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Abstract

Multivalent associative proteins with strong complementary interactions play a crucial role in 

phase separation of intracellular liquid condensates. We study the internal dynamics of such 

“bond-network” condensates comprising two complementary proteins via scaling analysis and 

molecular dynamics. We find that when stoichiometry is balanced, relaxation slows down 

dramatically due to a scarcity of alternative binding partners following bond breakage. This 

microscopic slow-down strongly affects the bulk diffusivity, viscosity, and mixing, which provides 

a means to experimentally test this prediction.

Protein-rich liquid condensates, also known as membraneless organelles, have recently 

emerged as an important paradigm for intracellular organization [1–3]. The molecular 

mechanisms involved in condensate phase separation [4] include weak interactions between 

intrinsically disordered regions of proteins, interactions with RNA and DNA, and specific 

protein-to-protein complementary interactions. Here, we focus on the latter mechanism, 

often described in terms of “sticker-and-spacer” models [5], where strongly interacting 

complementary “stickers” are separated by flexible “spacers,” which have little to no 

interactions. In a simple case, only two species are involved with complementary sticker 

domains [Fig. 1(a)], and the condensate liquid consists of a dynamically rearranging 

network of these bound domains [Fig. 1(b)]. This paradigm of a binary mixture of 
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complementary proteins has been observed in membraneless organelles such as the algal 

pyrenoid [6], as well as in artificial systems [7].

Recent studies show that such binary liquids differ in their properties from usual, 

nonbiological liquids: for instance, their valence sensitively controls their phase boundary 

through a “magic number” effect [6,8,9], and they can exhibit long-lived metastable clusters 

prior to macroscopic phase separation [10]. The equilibrium phase transitions of these 

systems, which are to be distinguished from gelation [11] and bond-percolation [12] 

transitions, are well characterized. Little is known, however, about the bulk dynamical 

properties of these liquids. It is expected that these liquids will inherit some properties 

of associative polymers—a class of materials characterized by long chains with sparse 

sticky sites [13]. In these materials, relaxation is slowed down by the attachment-

detachment dynamics of binding sites, resulting in sticky reptation [14]. Indeed, it has 

been experimentally observed that a sparsity of free binding sites can significantly slow the 

dynamics [15]. However, the corresponding role of attachment-detachment dynamics has not 

yet been considered in liquid protein condensates.

We theoretically study the bulk relaxation mechanisms of liquids consisting of a binary 

mixture of multivalent complementary proteins [Figs. 1(a) and 1(b)]. We show that the 

strong specificity of interactions results in a finely tuned response to changes in composition

—a property that cells might exploit to dynamically adapt the mixing properties of 

condensates. We first present a simple kinetic model that predicts a strong dependence 

of the relaxation time of bonds on composition of the liquid: at equal stoichiometry of 

complementary domains, we anticipate a sharp peak in the relaxation time. We then employ 

molecular dynamics (MD) simulations to confirm these predictions and show their striking 

consequences for bulk diffusivity and viscosity. Finally, we demonstrate that this effect 

strongly affects the mixing dynamics of droplets of different compositions, and propose 

experiments to test our predictions.

We consider the dense phase of multivalent proteins of two different types, denoted A and B
[Fig. 1(a)], where each domain can bind to one and only one domain of the complementary 

type. The free energy favoring formation of such a bond is ΔF , with a corresponding 

unbinding Arrhenius factor ϵ = exp − ΔF  (we set kBT = 1 throughout). We consider the 

strong-binding regime, i.e., ϵ ≪ 1, in which almost all possible bonds are formed [Fig. 1(b)]. 

However, over sufficiently long times, bonds still break and rearrange, the system relaxes, 

and the system can flow as a liquid. We investigate here the dependence of this relaxation 

time on the Arrhenius factor ϵ and on the composition of the liquid.

In the strong-binding regime, relaxation is controlled by individual bond breaking [Fig. 

