation 

that subject movements and positional recordings were in correspondence. Non-amputee 

subjects wore all sensors on either their left or right arm depending on subject preference. 

To demonstrate the feasibility of our methods for unilateral amputee subjects A1 and A2, we 

recorded EMG signals from their residual amputated limb and recorded position data from 

their intact limb while they mirrored their intended movements to establish a synchronous 

ground truth. To visually aid amputees, their movements were flipped horizontally and 

displayed in the vMPL environment on their amputated side.

4) Automated Class Label Encoding: By automating the labeling of ground truth 

movement classes, there was neither a need for any movement-cue presentation during 

our experiments nor a need to offset the variable reaction-time delays resulting from a 

movement-cue approach. Subjects were first asked to explore for 40 s their full range of 

motion in each of 3 degrees-of-freedom (DOF) representing hand and wrist movements– 

hand close/open, wrist flexion/extension, and radial/ulnar deviation–while outer boundary 

positions θi
min, θi

max, and rest position θi
0 were determined for each DOF i (Fig. 2B–C). Class 

thresholds along each DOF were set at 50% of the distance from θi
0 to θi

min and θi
max (Fig. 2C). 

Thus, at every 25 ms time-step, each DOF is labeled with either +1, 0, or −1. By combining 

these labels for each of the three DOFs, we create a ternary class encoding representing 33 = 

27 classes of simultaneous 3-DOF movements (Fig. 2D).

To determine when a subject was in a transient-state, we first computed the normalized 

position of each DOF θi ∈ θi
min, θi

max ϕi ∈ [0, 1]. We applied a 3-point causal moving average 

filter to each ϕi then computed position magnitude Φ = ϕ1, ϕ2, ϕ3 2. Velocity was computed 
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with backward difference v = ΔΦ/Δt, and we deemed threshold |v | > 0.017
25 ms  suitable to 

define the transient-state (highlighted in red in Fig. 2B and throughout). We emphasize 

that transient-states were used for the purpose of results analysis, not model training.

5) Model Comparison and Results Analysis: To obtain our results, we compared 

ED-TCN with the following sequential and frame-wise models:

TCN: Temporal convolutional network [23], M = 64, d = 25
LSTM: Long short-term memory network [19], 64 nodes

LDA: Linear discriminant analysis [2]

k-NN: k-nearest neighbors [39], k = 3
SVM: Support vectors [3], Gaussian radial basis, γ = 2, C = 1
Tree: Decision tree [40], split by Gini index, all leaves pure

ANN: Artificial neural network [41], 3 layers x 5 tanh nodes

ED-TCN, TCN, and LSTM sequential models were trained with cross-entropy loss. 

Compared to LSTM, ED-TCN and TCN models trained about 2 and 18 times faster, 

respectively. LDA, SVM, and ANN were chosen due to their frequent use in EMG 

movement prediction literature. Decision tree and k-NN were chosen and parameterized 

to highlight the effect of over-fitting on stability. We independently tested all sequential 

models using sequences of MAV, TD5, and raw EMG. Of these, the sequential models 

achieved the best results using MAV sequences– a point we will discuss in more detail. For 

our results, we focused on the best-performing model/feature pairings: MAV sequences were 

used for sequential models and TD5 features were used for frame-wise models. All models 

were constrained to be strictly causal such that predictions were based on EMG information 

available at prediction time. Thus, each model’s prediction delay is limited only by model 

properties and window size.

Computations were performed with a Quadro K2200 GPU (NVIDIA, Santa Clara, CA) 

using common Python 3.6.8 modules and the following open-source packages: Keras [42] 

and Temporal Convolutional Networks [43]. Performance distributions were not assumed to 

be Gaussian; therefore, all statistical p-values were computed with Kruskall-Wallis one-way 

variance analysis [44]. Figure error bars and shaded regions represent standard error of the 

mean.

