Skip to main content
. 2023 Aug 29;25:e49283. doi: 10.2196/49283

Table 3.

Model prediction comparisons with the test data set.

Model Sensitivity Specificity Accuracy Balanced accuracy AUROCa
921 features (including ICD-10b)

AdaBoostc 0.9739 0.9888 0.9887 0.9813 0.9974

XGBoostd 0.9689 0.9888 0.9888 0.9789 0.9972

LightGBMe 0.9701 0.9887 0.9887 0.9794 0.9973

GBMf 0.7954 0.9506 0.9504 0.8730 0.9350

ERTg 0.9010 0.9270 0.9270 0.9140 0.9580

LRh 0.9584 0.9922 0.9922 0.9753 0.9952

RFi 0.9433 0.9537 0.9538 0.9476 0.9848

DNNj 0.9694 0.9845 0.9845 0.9770 0.9931

AdaBoost+XGBoost 0.9700 0.9889 0.9889 0.9794 0.9973

AdaBoost+LightGBM 0.9702 0.9888 0.9888 0.9795 0.9974

XGBoost+LigtGBM 0.9694 0.9888 0.9888 0.9791 0.9973

AdaBoost+XGBoost+LightGBM 0.9698 0.9888 0.9888 0.9793 0.9973

In-hospital mortality AIk [5] 0.9468 0.9761 0.9760 0.9614 0.9929
878 features (ICD-10 only)

AdaBoost 0.8313 0.9476 0.9475 0.8895 0.9485

XGBoost 0.6933 0.9751 0.9748 0.8342 0.8943

LightGBM 0.6995 0.9745 0.9742 0.8370 0.8953

GBM 0.9730 0.9774 0.9774 0.9752 0.9958

ERT 0.9739 0.9810 0.9810 0.9775 0.9938

LR 0.7623 0.9558 0.9557 0.8591 0.9437

RF 0.6583 0.9740 0.9737 0.8161 0.9313

DNN 0.8809 0.8959 0.8959 0.8884 0.9438

AdaBoost+XGBoost 0.7046 0.9747 0.9744 0.8397 0.9452

AdaBoost+LightGBM 0.7057 0.9744 0.9741 0.8400 0.9452

XGBoost+LigtGBM 0.6950 0.9748 0.9745 0.8349 0.8954

AdaBoost+XGBoost+LightGBM 0.7024 0.9746 0.9743 0.8385 0.9450

In-hospital mortality AI [5] 0.2838 0.9751 0.9751 0.6298 0.7675
43 features (excluding ICD-10)

AdaBoost 0.9743 0.9862 0.9862 0.9802 0.9965

XGBoost 0.9684 0.9886 0.9886 0.9785 0.9965

LightGBM 0.9691 0.9884 0.9884 0.9788 0.9966

GBM 0.7954 0.9506 0.9504 0.8730 0.9350

ERT 0.9010 0.9270 0.9270 0.9140 0.9580

LR 0.9519 0.9906 0.9906 0.9713 0.9935

RF 0.9040 0.9492 0.9492 0.9266 0.9806

DNN 0.9345 0.9784 0.9783 0.9565 0.9860

AdaBoost+XGBoost 0.9687 0.9887 0.9887 0.9787 0.9966

AdaBoost+LightGBM 0.9693 0.9886 0.9885 0.9789 0.9966

XGBoost+LigtGBM 0.9690 0.9885 0.9885 0.9788 0.9965

AdaBoost+XGBoost+LightGBM 0.96914 0.9886 0.9885 0.9788 0.9966

In-hospital mortality AI [5] 0.9441 0.9855 0.9855 0.9648 0.9923
Traditional methods

Inclusive SRRl 0.8716 0.9389 0.9388 0.9052 0.9328

Exclusive SRR 0.9070 0.9227 0.9227 0.9149 0.9567

KTASm 0.9465 0.9777 0.9777 0.9621 0.9405

aAUROC: area under the receiver operating characteristic curve.

bICD-10: International Classification of Disease 10th revision.

cAdaBoost: adaptive boosting.

dXGBoost: extreme gradient boosting.

eLightGBM: light gradient boosting machine.

fGBM: gradient boosting machine.

gERT: extremely random trees.

hLR: logistic regression.

iRF: random forest.

jDNN: deep neural network.

kAI: artificial intelligence.

lSRR: survival risk ratio.

mKTAS: Korean Triage and Acuity Scale.