1(c)]. This process is slow and thermally activated, occurring at a dissociation rate 

kd = ϵ/τ0 where τ0 is a microscopic relaxation time, and these events are rapidly followed 

by rebinding. However, the two newly unbound complementary domains are part of the 

network, and thus are not free: they remain confined and diffuse only in a small volume 

vcage around their initial position [Fig. 1(d)]. This caging volume is determined by the length 

and flexibility of linkers. Subsequent to a bond breaking, there is a high probability the 

two former partners will rebind to each other, thus negating the effect of the bond break on 
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relaxation. Only if either of the two finds a new, unbound partner within the cage volume 

[Fig. 1(e)] does the initial break contribute to relaxation and liquidity.

The effective relaxation time can be approximated as τrel = 1/ pkd , where p is the 

probability that either domain finds a new partner instead of rebinding the former, i.e., 

p ≈ n/ 1 + n , where n is the number of free domains in vcage. Assuming that the local density 

of free domains in vcage is on average the same as in the whole system, we can then express 

n = vcagecfree in terms of the concentration cfree = cA + cB of unbound domains in the system, 

where we denote by cA and cB the respective concentration of free domains of each type. We 

define the stoichiometry difference δ = cA − cB as the difference between these concentrations 

(which depends only on the overall composition, not on the fraction bound), and cAB as the 

concentration of bound domain pairs. We assume that the linkers are sufficiently flexible to 

consider the binding state of each domain of a protein as independent of the others, and thus 

treat the binding-unbinding process as a well-mixed solution. The dissociation equilibrium 

reads Kd = cAcB/cAB, with Kd the dissociation constant. We thus have cfree = δ2 + 4KdcAB. The 

concentration of free domains thus exhibits a global minimum at δ = 0 [Fig. 1(f)].

We relate the dissociation constant to the Arrhenius factor for unbinding, writing Kd = ϵ/v0

where v0 is a molecular volume. Indeed, Kd = kd/ka where the dissociation rate kd = ϵ/τ0 is 

proportional to the Arrhenius factor, assuming that the association rate ka is independent of 

the binding strength. We can thus express the relaxation time as

τrel = τ0

ϵ 1 + 1
vcage  δ2 + 4ϵcAB/v0

. (1)

When n ≪ 1, i.e., for strong binding when there are few available partners within reach, 

the second term in Eq. (1) dominates the relaxation time. In particular, τrel exhibits a 

sharp maximum at δ = 0, whose magnitude scales as τrel ∝ ϵ−3/2. This scaling reflects the 

probability of coincident dissociation events: neither of the two domain types is in excess 

with respect to the other, and so rebinding to a new partner is conditioned on finding another 

thermally activated unbound domain within vcage. The concentrations of such unbound 

domains are cA = cB = KdcAB ∝ ϵ1/2. In contrast, for δ ≫ 1/vcage such that n ≫ 1, binding to 

a new partner is fast and essentially independent of δ, so that τrel ∝ ϵ−1. This scaling behavior 

is our central prediction, and is illustrated in Fig. 1(g).

We employ MD simulations to test our theoretical predictions for the relaxation time 

[Eq. (1)]. Specifically, we model the system schematized in Figs. 1(a) and 1(b) using a 

bead-spring representation, where only the binding domains are simulated explicitly [Fig. 

2(a)]. Binding between complementary domains is modeled by a soft attractive potential 

minimized when the beads fully overlap, while strong repulsion between beads of the same 

type prevents the formation of multiple bonds involving the same domain (see Methods). 

The mean linker length between domains sets the unit of length, while the unit of time is 

chosen to be the average time it takes for a free domain to diffuse a unit length. We simulate 

only the dense phase of this phase-separating system [Fig. 2(b)]. The control parameters 
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are the binding free energy ΔF  and the stoichiometric difference δ = cA − cB, while the total 

concentration of domains ctot is held fixed. Simulations are performed using LAMMPS [16,17] 

(see Methods).