6) Parameterizing Sequential Models: Parameter selection is a major factor 

governing the performance of sequential models. To illustrate, we executed parameter 

sweeps using subject 1’s data from the public Ninapro Database 2 [34] and generated 

performance curves for our models to determine their optimal window sizes, sequence 

lengths, and number of training epochs (Fig. 3). We define an epoch as a single pass through 

the training data while model weights are learned. Increasing the epochs can improve test 

performance up to a point, but could eventually over-fit the training data. The training 

and testing data used to obtain optimal parameters are shown in Table I, and we chose 

parameters to maximize test-data accuracy.
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Importantly, Fig. 3 shows that EMG decoding accuracy and stability is improved by the 

inclusion of sequential information (Fig. 3A–B). Furthermore, we show that the abstract 

temporal feature maps learned by ED-TCN (output at layer D(2)) are heavily influenced by 

the length of feature sequences provided to the network (Fig. 3C). Up to a point, additional 

sequence information allowed sequential models like ED-TCN to better organize class data 

into distinct and separable clusters within an abstract temporal feature-space. Taken together, 

these observations suggest that the EMG decoding problem might be better served by 

treating it as a sequential modeling problem with its accompanying considerations.

C. Performance on Public Databases

We began our investigations by testing model performance on the publicly available Ninapro 

[34] and CapgMyo [35] databases of class-dense, channel-dense EMG data sampled at 

≥1 kHz with standard movement-cue experiment procedures. Ninapro Databases 2 and 

3 (exercises 1 and 2) contains 40 non-amputee and 11 amputee subjects, respectively, 

performing 6 repetitions (reps) of 41 movement classes. EMG signals were recorded with 

12 channels sampled at 2 kHz while hand position data were recorded with a Cyberglove. 

CapgMyo Database C contains 10 non-amputee subjects performing 13 movement classes 

for ten consecutive trials. High-density EMG signals were recorded with 128 channels 

sampled at 1 kHz, though no hand position data were recorded.

For Ninapro Database 2, we used a process similar to our experiments to determine 

transient-state periods. However, instead of joint-angles, we used raw 22-channel 

Cyberglove data, ρ at each time-step, smoothed with a 17-point Hanning window, to quantify 

“position” magnitude ρ 2. A measure of “velocity” was found by calculating the central-

difference v = Δ ρ 2/Δt. We chose |v | > 3.5
50 ms  to represent transient phases.

Model parameters in Table I were determined from parameter sweeps using data from 

Ninapro subject 1 and CapgMyo subject 9. These subjects were selected for parameter 

tuning simply because theirs were the first data we processed. Parameters were chosen to 

maximize test data accuracy. After determining these parameters, we then trained and tested 

the prediction models on every subject. Class labels in these datasets are ordered lowest to 

highest so we randomized the data batch order to prevent sequential models from learning 

the label ordering.

D. 3-DOF Simultaneous Movement Experiment

All 13 non-amputee and 2 amputee subjects participated in this experiment. Each 

subject participated in a 15 min introductory session wherein the 3-DOF movements 

and combinations were explained. The subjects then practiced performing these discrete 

movement classes with consistent suddenly-initiated muscle contractions to avoid making 

inter-class transitions gradually like those used for proportional velocity experiments. Once 

the subject was comfortable performing the movements, the experiment was initiated.

For 6 min, while EMG and hand/wrist positional data were recorded, each subject explored 

3-DOF simultaneous movements. The subjects were instructed that they could perform the 

movements in any preferred order and duration less than 5 s while EMG and position 
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data were recorded. The constraint on duration was to allow the subject to have ample 

opportunity to explore as many movement combinations as desired. As discussed in Section 

II-B1, this minimally constrained exploration process helped to ensure that data sequences 

were formed naturally from each subject’s specific intent, rather than as responses to 

experiment-driven movement cues. A trade-off for allowing this freedom was that subjects 

were not guaranteed to perform all 27 movements nor in a balanced manner, which we will 

address in our results and discussion. To obtain our results (Fig. 5), we used the first 3 min 

of each subject’s EMG and position data to train various sequential (batches randomized) 

and frame-wise prediction models, and those models were tested on the last 3 min of data. 

Model parameters in Table II were determined from parameter sweeps using experiment 

training and testing data from a subject who was excluded from our final results.

