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ABSTRACT: Computer-assisted synthetic planning has seen major advancements that stem from the availability of large reaction
databases and artificial intelligence methodologies. SynRoute is a new retrosynthetic planning software tool that uses a relatively
small number of general reaction templates, currently 263, along with a literature-based reaction database to find short, practical
synthetic routes for target compounds. For each reaction template, a machine learning classifier is trained using data from the
Pistachio reaction database to predict whether new computer-generated reactions based on the template are likely to work
experimentally in the laboratory. This reaction generation methodology is used together with a vectorized Dijkstra-like search of top-
scoring routes organized by synthetic strategies for easy browsing by a synthetic chemist. SynRoute was able to find routes for an
average of 83% of compounds based on selection of random subsets of drug-like compounds from the ChEMBL database.
Laboratory evaluation of 12 routes produced by SynRoute, to synthesize compounds not from the previous random subsets,
demonstrated the ability to produce feasible overall synthetic strategies for all compounds evaluated.

■ INTRODUCTION
The design and execution of a synthetic route has traditionally
been a skill limited to highly trained experts in the field of
chemical synthesis. It requires extensive searching of the
chemistry literature, knowledge of many types of chemical
reactions, and the ability to perform high-level strategic planning
to create a viable route.
Efficient database searching tools are available in the chemical

literature, but they require manual searching of individual
reactions and constructing these steps into a complete synthetic
plan that starts from available materials. This process requires
significant training and expertise, and the large number of
chemical reactions and the many ways to serialize them into
routes make it difficult for chemists to find not only feasible
routes but also the more efficient and economical ones.
There is a long history of computer-aided synthesis planning

(CASP) software tools to help chemists synthesize molecules.
The first major tool is the well-known Logic and Heuristics
Applied to Synthetic Analysis (LHASA) from Elias Corey et al.,1−4

and LHASA was followed by several tools such as CAMEO5 and

SOPHIA.6 An overview of the development of the CASP field
can be found in Williams and Dallaston.7

The advent of deep learning and the availability of publicly
available large reaction databases such as the ones based on
patents8 have given a new impetus to the CASP field. There have
been several new retrosynthetic planning methodologies
published, and some have been commercialized into products
that try to solve this problem computationally.
Some of these approaches rely primarily on computationally

generated reactions from human-coded expert rules applied via
retrosynthetic analysis to a target compound with heuristic route
search strategies.9−11 Others use automatic extraction algo-
rithms from a large corpus of reactions to identify reaction
transformation templates and have applied machine learning
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techniques to identify applicable templates to target compound
and generate new reactions that could produce a specific
target.12,13

Another approach is to avoid the use of a fixed set of templates
and instead train a deep neural network, such as a transformer, to
predict the products given a set of reactants or the reverse, that
is, to predict the reactants given a product. The work of
Schwaller et al.14 predicts the products given the possible
reactants. In that direction, it cannot be used to directly infer
retrosynthetic reactions, but it can be used to verify the
feasibility of reactions. On the other hand, the works of refs
15−17 use transformer neural networks to predict possible
reactants, given a product, and can be used to create reactions
retrosynthetically. However, these studies only measure the
accuracy of a single step, that is, the accuracy of single reactions,
and not as complete routes from purchasable compounds to
target compounds. It is yet inconclusive if the performance of
these template-free appproaches using deep neural networks is
comparable to that using templates.
Herein, we describe a retrosynthetic planning program called

SynRoute that utilizes computer-generated reaction strategies
combined with the ability to utilize reactions from a “fixed
reaction database” to develop synthetic routes from commer-
cially available starting materials. The fixed reaction database is
composed of reactions from patents (i.e., Pistachio18) extended
with closed-loop experimental results. This combination offers a
fast and practical approach for finding routes to access the
synthetic compounds.
We describe the overall performance of SynRoute and how it

has been specifically applied to the challenge of producing
compounds on an automated flow chemistry platform called
AutoSyn developed by our group.19

The combination of computational synthetic planning and
automated synthesis has the potential ability to enable a much
broader range of operators to become proficient at producing
high-value synthetic compounds. The majority of pharmaceut-
ical compounds is primarily synthesized using a somewhat
limited set of chemical reaction types, which have been referred
to as Medicinal Chemists’ Toolbox (MCT) transformations.20

The description of theseMCT transformations includes a mix of
relatively specific types of reactions (e.g., Friedel−Craf ts

Acylation) and more general classifications (e.g., N-containing
heterocycle formation). Starting from this analysis, we defined a
set of 263 general reaction transformations based on this set.
These common types of transformations have many examples

in the chemistry literature, making them excellent candidates for
the application of machine learning techniques to predict the
success of computer-generated reactions during route develop-
ment.
SynRoute has been designed to propose several routes ranked

by a specific metric. These routes are also diversif ied; that is, they
show a diversity of strategies and purchasable building blocks.
The used metric combines the length of the routes with the cost
of the building blocks. To that end, we have designed a route-
searching algorithm that finds diversified k best routes.