We first study the relaxation of individual bonds. To quantify this relaxation, we compute 

the bond adjacency matrix Aij t , where Aij t = 1 if at time t the distance between the 

center of domains i and j is within the attractive interaction range rc, and 0 otherwise. We 

first obtain the average autocorrelation function of this matrix, C Δt = ∑i, j Aij t Aij t + Δt t, 

where the sum runs over all pairs of complementary domains, and then extract the bond 

relaxation time τ by integration of the normalized autocorrelation, τ = ∫0
∞ C Δt dΔt/C 0 . The 

resulting relaxation time τ is plotted in Fig. 2(c). These values are in good agreement with 

the theoretical prediction of Eq. (1), and in particular exhibit a clear maximum at equal 

stoichiometry δ = 0 . The magnitude and sharpness of the peak increases with the binding 

free energy ΔF . Furthermore, we confirm in Fig. 2(d) that for strong enough binding τ scales 

as ϵ−3/2 = exp 3ΔF /2  at equal stoichiometry, and as ϵ−1 = exp ΔF  at unequal stoichiometry. 

Thus, the relaxation time increases much faster with ΔF  at equal stoichiometry. For longer 

chains, the relaxation peak is strengthened as network caging is more efficient, while the 

peak disappears for monomers (see Supplemental Material [18]).

How does this sizable difference in relaxation times influence macroscopic condensed-phase 

properties such as diffusivity and viscosity? To answer these questions, we first monitor 

the mean squared displacement (MSD) of individual binding domains of the minority 

species as a function of lag time [Fig. 2(e)]. Several distinct regimes are apparent in the 

MSD: short times correspond to bond-level vibrations. At intermediate times, the plateau 

reveals caging of binding sites due to the well-bonded character of the network. Finally, the 

longtime scaling MSD ∝ Δt is diffusive, confirming that the system behaves as a liquid. We 

extract the longtime diffusion coefficient from these simulations, and find that its variations 

directly reflect those of the bond relaxation time over several orders of magnitude, with 

approximately D ∝ 1/τ [Fig. 2(g)]. Indeed, the product Dτ exhibits much smaller variations 

than either D or τ (see Supplemental Material [18]). Thus, slow bond relaxation within 

the connected network dominates the diffusive properties of the system. Note that at large 

stoichiometry differences δ > 0.2ctot, transparent symbols in Fig. 2(g)], the large number 

of unbound sites results in a loose network with possible disconnected clusters, and these 

scaling laws do not apply.

Turning to the viscosity η, which we measure using the Green-Kubo relation between 

viscosity and equilibrium stress fluctuations [19], we observe similarly that it reflects 

the variations of the bond relaxation time, with approximately η ∝ τ [Fig. 2(h)]. The 

macroscopic transport properties of this binary liquid thus directly reflect the highly 

stoichiometry-dependent molecular relaxation mechanism (Fig. 1): in the strong-binding 

regime, the viscosity of the liquid noticeably increases near equal stoichiometry.

Our predictions for the dependence of bulk transport on the stoichiometry of the associative 

protein condensate have experimentally testable consequences. For instance, by preparing 

a homogeneous droplet and tagging all domains on one side by fluorescently bleaching 
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them, one could measure the mixing dynamics as a function of composition. We simulate 

the relaxation of the composition profile for this case by putting in contact two simulation 

boxes [Figs. 3(a) and 3(b)]. We monitor the relaxation of the tagged composition difference 

between the two halves of the simulation box [Fig. 3(c)] and extract the relaxation time by 

exponentially fitting the decay curve [Fig. 3(d)]. Consistent with our equilibrium analysis, 

we find that mixing is substantially faster when one species is in excess [Fig. 3(d), squares] 

than when stoichiometry is balanced [Fig. 3(d), circles].

