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Abstract 

Background  Low back pain (LBP) has drawn much widespread attention and is a major global health concern. In 
this field, intervertebral disc degeneration (IVDD) is frequently the focus of classic studies. However, the mechanistic 
foundation of IVDD is unclear and has led to conflicting outcomes.

Methods  Gene expression profiles (GSE34095, GSE147383) of IVDD patients alongside control groups were analyzed 
to identify differentially expressed genes (DEGs) in the GEO database. GSE23130 and GSE70362 were applied to vali-
date the yielded key genes from DEGs by means of a best subset selection regression. Four machine-learning models 
were established to assess their predictive ability. Single-sample gene set enrichment analysis (ssGSEA) was used 
to profile the correlation between overall immune infiltration levels with Thompson grades and key genes. The 
upstream targeting miRNAs of key genes (GSE63492) were also analyzed. A single-cell transcriptome sequencing data 
(GSE160756) was used to define several cell clusters of nucleus pulposus (NP), annulus fibrosus (AF), and cartilaginous 
endplate (CEP) of human intervertebral discs and the distribution of key genes in different cell clusters was yielded.

Results  By developing appropriate p-values and logFC values, a total of 6 DEGs was obtained. 3 key genes (LRPPRC, 
GREM1, and SLC39A4) were validated by an externally validated predictive modeling method. The ssGSEA results 
indicated that key genes were correlated with the infiltration abundance of multiple immune cells, such as dendritic 
cells and macrophages. Accordingly, these 4 key miRNAs (miR-103a-3p, miR-484, miR-665, miR-107) were identi-
fied as upstream regulators targeting key genes using the miRNet database and external GEO datasets. Finally, 
the spatial distribution of key genes in AF, CEP, and NP was plotted. Pseudo-time series and GSEA analysis indicated 
that the expression level of GREM1 and the differentiation trajectory of NP chondrocytes are generally consistent. 
GREM1 may mainly exacerbate the degeneration of NP cells in IVDD.

Conclusions  Our study gives a novel perspective for identifying reliable and effective gene therapy targets in IVDD.

Keywords  Intervertebral disc degeneration, Transcriptomes, Immuno-infiltration, MicroRNAs, GREM1, SCL39A4, 
LRPPRC, Single-cell sequencing
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Background
Presently, the most common cause of disability in the 
world is low back pain (LBP). According to GBD [1] 
(Global Burden of Disease), around 7.8% of people world-
wide experience low back pain on average each year, and 
this trend is accelerating as society ages and unhealthy 
lifestyle habits are encouraged. Intervertebral disc degen-
eration (IVDD) is the main cause of lower back pain at 
the anatomic level, and its basic lesions include fibrous 
tissue degeneration, disc height reduction, fibrous annu-
lus rupture, cartilage endplate loss, annulus fibrosus 
mucosus, small synovial bulge formation, and disc calci-
fication [2]. In orthopedics, IVDD is a prevalent chronic 
disease, whereby endoscopic and interventional treat-
ments are among the well-developed treatment options 
for disc degeneration. The difficulties in determining the 
disease’s natural history and the dearth of population-
specific diagnostic criteria and treatment alternatives 
have led to a consensus among academics regarding this 
lesion.

The basic structure of the intervertebral disc consists 
of the central nucleus pulposus (NP), the peripheral 
fibrocartilaginous annulus (AF), along with the carti-
laginous endplate (CEP). Numerous studies suggest that 
genetic factors are another significant underlying risk 
factor in addition to mechanical loading, inflammatory 
agents, and nutritional disorders [3, 4]. The degenera-
tive course of the intervertebral disc is thought to be a 
process with polygenic involvement, therefore, targeted 
gene therapy may account for a promising treatment 
regimen against IVDD in the future [4]. Recent stud-
ies suggest that immune infiltration may play a key role 
in the course of IVDD. The NP and AF are regarded as 
immune-exempt organs because of the peculiar structure 
of intervertebral disc tissue, which isolates them from the 
host’s immune system [5, 6]. The degenerated disc tissue 
is thought to have a specific pattern of immune cell infil-
tration. For example, Lan T et al. [7] analyzed the asso-
ciation between inflammatory response-related features 
and IVDD immune infiltration, revealing that IL-1β, 
LYN and NAMPT have the potential as biomarkers and 
therapeutic targets for IVDD. Silva AJ et al. [8] assessed 
the ways by which macrophages affected IVDD cell gene 
expression and provided a new therapeutic target. Dereg-
ulating the inflammatory response in the disc is a viable 
approach for treating IVDD, and gene therapy that tar-
gets immunological components could potentially hinder 
the onset of IVDD.