E. Adaptive Reinforcement Experiment

We performed two variations of an adaptive reinforcement experiment: (i) A2 and 12 non-

amputee subjects (9 male, 3 female) performed 3-DOF independent movements involving 

only the 7 movement classes shown in Fig. 2D and (ii) 7 non-amputee subjects (6 male, 

1 female) performed 3-DOF simultaneous movements involving all 27 movement class 

combinations. Subjects decided which experiment variation(s) to perform based on their 

preference or experience during the previous experiment. With this experiment, we sought 

to understand how unguided human-machine interaction with the ED-TCN model affected 

performance (e.g. would reinforcement drive a sequential model toward a subject-specific 

optimum?). In clinical settings, an experimenter or clinician might coach a user over time 

to perform consistent muscle activations in order to achieve a certain performance level. We 

wanted to, instead, invert and perhaps automate this approach by studying if reinforcement 

training a sequential model like ED-TCN can improve performance over time by adapting to 

an unguided user’s preferred or evolving muscle activations.

The experiment was sectioned into twenty-six consecutive 18 s trials for a total experiment 

time of 8 min. Beyond their initial 15 min introduction and experience with the first 

experiment, subjects were not provided any guidance on how to improve their classification 

performance. As before, subjects explored movements in any order they desired for the 

experiment duration. However, at the end of each trial, the data obtained from that trial was 

used to reinforce the ED-TCN model with a batch update. Specifically, the ED-TCN model 

was first trained with the data from trial 1 for 40 epochs and trial 1 data was discarded. 

The model was then tested for the next 18 s trial, after which the subjects were able to see 

the model’s classification predictions compared to ground truth labels for new data obtained 

during that trial (Fig. 6A top). The ED-TCN model, with the weights learned as of that 

moment, was then trained with the data from trial 2 for 40 epochs, trial 2 data was discarded, 

and this process repeated for the remaining twenty-four trials. The 18 s trial interval was 

chosen to be long enough to allow subjects time to explore a variety of movements but short 

enough that inter-trial update time was minimal. Theoretically, in a single trial the model 

weights may get trapped in local minima on a noisy contour, but each trial update alters this 

noise profile, freeing the weights to gravitate toward a global and/or evolving minimum.
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III. RESULTS

A. Public Database Results

Model performance results for the class-dense Ninapro data and the channel-dense 

CapgMyo data are shown in Table III and Fig. 4. Of the sequential and frame-wise models, 

ED-TCN was the most accurate and stable model by a significant margin (p < 0.001), 

especially during transient movements (+18.6% over SVM, p < 0.001). In fact, ED-TCN 

metrics during transient phases were higher than the total metrics of nearly all other models. 

The macro F1 scores for ED-TCN and SVM were 0.790 and 0.596, respectively (p < 0.001). 

We tested raw EMG, TD5, and MAV inputs for sequential models. Raw EMG resulted in a 

large performance reduction, more training data, and longer training times for our models. 

MAV slightly outperformed TD5 (statistically insignificant) and required fewer training 

epochs, which is why we selected MAV features for all sequential models. On the CapgMyo 

data, ED-TCN performance was optimized with sequences of length 4 indicating that high 

spatial resolution reduced its reliance on temporal information.

Using test data from all subjects in Ninapro Database 2, we also computed the prediction 

delay required for each model to produce stable and correct inter-class transitions (Fig. 

4). For each transition i occurring in the test data at time ti Δt = 50 ms , we recorded 

the output predictions of each model across the 1 s interval ti − 250 ms, ti + 750 ms . If a 

model produced 8 correct predictions within the interval we recorded the time ts of the 

eighth correct prediction. For a perfectly-timed stable transition, ts would occur at ti + 8 ⋅ Δt. 
Therefore, we subtracted this term to compute the prediction delay time, td = ts − ti − 400 ms. 
Aggregating the delays for all models, ED-TCN yielded an average stable and correct 

transition delay of 4.6 ms, significantly less than other models (p < 0.01 for LSTM, p < 0.001
for all others).