■ RESULTS AND DISCUSSION
Finding Diversified Optimal Routes. The searching of

routes for a given target compound is done in three phases on a
combination of reactions from a database (i.e., Pistachio) and
computer-generated reactions (Figure 1). These phases are as
follows:

1. A best-first retrosynthetic generation of new reactions
from the target compound up to building blocks or to
known synthesizable compounds.

2. A creation of subnetwork of compounds and reactions
that can connect to the target compound.

3. A vectorized Dijkstra search on this subnetwork to
identify the top (diversified) k lowest cost routes using a
cost function based on the number of reactions in the
routes and the cost of building blocks. The search is based
on the well-known algorithm published by Edsger
Dijkstra.21

We first present how transformation templates to generate
new reactions were created. They are applied to generate new
potential reactions to complement the reactions available in a
fixed database and enable the generation of a more optimal
synthetic route.
Creation of Templates. The transformation templates to

generate the reactions were created in two stages. In the first
stage, we manually translated into SMARTS templates

Figure 1. Depiction of the overall algorithm to find diversified optimal routes using computer-generated reactions combined with the fixed reaction
database and building blocks database. 1) best-first retrosynthetic generation of new reactions. 2) creation of subnetwork of compounds and reactions
that can connect to the target compound. 3) vectorized Dijkstra search on this subnetwork to identify the top (diversified) k lowest cost routes.
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(SMIRKS according to Daylight’s acronyms22) the general
transformations from Roughley and Jordan’s paper Medicinal
Chemists’ Toolbox (MCT).20 Some of these 62 transformations
required several SMARTS. All of these SMARTS can be
interpreted by RDKit in the forward and reverse (i.e.,
retrosynthetic) direction.
In a second stage, an additional set of 201 transformations was

created to handle less-popular transformations and some specific
heterocycle reactions. These were either manually transcribed
into SMARTS templates or the templates were first
programmatically generated from reaction examples and then
modified manually by combining some of them into more
general SMARTS. We develop the program to automatically
generate the SMARTS templates. SynRoute has a total of 463
SMARTS for 263 transformations.
This approach to creating the templates is in contrast to that

described in several other published works13,23−25 in which all
the templates are programmatically generated from a database of
experimentally verified reactions. The software used to generate
these templates is typically RDChiral,26 which is based on
RDKit. In its current state, RDChiral generates specific
templates, because it takes into account very specific details
around the reaction center. The approach has the disadvantage
of generating a large number of templates, typically in hundreds
of thousands given a database of a few million reactions. The
large number of templates raises several important technical
issues regarding the selection of appropriate templates for doing
one-step retrosynthesis.
For example, Heid et al.24 worked on deduplicating templates,

by removing equivalent and overlapping templates, to improve
the accuracy of the neural networks selecting templates for one-
step retrosynthesis. This work though does not produce as
general templates as the ones created in SynRoute. Fortunato et
al.27 worked on increasing the performance of a neural network
to select the appropriate templates by data augmentation, which
required substantial computational resources. The main reasons
to develop and implement these techniques are due to the large
number of templates used.
Szymkuc ́ et al.28 have studied the number of templates that

can be created automatically from large sets of reactions using
RDChiral. That study shows that the number of templates
generated by that software from a set of n reactions is around n

10
.

The two data sets used had 3.72 and 0.90M reactions each, with
respectively 310 K and 85K templates generated.
Segler et al.13 is using a Monte Carlo Tree Search (MCTS)

algorithm called 3N-MCTS, because it is based on three neural
nets, to find routes from the target compound to building blocks.
Two sets of templates were generated from the Reaxys database.
One large set of about 300000 templates is used during the
expansion phases of MCTS, and a smaller set of around 17000
templates is used during rollouts. One neural network per set is
used to select the best templates. A third neural net is used to
determine whether the generated reactions from the templates
are likely feasible in the lab. Their algorithm can return one or
several synthesis plans from the target compound to building
blocks in the tree constructed by the MCTS by following paths
of the largest valued nodes.
This approach of using a very large set of templates, such as

