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Vanquishing the computational 
cost of passive gamma emission 
tomography simulations leveraging 
physics‑aware reduced order 
modeling
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Giovanni Mercurio 1, Stefan Nonneman 1 & Andrea Favalli 1,4*

Passive Gamma Emission Tomography (PGET) has been developed by the International Atomic 
Energy Agency to directly image the spatial distribution of individual fuel pins in a spent nuclear fuel 
assembly and determine potential diversion. The analysis and interpretation of PGET measurements 
rely on the availability of comprehensive datasets. Experimental data are expensive and limited, so 
Monte Carlo simulations are used to augment them. However, Monte Carlo simulations have a high 
computational cost to simulate the 360 angular views of the tomography. Similar challenges pervade 
numerical science. With the aim to create a large dataset of PGET simulated scenarios, we addressed 
the computational cost of Monte Carlo simulations by developing a physics-aware reduced order 
modeling approach. This approach combines a small subset of the 360 angular views (limited views 
approach) with a computationally inexpensive proxy solution (real-time forward model) that brings 
the essence of the physics to obtain a real-time high-fidelity solution at all angular views but at a 
fraction of the computational cost. The method’s ability to reconstruct 360 views with accuracy from 
a limited set of angular views is demonstrated by testing its performance for different types of reactor 
fuel assemblies.

Passive Gamma Emission Tomography (PGET) is a measurement technique developed for spent nuclear fuel 
verification to help meet nuclear non-proliferation and safeguards requirements. It is part of the armory of tech-
nical measures put in place by the International Atomic Agency (IAEA), in the framework of the Treaty on the 
Non-Proliferation of Nuclear Weapons (NPT), to ensure that each Member State complies with the requirements 
of spent nuclear fuel stewardship and accountancy. The PGET system is designed to perform partial defect and 
bias defect verification of a spent nuclear fuel assembly while it is shielded underwater prior to being moved to 
long term storage or into a geological repository. The IAEA approved PGET in 2017 for inspections1–6.

The PGET detects the passive gamma-ray emissions from the assembly arising from the build-up of fission 
products generated during the use in the reactor. The most important gamma-ray signatures come from the fis-
sion products 137Cs , 134Cs , 154Eu , 106Ru , and 144Ce7. They are important because they confer information about 
the initial enrichment, burnup and cooling time of the assembly while being practical to measure. Only a few 
fission products are produced in sufficient quantity, and have intense yet long-lived and penetrating gamma-ray 
emissions to be of general interest for nondestructive assay applications.

The PGET design consists of two highly collimated linear arrays comprising up to 91 cadmium-zinc-telluride 
(CdZnTe) gamma detectors. The detector pitch is 4 mm. Each detector is behind a tungsten collimator 15 mm 
wide, 100 mm thick, and 5 mm high in front of the detector, increasing to 70 mm at the exit. The two detector 
heads are on a rotating disk on opposite sides with a 2 mm offset. This 2 mm stagger is devoted to obtaining 
182 data collections, referred to as counts, per each view. The technical details of the PGET detector system are 
reported in3, 8, 9.
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The two detector arrays rotate continuously around the spent fuel assembly. The number of events are 
integrated both over energy and rotation windows. Typical values for the energy windows are: < 400 keV, 
400–600 keV, 600–700 keV, and 700–1200 keV, while rotations are integrated over each of the 360 degrees. The 
end product of a PGET acquisition sequence is a sinogram for each energy window, a matrix characterized by 
a number of rows equal to the number of detectors and a number of columns equal to the number of angular 
views, 360 in a standard acquisition. An accurate sinogram is needed as the input to tomographic reconstruc-
tion algorithms aimed at reconstructing spent fuel axial cross-sections in order to detect cases of anomalies or 
diversion, even to the single rod level (so-called bias defect).

It is worth mentioning that compared with medical and industrial tomography systems, PGET involves 
peculiar challenges due to the wide range of gamma activities that characterize the spent nuclear fuel and the 
high gamma attenuation of the nuclear materials. These parameters are outside the control of the experimenter 
and are challenging in the case of detecting anomalies in the center of the assemblies10.