B. 3-DOF Simultaneous Movement Results

Model performance results from this experiment are shown in Fig. 5 and Table IV. Video S1 

shows an extended version of the sequence in Fig. 5B for multiple models animated in the 

vMPL environment. A trade-off of experimenting with subject-determined movements was 

that subjects may not perform all movements and some may be used disproportionately. Out 

of the 27 available movements, subjects explored 18.13 ± 3.50 during the training period and 

18.07 ± 3.45 during the testing period, with 16.47 ± 3.34 classes overlapping both. ED-TCN 

was significantly more accurate than frame-wise models (worst-case p < 0.05), especially 

in transient-states (worst-case p < 0.01). Consistent with our Ninapro results, ED-TCN 

metrics during transient phases were higher than the total metrics of all frame-wise models. 

ED-TCN was significantly more stable (p < 0.001) than frame-wise models. Unlike our 

Ninapro and CapgMyo results, differences among sequential models for this task were not 

significant. To address potential class imbalance issues, we also applied synthetic minority 

over-sampling [45] to artificially balance frame-wise data and weighted cross-entropy 

loss to train sequential models. These pre-processing methods did not significantly affect 

performance metrics for our data. Macro F1 scores for ED-TCN and SVM were 0.436 and 

0.342, respectively. Edit scores were 0.558 and 0.277, respectively (p < 0.001). Finally, we 

Betthauser et al. Page 10

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2023 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



show a comparative analysis (Table IV) of SVM and LDA performance when appended with 

two post-processing filters: confidence rejection [9] and majority voting [2].

C. Adaptive Reinforcement Results

Adaptive reinforcement experiment results are shown in Fig. 6 and Video S2 shows a 

real-time online implementation of the procedure. Given that ED-TCN stability was high 

even from minimal training (Fig. 3D), we report only the evolution of accuracy during 

this experiment. Subjects began this experiment directly after our first, and we observed 

that results from the first experiment (Fig. 5A) were similar those of this experiment 

around trial 7 (Fig. 6C). For all subjects, accuracy increased steadily throughout the 

experiment, dramatically in some cases, and was still increasing at the end of 8 min. 

For example, amputee subject A2 was able to improve his transient-state accuracy by 

38.9% (Fig. 6A). Subjects performing the 7-class sequential movement experiment variation 

(Fig. 6B) achieved an average total accuracy improvement of 11.1% (p < 0.05) and an 

average transient-state improvement of 17.8% (p < 0.001). Subjects performing the 27-class 

simultaneous variation (Fig. 6C) achieved total accuracy improvement of 12.6% and an 

average transient-state improvement of 11.8% (p < 0.05).

IV. DISCUSSION

Prediction stream instability is a major problem in continuous EMG classification, especially 

during inter-class movement transitions, because it produces spastic jittery outputs that 

can hinder the control of prosthetic devices. We demonstrate these effects for various 

prediction models on the vMPL arm (Video S1). Efforts to stabilize the prediction 

stream with post-processing methods like thresholding and output suppression [9] are 

particularly useful in that they do not cause appreciable delays, whereas majority voting 

methods [2] can introduce perceptible delays (Table IV). We focused our examination 

on the inherent stability and responsiveness of prediction models, and demonstrated that 

ED-TCN is an impressive model for EMG-based movement classification and minimizes 

any need for post-processing. Specifically, ED-TCN provides significantly more stable and 

accurate predictions than other sequential and frame-wise models (Table III), achieving 

this performance with an average response delay of only 4.6 ms (Fig. 4), with easily 

visible improvements occurring during transient movements (Fig. 5B). The smoothing 

effect of convolutions helps to stabilize predictions for both TCN models, but ED-TCN’s 

inclusion of temporal pooling and up-sampling layers to connect multiple TCNs gives 

it a significant improvement over LSTM and TCN on large datasets that are dense in 

output classes (Ninapro) or dense in input dimensions (CapgMyo). Absent these conditions, 

we recommend using the leaner TCN model defined in our prior work [23]. Models 

with large architectures like ED-TCN can overfit smaller datasets such as those from our 

experiments [46], possibly explaining TCN’s small testing accuracy improvement in our 