MicroRNAs (miRNAs) are non-coding RNAs with 
endogenous regulatory functions found in eukaryotes 
that are about 19–25 nt in length [9]. According to the 
competing endogenouse RNA (ceRNA) theory, miR-
NAs can be conjugated to their targeted mRNAs to 

inhibit their translation or result in mRNA degradation, 
thereby accomplishing the function of post-transcrip-
tional regulation of gene expression [10]. The wide-
spread influence of miRNA on mRNA expression and 
its potential value as a disease biomarker or therapeutic 
target has made miRNAs a significant area of basic bio-
logical and translational research, with its main appli-
cation prospects focusing on disease therapy, molecular 
markers, and synthetic miRNAs [10–13]. Given the 
progress in the realm of bioinformatics and related 
tool-based databases, miRNA sequencing technology 
has grown into a powerful approach for identifying 
and quantitatively resolving miRNAs, circumventing 
the limitations of other measures. Some studies have 
revealed the IVDD-associated ceRNA regulatory 
network. Hu P et  al. [14] used miRNA microarray 
data from the GEO database to select 9 differentially 
expressed microRNAs in IVDD and obtained a regu-
latory network containing 3 up-regulated microRNA 
target gene pairs and 4 down-regulated microRNA tar-
get gene pairs based on the TargetScan database. Cao 
S et  al. [15] used AUC validation and lasso regression 
together with SVM screening features to construct 
key ceRNA regulatory networks related to oxidative 
stress and identified two pairs of ceRNA regulatory 
axes (PKD1-miR-20b-5p-AP000797 and CCNB1-miR-
212-3p-AC079834). However, a common issue in 
related studies is the absence of the corresponding 
external validation and the prediction of only miRNA-
mRNA pairs. Our study has predicted the target miR-
NAs of key mRNA sets and validated them accordingly 
by miRNA microarray data in GEO, leading to more 
credible conclusions.

The immune microenvironment in IVDD is another 
immune target for IVDD treatment from the perspec-
tive of immune infiltration. In conclusion, IVDD inter-
vention and treatment based on the gene-molecular 
level is currently a trend in this area of research, which 
focuses on the ways to screen for prevalent and signif-
icant genetic markers in IVDD. In our study, this will 
be used as the starting point. First, the linear model 
was used to initially screen out the differential gene 
sets. External data was subsequently used to screen 
out the key gene sets with diagnostic values using the 
best subset regression method. The ssGSEA method 
was used to obtain related immune infiltration scores 
and four machine learning models were established to 
demonstrate the predictive ability for IVDD Thomp-
son grades. Finally, the spatial distribution of key genes 
was analyzed in IVDD disc tissue using single-cell tran-
scriptome sequencing data, which will provide reliable 
evidence for potential future therapeutic targets for 
IVDD.
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Methods
Acquisition and preprocessing of data
The mRNA and miRNA expression data of IVDD 
patients were obtained from Gene Expression Omni-
bus (GEO) database [16] (http://​www.​ncbi.​nlm.​nih.​
gov/​geo/), which serves as a functional public genom-
ics database that includes high-throughput sequencing 
data, single-cell sequencing data, and microarray data. 
GSE147383 (4 young controls with 4 elderly patients) 
and GSE34095(3 young controls with 3 elderly patients) 
were used for screening and enrichment analysis of 
DEGs. GSE23130 (23 disc tissue samples with differ-
ent Thompson grades) and GSE70362(48 disc tissue 
samples with different Thompson grades) were com-
bined into one expression matrix as an external data 
for regression analysis, machine learning models, and 
ssGSEA immune infiltration analysis. GSE63492 (5 
controls versus 5 patients) was subjected to micro-
RNA expression profiling to filter out miRNAs with 
meaningful differential expression. GSE160756 is a 
single-cell sequencing data containing 3 NP,2 CEP, and 
2 AF samples from human intervertebral discs using 
the 10X Genomics Kit, in which a total of 91,295 cells 
were sequenced. Pre-processing and quality control 
included the following steps: i) The “GEOQuery” [17] 
and “Bioconductor” [18] packages in R (4.2.1) were 
used to directly obtain the expression matrix, gene 
annotation files, and corresponding clinical profiles. 
Probe sets were converted to gene symbols accord-
ing to the annotation files of the platform. Probe sets 
without corresponding gene symbols were removed, 
and the maximum expression values for different probe 
sets targeting the same gene were retained. ii) Boxplots 
were plotted for each expression matrix to recognize 
batch effects. Principal component analysis (PCA) and 
hierarchal clustering were carried out to identify intra-
group differences and remove outlier samples based on 
the “ggplot2” package. iii) For the batch effect between 
samples, the “NormalizeBetweenArrays” function 
was used to remove them; For combined GSE23130 
and GSE70362, the batch effect was eliminated using 
the “combat” function. Both functions were from the 
“limma” package [19]. iv) For GSE160756, the “Seurat” 
package [20] was used to perform the analysis, and 
the concurrent counts of the same tissue were merged 
using the “harmony” package [21]. According to the 
distribution of gene expression (at least 300 genes 
detected per cell) and mitochondrial gene expression 
(max 10%), the single-cell transcriptome sequencing 
data were filtered. The data were log-normalized using 
the “NormalizeData” function with a scale factor of 
10,000 and were then normalized across all cells using 
the “ScaleData” function.