Development and evaluation studies of algorithms for the analysis and interpretation of PGET measurements, 
for example, based on artificial intelligence6, 11, rely on the availability of extensive and comprehensive datasets 
of experimental and/or simulated data. Experimental data are extremely limited in availability and breadth of 
potential diversion scenarios, and are also expensive to generate. Realistic simulations of spent nuclear fuel 
measurements are therefore essential in evaluating the performance of the algorithms behind the interpretation 
of PGET measurements, especially in robustly identifying potential diversion situations.

Monte Carlo simulations, for example using the Monte Carlo N-Particle (MCNP) code12, allow the construc-
tion of a realistic and extended dataset of simulated cases and related sinograms; however, the computational cost 
is high. High-fidelity simulations, in fact, require the treatment of the full physics radiation transport in a detailed 
geometry of the PGET system. It is worth to highlight that the detection efficiency of the collimator-detector 
system is exceptionally low. Miller et al. and Wittman et al. pointed out that a high-fidelity MCNP simulation of 
the PGET measurement of a fuel assembly, the basic 360 angular views of a sinogram, take about 6–7 days in a 
cluster composed of 128 nodes and 8192 cores4, 13, 14.

Our objective is to create an extensive library of PGET scenarios. According to14, thousands of simulated 
scenarios are needed. To produce simulated cases, we addressed the issue of the high computational cost by devel-
oping a physics-aware reduced-order modeling approach. In this approach we combine (1) a limited number of 
the 360 angular views (limited views tomography) and (2) a real time analytically-built approximated sinogram 
(based on the Lambert-Beer law) at all the 360 views, that brings the essence of the physics. The computational 
cost is cut by only simulating a sparse subset of angular views. The computational benefit is proportional to 
the number of skipped views (e.g., simulating 60 views instead of 360 reduces the cost to about one-sixth). The 
Physics-Aware Reduced Order Model approach then enables the reconstruction of all the angular views. This is 
achieved using Proper Orthogonal Decomposition (POD)15–18, a subset of the techniques available in Reduced 
Order Modeling numerical methods, which identifies the dominant patterns in the data by applying Singular 
Value Decomposition (SVD) to the matrix of the limited views data. We named our method Physics-Aware 
Proper Orthogonal Decomposition (PA-POD).

The method’s performance is tested and measured against the data released by IAEA under the PGET Tomo-
graphic and Analysis Challenge (2019)19, 20. We used the IAEA field dataset as surrogate of realistic simulations. 
The dataset is used as the ground truth to which apply our PA-POD method. We sample limited set of angular 
views, and we reconstruct the sinogram at each angular view via PA-POD. The goodness of the method is 
obtained by comparison between ground truth and the reconstruction. Among the collection of IAEA data, three 
cases are of particular interest because they refer to field scenarios. They are named competition three, four, and 
five, and related to a VVER (water-water energetic reactor), a PWR (Pressurized Water Reactor), and a BWR 
(Boiling Water Reactor) fuel assembly, respectively. In the Section “Results” we report the results of the PA-POD 
method applied to the IAEA PWR assembly case, as PWR nuclear plants are the large majority of nuclear plants in 
the world. The result of the VVER and BWR IAEA fuel assemblies are provided in the Supplement Material. All 
the results presented refer to the 600–700 keV window: it contains the 137Cs gamma emission line of 661.7 keV, 
a primary gamma emission of spent nuclear fuel with a relatively long half-life of 30 years7.

The paper is organized as follows. The first Section, “Our approach” explains our PA-POD method PA-POD 
and its foundations; the second Section, “Results: the PWR case” reports the results of the method applied to 
the PWR case. The third Section, “Discussion” compares the method with other approaches and discusses the 
enhancement to the PWR challenge data. The fourth Section, “Methods” reports details of the implementation 
of our PA-POD approach. Supplementary material reports the results for the BWR and VVER cases.

Our approach
We consider the sinogram matrix S , our ground truth, as a discrete representation of an unknown continuous 
solution s(y, θ) , where y represents the spatial coordinate of the detector and θ is the angular coordinate. POD 
approximates the solution as a linear combination of dominant patterns, or modes, ui(y) estimated using only a 
reduced set of angular views. The approximated solution is:

with k the number of selected modes. All the possible linear combination of the modes {ui(y)} , with 
i = 0, . . . , k − 1 , construct the so-called POD solution space (or POD space), where k is its dimensionality. In 
the following steps, we fix the notation and summarize our PA-POD approach. 