300 000 or even tens of thousands, still leaves unanswered the
possibility of using a much smaller set (e.g., a set of 1000 of
templates based on “named reactions”) of well-curated general
templates that can be used to obtain reliable routes and have the

advantage of explainability in the form of named reactions. A
smaller set of templates also removes the difficulty of training a
very accurate neural network to select the applicable templates.
In Chematica,11,29 the templates (called rules in Chematica)

were mostly created manually over a period of more than a
decade, resulting in 75K templates.10 This large set of templates
still needs a complex mechanism to select which rules are
retrosynthetically applicable when given a compound to
synthesize.
In SynRoute, this approach of using a small set of general

templates and creating one classifier per template has been used.
SynRoute has 463 general templates for 263 named reactions,
and it is a reasonable approach as its performance is higher than
AiZynthFinder.25 In Supporting Information Table S9, we
present some of the templates implemented in SynRoute. A
complete list of the name reactions implemented in SynRoute is
presented in Supporting Information file ListNameReac-
tions.txt. We believe this set of templates could be
increased with a reasonable amount of work and that even higher
performance could be obtained as compared to the other
approaches. The advantage of our approach is the relatively
small number of templates, which allows a more precise
selection given a target molecule without using any neural
network to select the appropriate templates.
Retrosynthetic Expansion Algorithms.The diversity and

generality of the templates are not enough to guarantee a good
overall performance for finding routes to a target compound.
The algorithm used to retrosynthetically expand a route from
the target compound to the purchasable building blocks also
plays a major role in overall performance.
Starting from the target compound, a retrosynthetic expansion

algorithm uses applicable templates to generate one or two
reactants. This is a one-step expansion. These reactants and the
target compound form a generated reaction. This process is
iteratively applied on the reactants if these reactants are not
purchasable building blocks or are known to be synthesizable
from the fixed set of reactions of the database. The result is an
acyclic graph of the generated reactions. A route is obtained if at
least one path exists from the purchasable building blocks to the
target compound. The selection of nonexpanded reactants on
which to apply templates forms the core of a retrosynthetic
expansion algorithm. We studied the performance of four
different algorithms to do that selection: breadth-first, depth-
first, best-first compound, and best-first reaction. A general
presentation of these algorithms is described in a book by Russel
and Norvig.30

We have compared the performance of SynRoute to the
published results of Segler et al.13 and Genheden et al.25 for
AiZynthFinder (Table 1). The comparison is complicated by
the use of different benchmarks, the computational time limit,
and the purchasable compound databases described in these
papers. We used several benchmarks to show the stability of the
SynRoute overall approach. Instead of using diverse computa-
tional time limits, we have used several different maximum
numbers of generated reactions, which can easily be reproduced
by other researchers, because a time limit is too dependent on
the underlying hardware used. With the comparison done, for
which all the results are shown in Table S1, it shows that the
overall approach of SynRoute is satisfactory and even superior to
previously published results across three varied parameters: the
expansion algorithm, the benchmark, and the maximum number
of generated reactions. The database of purchasable compounds
used is not varied. We used the eMolecules database of 2022
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(Q4), and only “Building Block” compounds classified as tier 1
(shipped within 2−5 days) or tier 2 (shipped within 2−10
business days) were included.
In the case of Segler et al.,13 the benchmark is a set of 497

randomly selected compounds extracted from clustered
compounds generated from 12.1 M reactions of the Reaxys
database, which is not publicly available. The benchmark does
not include compounds that were not seen during extraction of
the templates. Unfortunately, this approach does not test the
generalization capability of the templates because the templates
were extracted from the same set; therefore, any synthesizable
compounds in the Reaxys database will likely be synthesizable by
the templates.
Genheden et al.25 have made available the 100-SMILES

benchmark extracted from the ChEMBL database and used for
AiZynthFinder, but the database used to extract templates and
train neural networks is not Reaxys; it is from a smaller database
created from the USPTO patents. The technique used to extract

the templates is similar to Segler et al.13 The lack of generality of
the templates is confirmed by the AiZynthFinder paper,25

because their benchmark of compounds was extracted from a
different database (i.e., ChEMBL) than the database used to
extract templates (i.e., USPTO), and the percentage of SMILES
solved (55−65%) is much lower than the percentage reported
by Segler et al.13 (95%).
We have used six benchmarks to test the performance of

SynRoute: the publicly available AiZynthFinder benchmark25

and five benchmarks we created by randomly selecting, for each
benchmark, 100 compounds from the ChEMBL database. We
decided to use five additional benchmarks of 100-random
compounds instead of a single benchmark of 500-random
compounds to more clearly compare our results with the results
of the AiZynthFinder benchmark of 100-random compounds.
Indeed, the publicly available performances of AiZynthFinder
and ASKCOS on the AiZynthFinder benchmark give us a point
of comparison. We think the additional five benchmarks are
needed to better confirm the performance of synthesis planning
software. The five 100-SMILES benchmark files are described in
the Supporting Information. Table 1 shows statistics on these
benchmarks and the performance of SynRoute when using the
best-first reaction expansion algorithm. Note that the given
performances vary based on the expansion algorithm used to
generate new reactions leading to routes from building blocks,
and some of these algorithms do not exhaustively expand all
possible routes but make an informed decision to reach
purchasable compounds.
The synthesis accessibility scores (Sascores) are an estimation

of the difficulty to synthesize a compound devised by Ertl and
Schuffenhauer31 and slightly modified by Ertl and Landrum.32