Identity DEGs and functional enrichment analysis
The limma package [19] was used to construct a gener-
alized linear model to screen the differential genes. For 
GSE147383 and GSE34095, the cut-off thresholds were 
|log2FC|> 1 and p-value < 0.05. Heatmaps and volcano 
maps of DEGs were plotted using the “ggplot2” and 
“pheatmap” packages; The intersection of DEGs from 
the two array datasets was taken to yield the final DEG 
set. GO terms composed of molecular functions (MFs) 
and biological processes (BPs) were applied based on the 
“clusterProfiler” package [22] of R. Statistical significance 
was set at P < 0.05.

Definition of key genes set using a best subset selection 
regression
The external validation data was sourced from GSE23130 
and GSE70362. The data were merged for analysis 
because both chips are produced by Affymetrix. The 
expression matrix of 72 IVDD patients containing the 
Thompson classification was obtained. Thompson grades 
I-II were defined as low degeneration grades, while 
grades III-V were considered as high degeneration grades 
as a primary outcome variable. Our subsequent analysis 
would be based on that data. The best subset selection 
for variable screening was employed due to the possibil-
ity of multicollinearity among the first screened DEGs, 
which could result in overfitting of the model if all of 
them were included in the modelingmodelling. The fun-
damental approach entails fitting a model to every con-
ceivable combination of predictor variables, followed by 
a selection process that prioritizes the best model for 
each variable based on a set of standards (e.g., R2, cor-
rected R2, MSE, Cp, AIC, SBIC, etc.), whose advantages 
included traversing all possible feature combinations, so 
the filtered features must be optimal [23, 24]. By doing so, 
genes with predictive value in DEGs were selected, which 
was defined as the Key Genes. The R packages “glmnet” 
[25] and “olsrr” were used in this step.

Machine learning modeling
Using the key gene set as the independent variable, 4 
supervised machine learning methods, namely, logistic 
regression, support vector model (SVM, with a nonlin-
ear kernels radial basis function), randomForest (RF), 
and extreme gradient boosting (XGBoost), were applied 
to build predictive models. The combined data were 
randomly divided into training and validation sets at a 
ratio of 7:3. The training set was used to train the model, 
which was subsequently used for predictions using the 
validation set. In this model, gene expression values are 
used as continuous predictor variables. These super-
vised learning methods included nonlinear classification 

http://www.ncbi.nlm.nih.gov/geo/
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and linear regression. The model was established using 
the following R packages: “e1071”, “randomForest” and 
“XGBoost”. A 3-fold cross-validation was chosen to train 
the XGBoost classifier. The validation set data was used 
to assess the reliability of the model based on the area 
under the curve (AUC) values of the receiver operating 
characteristic (ROC) curve with the “pROC” package.