(1)s̃(y, θ) =

k−1
∑

i=0

ui(y) ci(θ),
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1.	 Database Creation Take the set of Ns simulated/measured limited angular views at the angular coordinates 
θn and construct the set of pairs {s(y, θn), θn} , with n = 0, . . . ,Ns − 1 . They are stored in a database matrix 
ŜN×Ns , where N is the number of detectors.

2.	 POD Solution Space Construction Apply Singular Value Decomposition to the database matrix: Ŝ = U� V
∗ . 

Meaning decompose the database matrix into two unitary matrices U and V and a diagonal matrix � . Here 
∗ denotes the complex conjugate transpose. The diagonal elements δj of � , or singular values, are non-neg-
ative and ordered from the largest to the smallest. They are usually normalized in the form σj =

δj
∑N−1

l=0 δl
 . We 

define information variance relative to the j-th singular value as the sum of all the first σj . It is a measure of 
how much of the total data variability is captured by the first j modes18, 21. The i-th column of U stores the 
mode ui(y) . To construct a suitable POD solution space we balance between the number of modes and the 
information variance. This reduces the dimensionality of the problem and avoids selecting higher modes21 
which are generally associated with noise rather than information.

3.	 Coefficients Estimation We use U∗
k×N , the conjugate transpose of the first k columns of the modes matrix 

U , to project into the POD space RN×360 , a computationally inexpensive approximation of the full sinogram 
S . We refer to this approximation as the Real-Time Approximate Forward Model, shortened as Real-Time 
Model. In the PGET case it consists in a Lambert exponential attenuation model applied to a voxelization of 
the fuel assembly geometry. It simplifies the gamma photon transport and enables a real time approximation 
at any possible PGET angular view. This model was initially proposed by9, details on our own implementation 
are described in Section “Methods”. As a result we obtain the estimation of the set of coefficients at the 360 
views, {ci(θm)} in Eq. (1), with i = 0, . . . , k − 1 , and m = 0, . . . , 359 . In matrix form: C̃k×360 = U

∗
k,N RN×360 . 

The coefficients C̃ are row wise scaled to match Ŝ values.
4.	 Solution Evaluation The final approximated sinogram is represented by Eq. (1), that can be written in matrix 

form: S̃ = U C̃.

We define and report the error on the reconstructed image rather than on the sinogram because in the PGET 
analysis the sinogram quality is judged by the quality of its reconstruction. As a metric we choose to quantify 
the error matrix e of the filtered back projection (FBP, mathematically represented with the operator F (·) ) 
applied to the ground truth, to the Real-Time Approximated Forward Model, and to our PA-POD estimation. 
Specifically, we used the ramp-filtered version of FBP22, 23. In explicit terms, we have the following pixel wise 
error map definitions:

We apply a mask (matrix) to select the F (S) values that are greater than 15% of the maximum. The mask covers 
the assembly cross section and its premises, this area is addressed as �tot.

Furthermore, we use the cumulative error distribution as an integral error measure of maps eReal−Time Model 
and ePA−POD . Given an error threshold ǫth , we count the number of pixels with a smaller or equal error, we label 
it with �|ǫth . We define the pixel fraction as the ratio between this area and �tot:

the greater its value, the better the performance. The metric we use in this work does not require any arbitrary 
filtering as others of the commonly used metrics in literature (see, for example, the Structural Similarity Index24).

Results: PWR case
The following results report the application of our PA-POD approach, starting from a sparse sampling of the 360 
angular views of the PWR assembly sinogram included in the IAEA competition dataset. Specifically, it consists of 
a 10× 10 pins assembly where a 3 × 3 block of pins has been removed; thus it is also a case of a diversion scenario. 
The Real-Time Model relies on the investigation domain discretisation, see Section “Methods” for the details, 
the reported results are computed with the following mesh sizes: �z = 10 mm, �x = �y = 0.5 mm, being x, y, z 
the three coordinate axes of the investigation domain. Both the ground truth sinogram and the Real-Time one 
are normalized between zero and one.

The flowchart in Fig. 1 summarises our method and presents an overview of the results of the PWR case. 
In particular, we report the ground truth sinogram S , the real-time approximated sinogram R , the first three 
modes u0, u1, u2 and the PA-POD approximate sinogram S̃ . In the real-time approximated forward model, we 
assume the intensity of pins of the PWR assembly is flat where the pins are located, and zero in the 3 by 3 block 
in the lower left center where the pins are removed. The PA-POD sinogram S̃ is constructed randomly sampling 
60 views for the database matrix, and the first 60 modes are selected to construct the POD space. The orange 
views highlighted in the top left corner have the objective of proving a visualisation of the database matrix, the 
rotation angles are just examples.