In this Letter, we investigated the dynamics of proteinrich condensates characterized by 

strong, specific interactions between complementary binding sites. Our theoretical analysis 

of the molecular-level relaxation mechanisms in these liquids suggests a strong composition 

dependence: near equal stoichiometry of complementary binding sites, the dynamics of the 

liquid dramatically slows down. This slowing is due to the lack of free binding sites at 

equal composition, which leads to a predominance of rebinding following bond breaks. 

We confirmed this mechanism through molecular dynamics simulations and showed that it 

controls the equilibrium diffusivity and viscosity of the liquid network.

The molecular-level connectivity relaxation of protein liquids through binding-unbinding 

events is generally not directly accessible in experiments. By contrast, our predictions 

for macroscopic transport quantities are readily testable, for instance using engineered 

protein condensates such as the SUMO-SIM [7] and SH3-PRM [20] systems. The reported 

dissociation constant of SUMO-SIM domains is Kd ≈ 10μM [7], which for a binding domain 

of diameter 1 nm corresponds to a binding energy of 13kBT . Our simulations thus suggest 

a sizable tenfold decrease in diffusivity for such systems near equal stoichiometry. Our 

predictions would also hold in other liquids characterized by strong specific interactions, 

such as DNA nanoparticles [21]. In such systems, the effect of composition on diffusivity 

could be observed using fluorescence recovery after photobleaching [22] as in Fig. 3 or 

nanoparticle tracking [23], while our predictions for viscosity could be tested by passive or 

active microrheology [24], with predicted mixing dynamics also testable by monitoring the 

shape relaxation of merging droplets [25].

While the dynamics of protein condensates can be regulated by many factors, such as 

density [25,26], salt concentration, and the presence of RNA [27], our work highlights the 

possibility that cells can also fine-tune the mechanical and dynamical properties of their 

membraneless organelles through small changes in composition. Importantly, while in this 

study we have focused on the dense phase and used component stoichiometry as a control 

variable, in multicomponent phase-separated systems there is a subtle interplay between 

overall composition and dense-phase composition [7,28]. Beyond controlling the timescale 

of internal mixing and merging of droplets, stoichiometry-dependent slowing could also 

be involved in the recently characterized aging of viscosity [29] and could impact the 

exchange rates of “clients”—constituents of condensates that do not contribute directly to 

phase separation [3]. Overall, we have shown that high specificity liquids have unusual 

physical properties [30] and provide novel avenues that cells could use to regulate their 

phaseseparated bodies.
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Methods.—

Molecular dynamics simulations are performed using the March 2020 version of LAMMPS 

[16]. Proteins of types A and B are represented by bead-spring multimers with, respectively, 

six and four binding domains (chosen with different valency to avoid magic-number 

effects associated with the formation of stable dimers [6,8,9]). Simulations of Langevin 

dynamics are done using the standard LAMMPS combination of commands “fix_nve” and 

“fix_langevin,” with energy normalized so that kBT = 1, mass of domain 1, and a damping 

parameter 0.5. Links between domains in a given protein are modeled as finite extensible 

nonlinear elastic bonds, with interaction potential E r = − 0.5KR0
2log 1 − r/R0

2  as a 

function of bond elongation r, with coefficients K = 3 and R0 = 3. Interaction between 

domains of the same type are given by a repulsive truncated Lennard-Jones potential, 

E r = 4ε σ/r 12 − σ/r 6  with ε = 1,  σ = 0.6, and cutoff at R = 21/6σ. The linker potential 

and the repulsion between neighboring domains lead to a mean linker length one which 

sets the unit of length. Binding between complementary domains occurs via a soft potential, 

E r = A 1 + cos πr/rc  for r < rc, with cutoff rc = 0.3. Energy is minimized when domains 

fully overlap, and Lennard-Jones repulsive interaction between domains of the same type 

ensured that binding is one-to-one. The interaction strength A is related to the binding free 

energy by ΔF = ln ∫0
rc 4πr2e−E r dr/ 4πrc

3/3 . We set the average time it takes for an unbound 

domain to diffuse a unit length to be the unit of time, τ0 = 1. The simulation time step is 

δt = 0.005. We simulate only the dense phase, with periodic boundary conditions (box size: 

103 for Fig. 2, 30 × 10 × 10 for Fig. 3) and density typical of a demixed droplet with free 

surface. The total concentration ctot = 1.73 of domains is kept fixed while the stoichiometry δ
is varied.