In vitro experimental validation (qPCR and Western Blot)
“AF needle puncture” method was used to construct 
a IVDD model in rats. Sprague-Dawley rats (Female, 
age = 8-week-old, weight = 200–250  g) were purchased 
from the Animal Laboratory of Shanxi Provincial Peo-
ple’s Hospital. The rats were randomly divided into IVDD 
group (n = 4) and sham group (n = 4). The rats were 
anaesthetised using an intraperitoneal injection of pento-
barbital (3.5 mg / 100 g). After confirming that the rats 
were under anaesthesia, a longitudinal incision was made 
in the lower abdomen in the supine position. Lumbar 
intervertebral discs in IVDD group rats were exposed via 
the posterior peritoneum and psoas. An intraoperative 
radiograph was used to confirm the localisation of the 
L5/6 disc. We used a 21 g puncture needle to penetrate 
parallel to the AF of the L5/6 disc. Depth of puncture 
is approximately 4  mm. After puncture, rotate the nee-
dle for 1 turn, hold the needle for 30 s after rotation and 
then pull out the needle. Rats in sham group were treated 
only to expose the lumbar intervertebral discs. The rats’ 
peritoneum, fascia and skin were sutured layer by layer. 
Penicillin was administered intramuscularly to the rats in 
both groups for 5 consecutive days after surgery (800,000 
U/kg*d). At 8  weeks later, all rats were euthanised with 
excess carbon dioxide and lumbar spine MRI scanning. 
All procedures and protocols related to experimental ani-
mals were approved by the Medical Ethics Committee of 
Shanxi Medical University.

We used Trizol reagent (Jiangsu Biyuntian Biotechnol-
ogy Institute, Nantong, China) to extract total RNA from 
homogenised rat intervertebral disc tissues. We used the 
PrimeScript™ RT Master Mix (Perfect Real Time) kit 
to configure the reverse transcription system (TaKaRa, 
Japan). We used SYBR™ Select Premixes to configure the 
reaction system and then performed qPCR. IVDD group 
and sham group were set up with 3 compound holes. 
(Applied Biosystems). The primers for each gene are as 
follows: GREM1(5ʹ- > 3ʹ): Forward primer: CGG​CAC​
TTT​CCT​TCG​TGT​TC, reverse primer: GCC​GTG​CGA​
TTC​ATT​CTG​TC; LRPPRC (5ʹ- > 3ʹ): Forward primer: 
CAG​TTA​GGC​ACC​GTG​TAC​GA, reverse primer: GCC​
TCT​GGT​ATG​TCA​CTC​GG; SLC39A4(5ʹ- > 3ʹ): For-
ward primer: GGG​CCG​TGT​GAA​AAG​TGT​CT, reverse 
primer: GGC​GGC​ACT​GAG​GTA​AGT​AA; GAPDH 

(5ʹ- > 3ʹ): Forward primer: GGG​CCG​TGT​GAA​AAG​TGT​
CT, reverse primer: GGC​GGC​ACT​GAG​GTA​AGT​AA.

The rat intervertebral disc tissue samples were washed 
in PBS to remove blood and muscle tissue and then 
homogenised in the configured RIPA buffer for protein 
extraction. Protein concentration was measured using 
BCA method (Jiangsu Biyuntian Biotechnology Insti-
tute, Nantong, China). Protein blotting was performed 
according to standard procedures. We selected 4–12% 
SDS-polyacrylamide electrophoresis (SDS-PAGE) pre-
cast gel (Jiangsu Biyuntian Biotechnology Institute, Nan-
tong, China) for separation of denatured proteins. PVDF 
membranes and QuickBlock™ Blocking Buffer were also 
purchased from Biyuntian Biotechnology Institute. Fol-
lowing primary antibodies were used: GREM1 Mono-
clonal antibody (sc-515877, Santa Cruz Biotechnology, 
CA), LRPPRC Polyclonal antibody (21175-1-AP, Protein-
tech, USA), ZIP4(SLC39A4) Polyclonal antibody (20625-
1-AP, Proteintech, USA), GAPDH Polyclonal antibody 
(10494-1-AP, Proteintech, USA). The following second-
ary antibodies were used: HRP-conjugated Affinipure 
Goat Anti-Rabbit IgG(H + L) (SA00001-2, Proteintech, 
USA), HRP-conjugated Affinipure Goat Anti-Mouse 
IgG(H + L) (SA00001-1, Proteintech, USA). Analysis of 
protein bands was conducted using ImageJ software and 
data analysis was performed using the Prism 8 software.

Immune infiltration analysis based on ssGSEA
A single sample enrichment analysis (ssGSEA) based 
on the “GSVA” package was used [26] to calculate the 
enrichment fraction of immune cells. Each enrichment 
fraction represents the extent to which genes in a par-
ticular gene set are up- or down-regulated in our exter-
nal validation data. Marker information for immune cells 
from the article of Pornpimol Charoentong et  al. [27], 
revealed the related genetic phenotypes of immune cell 
infiltration. The “pheatmap” package was used to obtain 
the abundance matrix of immune cells, the correlation 
matrix of immune cells with degenerate grades and key 
genes, and plot heatmaps for visual analysis.