For each benchmark, we present the average Sascores for its 100
compounds and its highest 30 Sascores, the number of target
compounds that exist in the Pistachio database, and the number
of compounds for which SynRoute could find at least one route.
The performance of SynRoute on the AiZynthFinder

benchmark is 85%, substantially higher than the published

Table 1. Six Benchmarks Used to Test the Performance of
SynRoutea

Benchmark
Overall avg

Sascore
Top 30 avg

Sascore
SMILES solved by

SynRoute

AiZynth 2.80 3.66 86
Bench 1 3.12 4.31 77
Bench 2 3.08 4.46 87
Bench 3 2.99 4.25 78
Bench 4 3.02 4.08 79
Bench 5 2.85 3.80 90
Avg 2.97 4.09 82.8

aEach benchmark had 100 SMILES selected randomly from the
ChEMBL database. The number of SMILES solved by SynRoute
shown on the right most column is from the best-first reaction
expansion algorithm, used in the current implementation of
SynRoute, using a maximum of 50K generated reactions (see
Supporting Information Table S1 for the detailed timing of each
benchmark).

Figure 2. Graphical User Interface (GUI) of SynRoute for executing a route search. The compound to synthesize can be drawn using the embedded
JSME editor33 or by entering directly its SMILES representation.
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numbers 55−65% for the AiZynthFinder tool and 62−72% for
the ASKCOS tool,25 for which the variations 55−65% and 62−
72% depend on the purchasable databases used. This
comparison primarily depends on the algorithm for the
retrosynthesis expansion of generated reactions and the set of
templates used. This comparison also depends on the data used
to train the classifiers to evaluate the probability of success of
generated reactions by the templates, but to a lesser extent
because their main impact is the ordering of routes found based
on these evaluations. Moreover, this comparison does not take
into account the feasability of routes found because such a
parameter has not been published for AiZynthFinder and
ASKCOS.
Graphical User Interface (GUI). SynRoute is operated by

chemists as a web application using an intuitive Graphical User
Interface (GUI). The initial web page allows the chemist to
specify a target compound either by using a SMILES, a
compound name, or an InChI or by drawing a molecular
structure using JSME33 and initiating the search for routes.
Some parameters to control the search are also provided (Figure
2). Once routes are found, they are grouped and summarized on
the Strategies Page. A strategy is characterized by the reaction
directly producing the target compound (see Supporting
Information Figure S10 for an example of a Strategies Page).
The current response time for a search for multiple routes is
between 15 s and two min, depending on the given target
compound to synthesize, and most often less than a minute. The
current implementation of SynRoute uses modest computa-
tional resources: a single CPU core (no GPUs).

Typically, several routes are grouped under each strategy. The
chemist can select one of the strategies to see all the routes under
that strategy (see Supporting Information Figure S11 for an
example of a Strategy Page) and then select one route that
appears promising for a more in-depth analysis and visual
presentation. A complete route is presented as one or several
linear segments similar to published synthesis routes in chemical
journals (Supporting Information Figure S12 for an example of a
route). At that level, any compound shown as a structure can be
clicked to display more data on the left panel, such as SMILES,
InChI, weight, purchasable price, if applicable, and more (see
Supporting Information Figure S13 for an example on the left
panel). Similarly, any reaction shown as an arrow can be clicked
to display the various conditions (i.e., times, temperatures,
solvents, reagents, catalysts) of the reaction, the source of the
literature for a fixed reaction, and more. The generated reactions
from templates are clearly identified as such using a blue color
with the name of the transformations used.
If desired, routes can be iteratively refined and modified to a

chemist’s satisfaction by constraining new searches with the keep
and avoid functionality on reactions and compounds (see
Supporting Information Figure S14 for an example of the keep
and avoid buttons). A chemist can select a set of compounds and
reactions to keep or avoid and initiate a new search. The routes
found will necessarily have all of the compounds and reactions
that were selected to keep and have none of the compounds and
reactions that were selected to avoid.
Routes can be saved, printed, and shared with colleagues via

email. SynRoute automatically bundles the relevant information
to be sent to selected email addresses chosen by the chemist.