To ensure equilibration of the system, the attraction strength A is annealed from zero to its 

final value over one bond relaxation time τ. The system then evolves for another 4τ, prior to 

measurements performed over 10τ. In Fig. 2, measurements of τ,  MSD, and D have N = 10
repeats; measurements of η have N = 100 repeats. Statistical error bars are smaller than the 

symbol size. In Fig. 3, the system is initially annealed with walls separating the two halves 

of the system, with different labels for domains in either side. At t = 0, the walls are removed 

and mixing starts.
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FIG. 1. 
Stoichiometry controls the bond relaxation time of multivalent associative proteins. (a) 

Sketch of associative multivalent proteins, with complementary domains separated by 

flexible linkers. (b) Strong yet reversible binding between proteins leads them to condense 

into a network with most possible bonds formed. (c)–(e) Schematic of the bond relaxation 

mechanism. When two initially bound domains (c) unbind, the two are caged in a small 

volume vcage (d). Two events can then occur: the initially bound domains can rebind, or, 

if a free domain is within reach, a new bond may form (e), which is the system’s basic 

relaxation mechanism. (f) Concentration of unbound domains cfree of both types as a function 

of stoichiometry difference. (g) Relaxation time [Eq. (1)] corresponding to the process of 
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unbinding and then rebinding with a new partner (c)–(e), as a function of stoichiometry 

difference. Here, ϵ = e−ΔF .
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FIG. 2. 
MD simulations reveal the importance of stoichiometry to the dynamical properties of 

the condensate. (a) MD model for the multivalent associative proteins. Colored spheres 

represent A and B domains. (b) Representative snapshot of the dense, network-forming 

liquid condensate. (c) Bond relaxation time (see text) as a function of stoichiometry for 

different binding strengths. Symbols indicate MD simulations; solid curves indicate theory 

[Eq. (1)] with cAB estimated assuming full binding of the minority domains and with fitted 

values vcage = 11.4,  v0 = 0.4, and τ0 = 0.37. (d) Bond relaxation time τrel as a function of binding 

strength is consistent with predicted scaling for both equal and unequal stoichiometries [Eq. 

(1), Fig. 1(g)]. (e) Mean squared displacement (MSD) of individual domains as a function 

of time reveals diffusive scaling (dashed line) at long times (here δ = 0). (f) Diffusion 

coefficient of the minority species as a function of binding strength at equal and unequal 

stoichiometry. (g) Longtime diffusion coefficient plotted against bond relaxation time, for all 

values of δ and ΔF . The dotted black line indicates D ∝ τrel
−1. Transparent circles correspond 

to systems where one component is in large excess, δ > 0.2ctot. (h) Viscosity, obtained using 

the Green-Kubo relation, as a function of binding strength, reflects the scaling of the bond 

relaxation time (d).
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FIG. 3. 
Composition controls mixing rate near equal stoichiometry. (a) Snapshot of an MD 

simulation with initially tagged particles on the left side of the box. (b) Normalized 

concentration profiles for tagged particles along the long axis at different times, for equal 

stoichiometry δ = 0, showing slow relaxation towards the homogeneous state. (c) Relaxation 

of the tagged concentration difference between the two half-boxes, for different binding free 

energies. (d) Equilibration time as a function of binding strength. The unbalanced case has 

δ = 0.14.

Ronceray et al. Page 11

Phys Rev Lett. Author manuscript; available in PMC 2023 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Methods.—
	References
	FIG. 1.
	FIG. 2.
	FIG. 3.