3-DOF experiment (Fig. 5A). Though all three sequential models performed similarly in our 

experiment, with dramatic improvements over the frame-wise models, there are reasons one 

might prefer TCN models over LSTM. For one, TCN models tend to train much faster, with 

previous literature [24], [26] reporting an order of magnitude improvement in training times 

over LSTM. We report that both TCN models trained faster than LSTM (Section II-B5), 
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and Fig. 3D shows that ED-TCN can achieve superior performance after only a few training 

epochs. Furthermore, information learned with TCN models is highly interpretable [24], 

[25] such that, generally speaking, if the input features are intuitive to interpret then the 

information learned from TCN will be as well. We leave it to readers to weigh the balance of 

equities and develop a model preference according to their needs.

We elected to pursue minimally constrained subject-driven approaches to experimentation 

to better capture temporal information from each subject’s volitional intent. In many 

standard experiment set-ups, subjects are reacting to presented movement cues as opposed 

to proactively performing the movements and transitions of their choice. We discussed 

how restricting these variables might inhibit sequential models by teaching them distorted 

temporal relationships (Section II-B1). Such restrictions are understandable because they 

ensure every movement class is equally represented and make the experiment more tractable. 

It would be burdensome to ask human subjects to perform all possible inter-class transition 

combinations (702 for 27 classes), yet these transitions are where performance accuracy is 

at its lowest (Fig. 5A, 6C and Table III). After only 3 min of subject-driven exploration, 

sequential models learned to predict movement transitions stably and accurately compared 

to the frame-wise models (Fig. 5), indicating that they may be better suited for generalizing 

to a large variety of inter-class transition relationships. For high-stability models, transient-

state predictions were less accurate, as expected, but slightly more stable than steady-

states. These differences indicate that more instability occurs during pre-transition muscle 

activation or post-transition recovery than during the actual transition itself. Examples of 

pre- and post-transition instability are evident in Fig. 5B.

The frame-wise models benefited most from the TD5 feature set [1], [2], which is a 

compressed but informative short-term (200 ms) temporal representation of EMG. However, 

sequential models exhibited equivalent or better performance with only MAV sequences 

than with TD5 or raw EMG and required considerably less training. This result suggests 

that the latent temporal relationships within MAV sequences are very informative and, 

importantly, that the information contained within the EMG signal itself has been under-

utilized. We do not imply that MAV is the “best” feature for EMG prediction; we simply 

emphasize that sequential models learned meaningful temporal relationships and achieved 

superior performance from only a single feature type. Of the TD5 features, MAV is least 

affected by sampling rate, which may explain why our experimental results from the 200 

Hz Myo Armband are consistent with results from sampling at 1 kHz (Table III). MAV 

is also a very interpretable feature from biological standpoint since it is linked directly 

to the intensity of the underlying muscle contractions. Because TCN models are intuitive 

to interpret given interpretable inputs [24], [25], analysis of the learned temporal MAV 

relationships (Fig. 3C) may yield important insights about muscle recruitment patterns and 

movement synergies. We note that the parameter values used herein were selected from a 

single subject and do not contend they are the optimal values, only that a diligent effort 

was made to identify a set of parameters from which reasonable inferences could be made 

about our results. Though we also computed results (not shown) optimizing for each subject 

individually, we found that those results were not significantly different. The sequential 

models did not appear to be overly sensitive to minor changes in sequence and window 

parameters.

Betthauser et al. Page 12

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2023 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the adaptive reinforcement experiment, the subjects continued to improve performance 

and incorporate previously unseen classes into model predictions despite receiving no 

additional instructions (Fig. 6 and Video S2). Video S2 also demonstrates the feasibility 

of online prosthesis control using our methods. Amputee subject A2 was able to improve his 

accuracy during transient movements by nearly 40%, though he did have a performance 

drop in trial 24 due to a temporary distraction (Fig. 6A). Whereas the aggregated 

performance trends increased, we also observed a notable oscillation effect (Fig. 6B–

C). This phenomenon may be related to the interplay of the subject adaptation and 

consequent model adaptation, and oscillations might be dampened by reducing the number 

of training epochs per trial. A potential research direction would be to investigate how 

such human-machine interaction affects the learning rates of prosthesis users. We speculate 

that continued interaction would eventually capture many inter-class transitions and unique 

subject habits. Hypothetically, the subject could revisit the reinforcement procedure at his 

leisure for refinement until converging on a subject-specific optimal prediction model.