Figure 3. SynRoute’s top-scoring strategy for the preparation of itraconazole.
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Saved routes can also be used to provide reaction condition data
for building chemistry automation protocols. The reactions,
compounds, and routes can individually be flagged as dubious,
so that a curator can be alerted of the issues.
Laboratory Evaluation of Routes. We evaluated the

ability to translate routes directly from SynRoute to our
synthesis automation hardware, called AutoSyn, developed at
SRI.19 Our goal is to fully automate this translation process, but a
number of challenges still remain that require chemists to
manually modify routes for execution on an automated
chemistry platform. AutoSyn is a continuous flow chemistry
platform; therefore, these changes often involve modifying
reagents for greater solubility and methods for accelerating
reaction times. Also, limitations of literature data still require
reaction scouting and optimization before execution in the
production mode. As a demonstration of the process of adapting
a SynRoute route onto AutoSyn, we begin with a route for the
antifungal medication itraconazole, which was initially described
by Szeto et al.,34 followed by the potent anticancer drug
bortezomib, which was initially described by Vu et al.35

Itraconazole.The top-scoring route for itraconazole involved
three different linear segments ending in a two-step coupling
sequence to connect the halves of the final compound (Figure
3). Itraconazole is a moderately complex small-molecule drug
structure with multiple chiral centers that was approved for use
in 1992, so there is a lot of prior data on synthesizing this exact
compound. Unsurprisingly, the top route is therefore comprised
of only fixed reactions present in the Pistachio database.
Performing the search without enabling fixed reactions returned
several strategically similar routes, most of which were
significantly shorter by using commercially available advanced

intermediates (Supporting Information, Figure S1). In the top-
scoring route, CPD-66938, is also an advanced intermediate that
SynRoute suggests purchasing, but in practice, we chose to
synthesize this intermediate to develop a lower-cost production
process. A SynRoute search performed on this intermediate
(CPD-66938) returned several routes with triazole alkylation
reactions, but no routes that involved the triazole formation
reaction from an aniline precursor. Heterocycle formation
reactions, such as this triazole formation, tend to have few
examples in reaction databases, like Pistachio, and, therefore, can
be a limitation for machine learning-based (ML-based)
synthetic planning approaches. The rest of the steps for the
top-scoring itraconazole route were all performed on our
AutoSyn automated flow chemistry platform with manual
modifications to the reaction conditions to make them more
suitable for continuous flow chemistry (Figure 4).
The synthesis of itraconazole was performed by using the

route from SynRoute with a late-stage coupling of two
elaborated precursors shown in Figure 4. Toward the first
precursor, itr-5, itr-2 was alkylated with itr-1 using
AutoSyn to give ketoneitr-3. SynRoute suggested conditions
of sodium bicarbonate in toluene that were modified to heating
in NMP and allowing the triazine to act as a base for capturing
the generated HCl. The ketalization of itr-3 with
desymmetrized glycerol itr-4 must be performed at low
temperature to achieve reasonable diastereoselectivity (5:1).
The long reaction time (3 days) is not well suited for AutoSyn,
and consequently, the preparation of itr-5 was performed
offline according to SynRoute conditions. Toward the second
precursor itr-8, itr-6 was pumped into AutoSyn and
treated with methyl carbazate, trimethyl orthoformate, and

Figure 4. Itraconazole scheme was performed on the AutoSyn platform. For reactions that were modified for adaption to the AutoSyn flow chemistry
platform, the source of the reference conditions is given along with a rationale for why they were modified.
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catalytic toluenesulfonic acid to build up the 1,2,4-triazol-3-one
scaffold. Introduction of sec-butyl bromide and sodium
methoxide affected the N-alkylation and gave itr-7, which
was performed in a 2-step telescoped process on AutoSyn.
Deprotection of the phenol group of itr-7 with HBr afforded
itr-8. The corrosive nature of HBr required this reaction
offline. To complete the synthesis, itr-5 and itr-8 were
dissolved in DMSO and passed through a heated packed bed of
cesium carbonate on AutoSyn to give itraconazole. SynRoute
suggested conditions with potassium hydroxide in DMF,
requiring long reaction times, so they were modified to
conditions that used DMSO as a solvent and cesium carbonate

mixed with Celite loaded into a packed bed cartridge as a base.
For more information about each step of the synthesis of
intraconazole, see the Supporting Information.
This example of going from a SynRoute route to an

experimental process for itraconazole demonstrates both the
utility of a synthetic planning tool, such as SynRoute, for rapidly
producing viable synthetic strategies and the challenges of
adapting these strategies to the laboratory. In this case, many of
the challenges were associated with adapting batch chemistry
procedures into flow chemistry methods, but there are also
important experimental considerations, such as reagent
compatibilities and effects of temperature on diastereoselectivity

Figure 5. SynRoute’s top-scoring strategy for the preparation of bortezomib.