Targeted miRNA selection and validation
First, the target miRNAs of key genes were identified by 
miRNet (http://​www.​mirnet.​ca/) database, which was 
developed to build miRNA–mRNA target networks. 
GSE63492 contains miRNA expression information 
of disc tissues from patients with IVDD and controls. 
The same method was used to screen for differentially 
expressed miRNAs in IVDD patients using the “limma” 
package. The cut-off threshold for this purpose was a 
p-value of < 0.05. Finally, the intersection of the above two 
miRNA sets was taken and miRNAs whose expression 
trends were opposite to those of their targeted mRNAs 

http://www.mirnet.ca/
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were extracted. It could be assumed that the miRNA-
mRNA pairs that were predicted in this way were more 
reliable.

Cellular fractionation and analysis in different tissues 
of IVDD
After preliminary processing, single-cell sequencing 
data for NP, AF, and CEP of human intervertebral discs 
in GSE160756 was obtained [28]. A two-step clustering 
method was used to cluster the cells after confirming 
that the batch effects within the same tissue were initially 
decreased using the uniform manifold approximation 
and projection (UMAP) method. Linear PCA clustering 
was followed by UMAP clustering, and the final results 
were visualized using UMAP plots. Cell type annota-
tions are defined by the “SingleR” package [29]. Visuali-
zation of the space expression distribution of key genes 
was conducted using violin plots and UMAP plots. GSEA 
analysis of different cell clusters were conducted using 
“clusterProfiler” package. Pathways and Gene Ontology 
annotations were retrieved from Molecular Signature 
database (MSigdb). The “monocle2” package was used to 
analyze cell lineage relationships.

The flow chart for our study is listed as follows (Fig. 1).

Results
Screening of DEGs
Based on the results of PCA and hierarchical cluster-
ing (Fig.  2), the following samples were discarded: 
GSM841717 in GSE34095 and GSM4429813 in 

GSE147383. The boxplot results show an essentially 
uniform distribution within the normalized expres-
sion matrix (Fig.  2). For GSE147383, 299 differen-
tially expressed genes relative to normal controls were 
screened, of which 173 were up-regulated and 126 were 
down-regulated (Fig. 3). As for GSE34095, 119 differen-
tially expressed genes were screened, of which 103 were 
up-regulated and 15 were down-regulated (Fig. 3). Then 
the intersection of both the DEGs and 6 common genes 
taken (LRPPRC, GREM1, XPO1, HNRNPA2B1, UGP2, 
SLC39A4) were used in the following analysis. LRPPRC, 
GREM1, XPO1, HNRNPA2B1 and UGP2 were up-regu-
lated while SLC39A4 was down-regulated.

Functional enrichment of both DEGs
GO enrichment analysis of DEGs in GSE34095 and 
GSE147383 was carried out. The GO terms whose 
p-value < 0.05 were selected and arranged in descending 
order according to gene counts. The terms in the DEGs 
were listed separately and visualized using bubble plots 
(Fig.  4). 3 terms in common were found: GO:0062023, 
GO:0008278 and GO:0010008 which were on behalf of 
collagen-containing extracellular matrix, cohesin com-
plex and endosome membrane.

Results of key genes and corresponding external validation
The dataset combined by GSE23130 and GSE70362 was 
regarded as independent external expression data for fur-
ther analysis. The boxplot showed that the batch effects 
were mostly moved (Fig. 5a). The 6 obtained DEGs were 

Fig. 1  Flowchart
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Fig. 2  Data quality control for GSE34095 (a, b, c) and GSE147383 (d, e, f): a, d PCA plot b, e boxplot. c, f Hierarchical clustering by complete-linkage

Fig. 3  DEGs for GSE34095 (a, b) and GSE147383 (c, d) where blue represents down-regulated and red represents up-regulated genes: a, c Heatmap 
b, d Volcano map. Venn diagram showing the intersecting DEGs from GSE147383 and GSE34095 (e)
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incorporated into the best subset regression model, and 
the correlation indexes of the accuracy and fit of the 
model with different numbers of variables were obtained 
(Fig. 5b, c and d). It could be concluded that the model fit 

best when 3 variables were included, and was relatively 
accurate. Finally, LRPPRC, GREM1 and SLC39A4 were 
selected as key genes.