Figure 2 represents the error and quantifies it. In Fig. 2a the ground truth, while the error is spatially visual-
ized in the maps Fig. 2b,c. To avoid any procedural biasing effect, we repeat the views sampling 100 times, and 
at each pixel we plot the median value for the error. Figure 2c shows that PA-POD can correct most of the high 
error pixels in between pins and around the assembly. The PA-POD relative error map clearly indicates that the 
approach reproduces the actual data within a relative error of the order of 10%.

eReal−Time Model =

∣
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Figure 2d,e complete the picture plotting the error cumulative distribution, that we called pixel fraction to 
emphasize its geometrical meaning, see Eq.  2. Figure 2d starts with a minimal number of pixels having the same 
value as the ground truth due to the normalization of the two sinograms. As soon as we consider larger errors, the 
area that PA-POD can describe with a specific accuracy increases with a far steeper gradient than the Real-Time 
Model. Figure 2b, shows the results with a finer-graded detail. We focus on the 10% relative error and observe 
that PA-POD covers 58% of the total area, while the Real-Time Model describes 29% with the same accuracy. 
These results show that it is possible to approximately double the accuracy of the real-time model using 16% of 
the total number of views.

The convergence of the PA-POD method is studied in further detail in Fig. 3a. With k = Ns , we vary Ns from 
30 to 120, with a spacing of 10 units. For each value of Ns we select 100 random uniform sets of views, evaluate 
the pixel fraction at 10% and report the mean and the standard deviation for each distribution. PA-POD expresses 
its best performance where the sample is very sparse, in the range 30–60 samples. From 80 samples onwards the 
convergence reaches a plateau, this behavior is due to the non-interpolatory nature of the coefficients, see Sec-
tion “Discussion” for details. Furthermore we notice that the standard deviation is smaller than 0.02 expressed 
in pixel fraction at 10%, this implies that the performance is consistent with respect the views choice. In Fig. 3b 
we present a closer view of the pixel fraction distribution with respect the views choice. We consider the pixel 
fraction at 10% error and we evaluate it for 1000 uniformly random sets of sixty views, with Ns = k = 60 . The 
mean is 0.539 and the standard deviation is 0.019 expressed in pixel fraction. This confirms the method is robust 
with respect the views selection. In both Fig. 3a,b we see that the mean values for the pixel fraction at the 10% 
error are slightly smaller compared to the values in Fig. 2, 0.539, compared to 0.57. Evaluating the error pixel by 

Figure 1.   The figure reports the major steps in our PA-POD method. On top left we represent the actual 
sinogram for the PWR assembly from the IAEA competition (our ground truth), as high fidelity data, named S 
in our formulation. With the orange color we highlight the subset of limited views that construct the database 
matrix. We present the POD solution space and plot the first three modes u0, u1, u2 for the case of Ns = k = 60 
randomly chosen views. On bottom left, the sinogram R , on the same pin configuration, as obtained by the 
Real-Time Approximate Forward Model. At the bottom right the PA-POD formulation and resulting sinogram S̃
.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:15034  | https://doi.org/10.1038/s41598-023-41220-3

www.nature.com/scientificreports/

pixel, repeating and collecting the median, as in Fig. 2, has a minimal regularization effect on the error metric, 
without any consequence for our overall conclusions.

Figure 4 plots the singular values for the PWR ground truth sinogram Fig. 4a and the corresponding infor-
mation variance Fig. 4b. Figure 4b highlights that a reduced set of modes captures the majority of the informa-
tion variance. In particular 8, 27, and 45 modes capture 80%, 90% and 95% of the total information variance 
respectively. This result confirms the underlying assumption of our work: a sinogram, experimentally measured 
or numerically computed, is described by a limited set of dominant patterns, that carefully combined together 
can provide a complete solution with a sparse set of angular views.

In addition, we applied our PA-POD approach to the BWR and VVER IAEA data (see Section “Methods”) 
and the results are reported in the supplementary material. Error maps and error distributions confirm that 
results are in the same range as the PWR.