Figure 6. Bortezomib scheme on the AutoSyn platform.
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that are not handled by most synthetic planning programs,
including SynRoute.
Bortezomib. SynRoute often provides an effective overall

strategy for preparation of a target compound but may overlook
the requirements around protecting groups. Such is the case for
bortezomib and one of the top scoring routes found in SynRoute
(Figure 5). In this example, SynRoute returned a four-step route
that required a chiral boronic ester building block material
without any supplier listed in our feedstock database. Routes
containing building blocks without a known supplier are labeled
“partial routes” and heavily penalized in the route scoring
function. In this particular case, the chiral boronic ester building
block was actually available from suppliers not fully covered in
our SynRoute building block database. In practice, bortezomib
was synthesized on AutoSyn by the route shown in Figure 6.
Carboxylic acid bor-1 was activated as the pivaloyl chloride
and then reacted with phenylalanine tert-butyl ester. The tert-
butyl group was deprotected with TFA, andbor-2was isolated
and purified from the effluent for AutoSyn. In a second AutoSyn
process, carboxylic acid bor-2 was coupled with chiral amine
bor-3 using HATU. Compound bor-4 was purified offline
and resubmitted to AutoSyn to deprotect the boronic ester
functional group and complete the synthesis of bortezomib. For
more information about each step of the synthesis of
bortezomib, see the Supporting Information.
These examples illustrate the types of changes often required

to adapt routes from SynRoute to a chemistry automation
platform. A description of the modifications made to the
SynRoute routes for a broader set of compounds is shown in
Table 2. The detailed synthetic processes for these compounds

are described in a prior publication.19 In these examples, the
changes to the routes were primarily strategic decisions about
whether to make or buy intermediates and minor changes to
bond formation strategies. This demonstrates that we are
nearing a point where computer-generated synthetic plans can
be directly executed on automated synthesis platforms, but
currently, an expert synthetic chemist is still required to make
modifications to the detailed experimental plan.

■ METHODS
Training of Template Classifiers. After a template is

applied as a one-step retrosynthesis, the feasibility score of the
generated reaction, which is a value in the interval from 0 to 1, is
estimated by a classifier. If the score is below 0.2, the generated
reaction is rejected; otherwise, it is kept in the expanded network
of reactions. The score is directly used to assign a yield to the
generated reaction. This yield is used to evaluate the cost of
producing the product, which is the sum of the costs of the
reactants divided by the yield. This is also the same formula used
to evaluate the cost of producing a product for any fixed reaction
from the database of reactions. The overall costs of routes are
used to order them when shown to a user.
As previously discussed, we do not use a classifier to select

templates to apply, a common technique used by other
retrosynthetic software tools, but only to estimate the feasibility
of reactions. We generated one classifier per template if enough
positive examples are available. In the following, we present how
the positive and negative examples were extracted from the
Pistachio database.
We programmatically selected a set of 2.77 M (2,774,796)

single-step reactions, with at most two reactants and one
product, from the Pistachio database (last quarter of 2021) as
potential training examples for the template classifiers. Among
the 2.77M reactions, 2.28M (2,285,860) were classified under a
named reaction by Pistachio. Among them, 988 named reactions
have at least 50 reactions and 810 at least 100 reactions.
From that set, positive examples for each template were

identified as reactions with a yield equal or greater than 10%, or
no yield was reported, matching the reactant(s) and product of
the template.
Negative examples for one template were identified as

reactions with a yield of less than 10%, with a complete match
of the template, or as reactions matching the reactant(s) but not
the product of the template, whatever their yield. Most negative
examples are derived in the latter way.
It is possible that some selected negative examples are wrong,

because the reported conditions of the reaction may not have
produced the expected compound of a template. For example, if
a different solvent or reagent had been used, the reactant(s) of
that reaction would have produced the expected product for that
template, contrary to the assumption that it was not produced,
and therefore, it was a positive example.
The 263 SynRoute transformations, implemented using 463

templates as SMARTS, partially or entirely cover 594 Pistachio
reaction class names, with 1,088,748 reactions. These reactions
are positive examples for training classifiers for the templates. A
relatively small number of reactions, that is, 697, were shared
among six templates, which shows that the 463 SynRoute
templates are largely independent. Among the 2.77 M reactions,
1.52 M of them were used as negative examples for the
templates. They formed 3.62 M (3,620,684) negative examples
for the entire set of templates because templates may share the
same negative example reactions. Among the 463 templates, 37
templates had no positive examples, but most importantly, 70
templates had fewer than 20 positive examples, which was the
threshold needed for positive examples to create a classifier for
any template. That resulted in the creation of 393 classifiers.
For training the neural models, positive and negative

examples, that is, reactions are encoded by representing their
reactant(s) and product using 2048 bits of ECFP4 per reactant

Table 2. Modifications Made to the Routes Found by
SynRoute Were for Successful Implementation on the
AutoSyn Flow Chemistry Platforma

Target Chemist modifications to route for execution

Bortezomib Buy advanced intermediate, protecting group
differences

Bupivacaine Use acid chloride instead of acid
Diazepam Exact route
Fluconazole Synthesize suggested intermediate (1 step)
Hydroxychloroquine Buy advanced intermediate
Ibuprofen Synthesized advanced intermediate rather than

purchase
2-(4-isobutylphenyl)
propanenitrile

Buy advanced intermediate

Imatinib Use acid chloride instead of acid (“advanced
intermediate”)