V. CONCLUSION

We have demonstrated that TCN models incorporate temporal information from EMG 

to achieve highly stable, responsive, and accurate movement prediction when compared 

with other sequential and frame-wise models, especially during movement transitions. 

The frame-wise approach is in some ways an unnatural method of predicting dynamic 

time-varying signals like EMG because our limbs are often in motion, not simply discretely 

jumping between fixed steady-state positions at regular intervals. We want readers of this 

work to come away, not just with a specific prediction model, but with a concept: that 

movement decoding from EMG is better represented as a sequential problem requiring a 

new set of considerations and experiment designs. The models themselves will evolve and 

today’s leading-edge methods will become obsolete, so encouraging researchers to think 

about the problem in a new way is our overarching goal. Addressing EMG decoding as a 

sequential modeling problem will lead to enhancements in the reliability, responsiveness, 

and movement complexity available from prosthesis control systems, pushing us further 

toward the ultimate goal of achieving restorative natural upper-limb function for amputees.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(A) As a user transitions from one steady-state movement pattern to another, EMG 

classification models can exhibit erratic prediction behavior. (B) Frame-wise classification 

of EMG signals, wherein movement intentions are predicted from the most recent feature-

extraction window, or frame, of EMG. Frame-wise models lack a mechanism for factoring 

longer-term temporal information into their predictions. (C) Sequential classification of 

EMG signals, wherein consecutive frames provide additional temporal information to a 

model. (D) With ED-TCN, the convolutional encoder-decoder framework learns latent 

temporal patterns which can improve prediction accuracy and stability.
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Fig. 2. 
(A) Each subject donned a Myo Armband, CyberGlove, and inertial sensors (IMU) for EMG 

and hand/wrist positional recording. The vMPL environment provided a real-time display of 

each subject’s hand/wrist movements. (B) Example sequence of 3-DOF joint angles θ, the 

corresponding automated encoding into ground truth class labels, and the class prediction 

output of ED-TCN. Three error types are evident from this example: leading, lagging, and 

classification errors. The first two are timing related, whereas the latter is unintentional 

movement. Our stability metric penalizes only the last error type, whereas the accuracy 

metric penalizes all three. (C) The movement classes are based on 3 hand and wrist DOFs. 

For each DOF i, we determined a rest position θi
0, maximum angle θi

max, and minimum angle 

θi
min. Each DOF is converted from its continuous joint position θi into a class label (−1, 0, or 

+1). (D) The class labels for each DOF were combined into a ternary encoding representing 

one of 27 possible simultaneous 3-DOF movement classes– the seven shown and their 

combinations.
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Fig. 3. 
Parameter-tuning ED-TCN to determine optimal window size, sequence length, and number 

of training epochs. Final parameters used for Ninapro and CapgMyo public datasets are 

shown in Table I, and parameters used for our experiments are shown in Table II. (A) 

Importantly, sequential models demonstrated that the inclusion of sequence data improved 

accuracy while reducing the model’s dependence on window size, and (B) model stability 

was generally improved with longer sequences and larger windows. (C) Principle component 

projection of the latent temporal class patterns learned by ED-TCN when trained on 

different sequence lengths (18 classes shown). The added temporal data taught ED-TCN 

to better organize classes into distinct and separable clusters. (D) Accuracy, stability, and 

training time as a function of epochs. For this subject, ED-TCN outperformed other models 

after only 5 epochs.
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Fig. 4. 
The prediction delay of each model in producing stable and correct transitions into active 

movement classes were computed for all subjects in Ninapro Database 2. ED-TCN’s average 

prediction delay was 4.6 ms. The area of each model’s “violin” plot is proportionate to 

the number of correct transitions it produced (distribution tails are extrapolated slightly for 

visualization purposes only). Frame-wise model delays were governed predominantly by the 

window size, whereas the temporal information learned by sequential models allowed them 

to predict faster than their window size would otherwise dictate.
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Fig. 5. 
Comparative analysis of ED-TCN with other models from our 3-DOF simultaneous 

movement experiment. Statistical p-values are based on comparing ED-TCN performance 

during steady-state and transient phases of movement with the corresponding like-colored 

aspects of other models. (A) Prediction accuracy and stability for 13 non-amputee subjects. 