Discussion
Our approach was in part inspired by a particular flavor of Proper Orthogonal Decomposition that uses inter-
polation to estimate the coefficients, namely POD with Interpolation (PODI). In this domain of interest, the 
research effort is devoted to finding the most accurate interpolator for each applicable case15–18. PODI is par-
ticularly appealing because it is agnostic of the underlying physics of the phenomenon, it has no notion of the 

Figure 2.   Here we represent the ground truth. (a) together with the error that characterizes the real time model 
(b) and our PA-POD approximation (c). In the PA-POD case we randomly sample sixty views of the spent fuel, 
we repeat the sample one hundred times, and for each pixel, we collect the median of the sampled data. (d) The 
improvement from the Real Time Model to PA-POD is quantified by the area between the blue and orange lines. 
(d) More precisely, considering a 10% error, PA-POD describes 57% of the total area, while the Real Time Model 
describes 29% of the area.
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Figure 3.   (a) With k = Ns , we vary Ns from 30 to 120, with a spacing of 10 units. For each value of Ns we select 
100 random uniform sets of views, evaluate the pixel fraction at 10% and report the mean and the standard 
deviation for each distribution. The method delivers its best performance between 60 and 80 samples. In (b) a 
closer view of the pixel fraction distribution with respect the sample choice. With Ns = k = 60 we pick 1000 
random uniform sets of views, evaluate the 10% pixel fraction for each set and plot the distribution. We observe 
that the mean is 0.539 and the standard deviation is 0.019, both the measures are expressed in terms of pixel 
fraction.

Figure 4.   (a) Logarithmic plot of the singular values spectrum for the IAEA PWR fuel assembly sinogram, and 
(b) the related information variance. We highlight that it takes respectively 8, 27, and 45 modes to capture 80%, 
90% and 95% of the total information variance.
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mathematical method describing the prototype, in Reduced Order Modeling literature these methods are called 
non-intrusive18. In this section we will briefly summarize the steps that define the method, we will show its 
limitations in the PGET case, and how we addressed them while developing PA-POD.

In PODI the interpolatory coefficients are estimated by projecting the database matrix onto the POD space: 
C = U

∗
Ŝ . The columns of Ck×Ns construct a set of pairs {cj , θj} , with j = 0, . . . ,Ns − 1 . Consider θ̃ a rotation 

angle not included in our sample, we interpolate the coefficients cij to get {c̃, θ̃} and reconstruct:

C̃k×360 = I (Ck×Ns ) is the coefficients matrix for the full 360 degrees, it is the result of the interpolation operator 
I applied to Ŝ projected into the POD space.

We compare the PODI and PA-POD approaches side by side in Fig. 5. In both cases we look for the same 
solution structure:

In both cases, the coefficients are evaluated by projecting available data into the POD space:

while PODI interpolates accurate but scarce data ŜN×Ns , conversely, PA-POD relies on approximate but dense 
data provided by the Real-Time Model RN×360.

In Fig. 6 we compare the FBP for several approximation techniques with the ground truth, (a). The Real-Time 
Model Fig. 6b is an effective approximation in describing the assembly geometry. Figure 6c,d are constructed with 
Ns = k = 60 . PODI fails to capture the structure of the fuel assembly Fig. 6c, while PA-POD preserves its geo-
metrical structure Fig. 6d and recovers part of the secondary effects in the ground truth. Ring artifact is notable 
in the PA-POD reconstruction, Fig. 6d, this effect can be removed using the algorithm provided in reference25.

We tested three different interpolators. The results are reported in Fig. 7, the ground truth in Fig. 7a,b linear 
interpolation on the coefficients in the POD space, Fig. 7c linear interpolation on the data, Fig. 7d radial basis 
functions interpolation on the coefficients, but none could preserve the assembly geometry for Ns = k = 60 . 
In this phase of the exploration we relied on the EZyRB package developed at Scuola Internazionale Superiore 
Studi Avanzati26.

The most important reason why interpolating methods show an inadequate performance is the sampling scar-
city. In particular, Figs. 8 and 9, show that the interpolation points fall too far apart to be effectively interpolated.

Figure 8 gives an overview of modes and coefficients, with k = Ns = 60 . It shows the first four coefficients 
evaluated in three different ways. First, we project the ground truth into the POD space:

s̃(y, θ̃ ) =

k−1
∑

i=0

ui(y) · c̃.