Itraconazole Buy advanced intermediate, developed new chemistry
based on results observed in following SynRoute

Nevirapine Use acid chloride instead of acid (“advanced
intermediate”)

Quinapril Buy advanced intermediates
Warfarin Exact route
aAll searches were performed enabling a combination of template-
generated reactions and fixed reactions in the Pistachio database.
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and product. There is always a maximum of three molecules
because the templates have only one or two reactants.
The neural model used for all of the classifiers, one per

template, is a multilayer perceptron of one hidden layer of size
10. That layer size was selected after a hyperparameter search
among sizes of one or two hidden layers, varying from 10 to 50
by increments of 10 for one or two layers. We found that a model
of one layer of size 10 was sufficient to obtain good performance.
The sets of examples, positive and negative, are divided into
three subsets, that is, 80% for training, 10% for testing, and 10%
for evaluating the classifiers accuracies. The average accuracy of
the 393 classifiers is 89.85%.
Evaluation of Retrosynthetic Expansion Algorithms.

In this section, we present the detailed evaluation of the four
expansion algorithms mentioned in the section Retrosynthetic
expansion algorithms, that is, the breadth-first, depth-first, best-
first compound, and best-first reaction expansion algorithms.
The breadth-first algorithm is uninformed: it does a one-step

expansion of all of the leaf reactants before further expanding any
other reactant. It is the most systematic expansion that has the
advantage of finding the shortest routes, but its major
disadvantage is that, in the case of long routes, it takes hours
of computational time, which is not practical.
The depth-first algorithm is also uninformed: it tries to further

expand the latest reactants going as deep as possible until a
maximum depth is reached or until the reactant is known to be
synthesizable or can be purchased. It has the advantage of
finding deep routes early but the disadvantage of often missing
obvious short routes in a few seconds or minutes of
computational time.
A best-first algorithm is informed: based on an estimated

complexity score on each reactant, it selects to do a one-step
expansion on a leaf reactant that is likely the easiest to synthesize.
On the other hand, the depth in the expansion tree is taken into
account: the deeper a reactant is, the less likely it is selected. This
last criteria is used to prefer reactants that are closer to the target
compound for reactant complexities that are equal or near equal,
resulting in shorter routes. We have designed two different
scoring functions; that is, we have two different best-first
algorithms: best-first compound and best-first reaction.
For the best-first compound, the minimum scored reactant is

selected for a one-step expansion, whereas for the best-first
reaction, the reactants from the minimum scored reaction are
one-step expanded. The score of a reactant is based on its
number of heavy atoms multiplied by a factor based on the
distance, or depth, from the target compound. The score of a
reaction is the maximum score of its reactants multiplied by the
same factor. The factor is dα where d is the depth and α is a small
constant. We have experimentally evaluated several values for α
and found that 1.1 was producing the highest number of
SMILES with routes for the AiZynthFinder benchmark when
using a maximum of 25000 generated reactions. The values 0.9
and 1.2 give slightly lower results.
As shown in Supporting Information Table S1 for the

performance of four expansion algorithms, the best-first reaction
algorithm is the best performer across all benchmarks and
various maximum numbers of generated reactions. In particular,
for the AiZynthFinder benchmark, routes were found for 85% of
the compounds, when using a maximum of 50K generated
reactions. Increasing the maximum number of reactions to 100
K solved one more compound, and at 300 K, another one is
solved. To get more compounds solved would likely require
more transformations.

A deeper analysis of the set of SMILES in the AiZynthFinder
benchmark reveals that for five SMILES, fewer than 5000
reactions could be generated for them. That is, at some point, for
each of these five SMILES, nomore one-step expansion could be
done for any leaf reactants in the expansion tree to reach
purchasable building blocks or known synthesizable com-
pounds. In other words, increasing the maximum number of
generated reactions will not help in finding routes for them.Only
new template transformations or building blocks would help to
solve these SMILES.
Extracting Optimal Routes. Once reactions and com-

pounds are generated by the templates to generate a graph, a
two-phase, optimal route, graph-searching algorithm is applied
to find multiple low-cost, typically short, and high-yielding
feasible routes. In the first phase, all of the reachable compounds
and reactions from the target compound, to a given maximum
depth, are identified, including the purchasable compounds.
That includes the generated compounds and reactions
connected to the reactions and compounds from the database.
In the second phase, a vectorizedDijkstra algorithm that can find
multiple diversified routes from the graph and is ordered by an
evaluation function is applied. The evaluation function is based
on the cost of its purchasable compounds, the number of its
reactions, and their yields.
The single value Dijkstra algorithm is a well-known minimum