Sequential models achieved higher accuracy with sequences of MAV than frame-wise 

models with TD5 features. (B) Example prediction output behaviors of sequential and 

frame-wise models. The sequential models are visibly more stable than frame-wise models, 

smoothly transitioning between classes. Video S1 shows an extended animated version of 

this sequence for multiple models in the vMPL environment. (C) Each model’s prediction 

stability profile for 2 amputee subjects generally matched those for non-amputee subjects.
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Fig. 6. 
The evolution of ED-TCN’s transient-state, steady-state, and total accuracy during our 

reinforcement experiment. (A) Amputee subject A2 performed 3-DOF independent (7 

classes) movements. ED-TCN output is very stable, even early in the training period 

(top), but accuracy continuously improves. A movement class which was not correctly 

predicted early in the experiment (dark purple) was eventually learned by the model. A2 

established ground truth by mirroring movements with his intact limb, yet his timing 

was well-synchronized with model predictions. (B) Subject A2 and 12 non-amputee 

subjects performed 3-DOF independent (7 classes) movements. (C) 7 non-amputee subjects 

performed 3-DOF simultaneous (27 classes) movements. Across subjects, there was a 

consistent and significant upward trend in accuracy during the experiment, especially in 

transient-states. There was also an oscillating effect similar to that of an under-damped 

system, which we suspect is due to our using a full 40 training epochs after each trial. 

If the model was over-trained on the previous 18 s of data, performance may have been 

temporarily reduced due to the “unlearning” of some older information. Most learned 

information was retained after each trial, though the overall learning rate might be improved 

with fewer epochs per trial.
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TABLE I

MODEL PARAMETERS USED FOR PUBLIC DATABASES

Database Model† Features Window Sequence Epochs

Ninapro ED-TCN MAV 150 ms 68 40

Train: reps 1,3,5,6 TCN MAV 200 ms 20 40

Test: reps 2,4 LSTM MAV 100 ms 60 40

Tuned on subject 1 Frame-wise TD5 200 ms 1 –

CapgMyo ED-TCN MAV 100 ms 4 100

Train: first 67% TCN MAV 50 ms 28 100

Test: last 33% LSTM MAV 100 ms 44 100

Tuned on subject 9 Frame-wise TD5 200 ms 1 –

†
A prediction time-step of Δt = 50 ms was used for all models. Batch size: 100.
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TABLE II

MODEL PARAMETERS USED FOR EXPERIMENTS

Type Model† Features Window Sequence Epochs

Train: first 3 min ED-TCN MAV 125 ms 56 15

Test: last 3 min TCN MAV 125 ms 56 15

Tuned on an LSTM MAV 125 ms 52 15

excluded subject Frame-wise TD5 200 ms 1 –

†
A prediction time-step of Δt = 25 ms was used for all models. Batch size: 24.
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TABLE IV

FRAME-WISE POST-PROCESSING RESULTS

Model Total accuracy Transient accuracy Total stability Added delay Reject rate

SVM 0.643 0.527 0.923 – –

SVM+CR (0.7)† 0.665 0.559 0.990 – 0.316

SVM+MV (5)‡ 0.663 0.573 0.978 +100 ms –

LDA 0.643 0.517 0.941 – –

LDA+CR (0.7) 0.589 0.523 0.988 – 0.519

LDA+MV (5) 0.666 0.579 0.978 +100 ms –

ED-TCN 0.721 0.658 0.993 – –

†
CR: confidence rejection, τ > 0.7 [9].

‡
MV: majority vote, L = 5 [2], [11].
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