S̃N×360 = UN×kC̃k×360

Ck×Ns = U
∗
k×N ŜN×Ns vs. C̃k×360 = U

∗
k×NRN×360,

Figure 5.   This picture shows a side by side comparison between the PODI and PA-POD. In PODI we 
interpolate accurate but scarce data, while with PA-POD we evaluate dense real time approximated data.
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Figure 6.   Filtered backprojection for the IAEA data (a), and the approximations we are studying, Ns = k = 60 . 
Real-Time Model (b) and PA-POD (d) preserve the geometrical structure of the spent fuel, while PODI cannot 
provide a representative reconstruction (c).

Figure 7.   This picture presents the filtered backprojection applied to three different interpolations, with 
Ns = 60 and k = 30 . (a) Ground truth; (b) POD with linear interpolation of the coefficients; (c) Linear 
interpolation on the data; (d) POD with radial basis functions interpolation. The geometrical structure of the 
fuel assembly is severely compromised in all of three approximations. None of them preserves the assembly pin 
structure.
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this is the best possible approximation of the expected coefficients. Second, we project the limited views sinogram 
Ŝ into the POD space, as prescribed by the PODI approach, these coefficients samples are to be connected by a 
suitable interpolator. Third, we evaluate the coefficients with the PA-POD method, projecting into the POD space 
an inexpensive approximation of the full sinogram, namely the result of the Real-Time Model.

We notice that while the coefficients samples preserve an overall fitting with the ground truth, important 
details are missed, causing the failure of the geometrical reconstruction. On the other hand, PA-POD coefficients 
are not interpolatory as in the PODI case but provide an accurate description of the assembly geometry. We 
notice that the modes U(:, i) for the database matrix Ŝ are in good agreement with the ones obtained from the 
full sinogram S , Fig. 8.

Figure 9 shows several details of the coefficient matrices. The coefficients samples are simply too far apart to 
capture the actual shape of the coefficient, regardless of the of the interpolator selection, there is no way to recover 
information that is not in the data unless physics awareness of the prototype is restored, as we did with PA-POD.

It is evident, as depicted in Fig. 9, that PA-POD coefficients are not interpolatory. As a consequence, the 
resulting sinogram is not exactly the original one at the sampled locations.

What is described in this section with reference to PWR remains valid for BWR and VVER cases, as reported 
in the supplementary material. As a consequence the method is robust with respect to the assembly type.

Future directions
The results of PA-POD performance for the PWR case as well as BWR and VVER cases (see supplementary 
material) demonstrate the ability of the PA-POD method to reconstruct with high fidelity a full sinogram from 
a limited set of views.

This allows the construction of an extended library of various PGET measurement scenarios. The performance 
of our PA-POD approach enables the construction of a digital twin, where actual measurements and simulated 
data are combined with a deep learning algorithm in a continuous update as measurements and simulations are 
produced in real-time. The benefit of doing so is to provide an integrated system, hardware, and digital twin for 
real-time high-accuracy verification of irradiated nuclear fuel assemblies using PGET. Our proposed approach 

Cground truth = U
∗
S,

Figure 8.   Plots of the first four coefficients C(i, :) and modes U(:, i) for the PWR sinogram, with k = Ns = 60 . 
A few discrepancies are visible in the sampled coefficients, while the physics-aware ones have a better definition 
especially in areas characterized by high oscillations. The sampled modes, obtained applying SVD to Ŝ , are in 
good agreement with ones obtained using the whole dataset S.
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can be readily adapted and used for other applications in nuclear safeguards and beyond, such as the creation 
of a dataset for the Tomographic Gamma Scanner technique27, which is a non-destructive assay technique, as 
well as in other radiography/tomography approaches for nuclear material and global security applications28.

Methods
Reference data used in the paper (IAEA competition).  Our method’s development and the associ-
ated verification have benefited from high-fidelity data from real case scenarios. The dataset provided by the 
International Atomic Energy Agency on the occasion of IAEA Tomographic and Analysis Challenge fit the 
purpose. The data are publicly available19, 20, 29. Among several mockup data, few measurements are provided 
that were used in the paper. In the paper, the original names of the IAEA data, “competition 3”, “competition 4”, 
and “competition 5” are renamed into VVER, PWR, BWR respectively. VVER and BWR are reported in the sup-
plement material. In our presented results, we focused on the 600–700 keV energy-deposition window, which 
contains the full energy peak from the 137Cs gamma emission at 661.7 keV, a major gamma emission of the spent 
nuclear fuel7.