cost route searching algorithm in a directed graph published by
Edsger Dijkstra.21 In our case, the nodes of the graph are the
identified compounds of the first phase, including the target
compound and the identified purchasable compounds, and the
arcs are the reactions. In the original version of the Dijkstra
algorithm, a node may receive only a single value (i.e., the cost).
In the vectorized version used, a node, that is, a compound, may
receive more than one value. In particular, the target compound
may receive k values where k is the maximum number of routes
requested by the chemist. All other compounds may be assigned
k values or fewer values. In particular, the purchasable
compounds for which there are no reactions producing them
receive a single value, namely, their real cost from a specific
vendor. These costs are obtained from the eMolecules database
used by SynRoute, although this database can easily be extended
from other databases if need be.
At each step of the algorithm, the minimum cost reaction is

selected to set its product as the next minimum compound value
in the graph. The minimum cost reaction can be efficiently
identified using a heap, that is, a priority queue. Initially, the heap
contains the reactions for which all their reactants are
purchasable, that is, all reactions for which a cost can be
immediately assigned without any search. The cost of such
reactions is the sum of the cost of the reactants divided by their
yield. The yield of any fixed reaction from the database is used, if
known; otherwise, a default yield of 50% is used. This default
evaluation is used to favor fixed reactions for which a yield has
been published. The yield of a generated reaction is the
probability of the feasibility of the reaction determined by the
neural network of the template used to generate that reaction
with a maximum yield of 70%. This hard cutoff has been set to
favor a mixed use of generated reactions over fixed reactions,
from the database.
Typically, the search for diversified optimal routes is

substantially faster than the generation of new reactions from
transformation templates.
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■ CONCLUSIONS
SynRoute is an effective route-designing tool that rapidly
produces sensible routes for a wide breadth of compounds by
using a relatively small set of 263 general reaction trans-
formations. The routes are biased toward well-studied types of
chemistry in which sufficient data are available for usingmachine
learning methods to predict the feasibility of each computer-
generated reaction. The use of SynRoute in our laboratory has
shown that viable routes are usually found for moderate
complexity drug-like compounds, though adapting the routes to
the laboratory can require changes to reaction steps, particularly
when adapting them to be performed on a continuous flow
chemistry automation platform, like AutoSyn. SynRoute
employs an intuitive and easy to use GUI that allows chemists
to rapidly organize and browse through routes for selecting a
route to be performed in the laboratory.
The true validation of any synthetic planning tool is whether

routes can be performed in the lab. This is often not feasible on a
statistically meaningful scale; therefore, alternatively, we
introduced five new benchmarks, each composed of 100-
random compounds taken from the ChEMBL database, to
measure the performance of chemical synthesis planning
software. Using these benchmarks, we demonstrated the
performance of four multistep expansion algorithms. We have
shown that a best-first multistep expansion algorithm based on
the selection of reactions instead of compounds showed
substantially better performance than three other expansion
algorithms across all benchmarks, including the AiZynthFinder
results.
The laboratory demonstrations in this work focused on well-

studied drug compounds and developing continuous flow
chemistry production processes. These demonstrations most
closely mimic the type of planning performed during lead
optimization stage drug discovery programs, where syntheses
need to be scaled up and the overall process efficiencies are
evaluated more rigorsly. During earlier stage drug discovery
programs, SynRoute is sufficiently fast (30−60 s per compound)
to score hundreds to thousands of compounds for synthetic
feasibility. This scale and throughput is sufficient for prioritizing
computationally enumerated analogue libraries from medicinal
chemists or sets of novel compounds produced by generative
artificial intelligence methodologies. Further acceleration of the
search speed, potentially through computational hardware or
modifications to the search algorithm, would be needed to
efficiently evaluate compounds on a larger scale.
SynRoute was designed and built to focus on the type of drug-

like compounds typically targeted across all phases of drug
discovery programs. Where we have observed, limitations have
been particularly around compounds with multiple chiral
centers, such as complex natural products as well as less
common ring systems that often require more specialized
chemical transformations not well-covered by our templates.
When tested against the four natural products described in the
Chematica publication,36 complete routes were only found for
one of the compounds, the natural product (−)dauricine. The
other three targets returned only “partial routes” by SynRoute,
meaning synthetic strategies were still displayed but not all
intermediates could be fully traced back to purchasable
feedstocks. In comparison, SynRoute was successfully able to
find routes for seven out of eight targets described in the first
Chematica paper on complex medically relevant targets.9 The
only compound that did not return multiple routes was “BRD

Inhibitor 8”, which contains a piperidin-2-one ring with two
chiral centers that proved challenging. Examples of the top
routes for all of the compounds are shown in the Supporting
Information.
We have shown that SynRoute compared very favorably to

two published benchmarks and used a much smaller set of
transformations. This result shows that a good set of general
enough transformations, combined with trained classifiers from
the experimental literature, is likely the preferred approach for
future retrosynthetic planning software tools.
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