Real‑time approximate forward model.  Our Real-Time Model is built on the model of Backholm 
et al.9. A schematic representation of the model set is depicted in Fig. 10. The investigation domain � ⊂ R

2 is 
the axial cross-section of a nuclear fuel assembly and we discretize it as a two-dimensional mesh. At each pixel 
p of the discretized domain, we define � ∈ R

Npix the emission values and the attenuation values µ ∈ R
Npix , Npix 

is clearly the number of pixels. We consider the values of � and µ constant over each pixel. At each detector i we 
model the flux using a Lambert-Beer (exponential) attenuation model9:

F(�,µ)i = H(µ)i,p �p =
[

ri,p exp
(

−ci,p d
T
i,p µ

)]

�p.

Figure 9.   In these plots a close up view of the ground truth coefficients, the sampled ones, and the physics-
aware ones are reported. Given Ns = k = 60 with randomly sampled views, we observed that the sampled 
coefficients do not capture enough data to account for the local structure. The information dropped during the 
sampling is in fact irrecoverable, unless we provide a physics-aware way to reconstruct the coefficients. It is this 
notion of “physics awareness” coefficients that inspired the main idea in this article.
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The 360 views are obtained by rotating the pin positions, and so the assembly, with respect to the detectors. 
The emission and attenuation maps are consequently updated. The two-dimensional grid is further discretized, 
dividing the half-space above and below each pixel, in voxels.

Given this setting, the following quantities are defined.

•	 ri,p is the response of the detector i with respect to the pixel p. Given a three-dimensional point, the barycenter 
of a voxel s, r3Ds  is the solid angle between the voxel barycenter and the detector face, divided by 4π . Follows 
ri,p is the average of the responses for all the voxels, insisting on the same pixel: ri,p = 1

Np,vox

∑Np,vox

s=1 r3Ds .
•	 dTi,p µ is the integral of the discrete attenuation values on the segment connecting the pixel p and the detector 

i. In our implementation we explicitly find the intersection between the connecting segment and the grid, 
being the attenuation piecewise constant, a zero-order quadrature is sufficient to exactly evaluate the integral.

•	 ci,p is an attenuation correction factor, evaluated as: ci,p = 1
ri,p

∑Np,vox

s=1
r3Ds

cos(αs)
 . αs is the angle between the voxel 

barycenter, the detector and the two dimensional plane. It accounts for the response matrix ri,p and the cor-
rection term ci,p are purely geometrical measures and are not affected by the rotation of the fuel assembly. 
dTi,p µ instead depends on the attenuation map, which depends on attenuation distribution, that changes with 
the assembly rotation and has to be assembled for each rotation angle.

We tested three different mesh sizes, while �z = 10 mm was the same in all the three cases, the other dimensions 
are �x = �y = (2.5 mm, 1.0 mm, 0.5 mm) . With a Mac Book Air computer with ARM M2 processor with four 
physical cores, the average computational times are ≈ 4 minutes , ≈ 10 minutes and ≈ 31 minutes respectively. 
The mesh size does not affect the accuracy of our results, the coarsest mesh size can be chosen to minimize the 
computational cost.

Values for emission � attenuation µ are defined in9. Emission is expressed in arbitrary units, and is 0 for 
water and 100 for the spent fuel. Attenuation is 0.1356 mm−1 for the spent fuel, and 0.0085 mm−1 for water. 
Virta et al. in10 provide an extensive exploration of such parameters in experimental settings. An approximation 
of the Real-Time approximate forward model is that it does not model the downscattering of the gamma rays.

The computational cost for a full sinogram according to this ray-tracing scheme is a few minutes on a desktop 
machine, and the assembly of all the matrices is a type of “embarrassingly parallel” task30, it can be parallelized 
both on a “per detector” basis or on a “per degree” basis. 

Data availability
The datasets analyzed during the current study were publically distributed by the International Atomic Energy 
Agency on the occasion of the Tomographic and Analysis Challenge. The address for request is provided in19.
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Figure 10.   A schematic view of the major players in the real time model implementation.
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