Fig. 4  Go term enrichment results in GSE34095 (a) and GSE147383 (b)

Fig. 5  Boxplot of combined GSE147383 and GSE70362 after processing with the “combat” function (a). Results of the best subset selection 
regression: b The model that incorporates LRPPRC, GREM1 and SLC39A4 has the highest adjusted R square value. c, d The effect of the number 
of variables on the performance of each model
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The predictive capability of key genes is evaluated by 
4 types of supervised machine learning methods. The 
ROC plots showed different results in the validation set 
when using different classifiers (Fig. 6). The AUC value of 
the logistic regression classifier reached 0.7857143 while 
the same for SVM, RandomForest and XGboost were 
0.6938776, 0.6071429 and 0.622449 respectively, which 
showed that key genes had some predictive power for 
the defined group divided by Thompson grades in either 
linear or non-linear models. The nomogram of logistics 
was plotted and the incnodepurity and gain values in 
RandomForest and XGboost, were ranked which could 
be considered proportional to the significance of the 
variable (Fig. 6). It could be inferred that GREM1 had the 
greatest weight among all models.

qPCR and Western Blot results
We performed a preliminary validation of the 3 key 
genes at the RNA level and protein level based on animal 
experiments (Fig. 7a, b). MRI scanning showed degenera-
tive changes in the discs of the target segments of the rats 
in the IVDD group after 8 weeks (Fig. 7c). As expected, 
qPCR results showed that GREM1, LRPPRC expres-
sion were significantly up-regulated in the intervertebral 
discs of rats in IVDD group, while the expression level of 
SLC39A4 was significantly down-regulated (Fig.  7e). As 
complementary analyzes, Western Blots and quantitative 

analyses likewise confirmed part of our view that GREM1 
protein was likewise more abundant in IVDD group 
(Fig.  7d, f ). Although the expression trends of LRPPRC 
protein and SLC39A4 protein were similarly in line with 
our predictions, the differences were not statistically sig-
nificant (Fig. 7f ). Full-length blots are presented in Sup-
plementary Material 4.

Screening for targeting miRNAs
An interplaying miRNA-mRNA network was built 
using the miRNet database regarding LRPPRC, GREM1 
and SLC39A4 including 139 miRNAs and 153 nodes 
(Fig.  8a). The same method as screening for DEGs was 
followed to handle with GSE63492. GSM1551029 in 
GSE63492 was deleted because they were identified as 
outlier samples in the hierarchical clustering (Fig.  8b). 
124 miRNAs with significantly different expressions 
(p-value < 0.05) were identified. 7 common items were 
obtained by comparing the result predicted by miRNet 
with the miRNAs obtained from the dataset (Fig.  8c). 
mRNA-miRNA pairs with expression trends opposite to 
the target mRNA or with multiple opposite targets were 
selected in the degenerate disc tissues and found statis-
tically significant differences were noted in the down-
regulated expression of miR-665 (p-value = 0.0023) and 
miR-107 (p-value = 0.0202) in degenerating discs com-
paring compared to normal tissues (Fig.  8d, f ), which 

Fig. 6  ROC plots and according AUC values in the validation set for: RandomForest (a), Logistic regression (b), SVM (c), XGboost (d). Visualization 
of related models: Nomogram for logistic regression (e), incnodepurity (f) and gain value (g) contrast for Randomforest and XGboost
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Fig. 7  Experimental results of IVDD/Sham rats: a Subxiphoid localisation of rat spinal segments before surgery. b Puncture of intervertebral discs 
of anaesthetised rats in IVDD group using a 21G puncture needle. c MRI of the rats in IVDD group at 8 weeks after surgery showed varying degrees 
of reduction in disc signals and intervertebral space heights in the target segments. e Comparison of relative expression content of target mRNAs 
in Sham and IVDD groups. d, f Protein blotting bands and quantification of target proteins from Sham and IVDD groups

Fig. 8  a Predicted target miRNAs for key genes by miRNet database including 139 miRNAs and 153 nodes. b Hierarchical clustering for GSE63492, 
indicating that GSM1551029 are identified in opposite groups. c The venn diagram of GSE63492 and results from database, showing 7 items 
in common. Differential expression of miR-665 (d), miR-484 (e), miR-107 (f) and miR-103a-3p (g) in IVDD and control groups



Page 10 of 18Zhang et al. BMC Musculoskeletal Disorders          (2023) 24:729 

were considered to be targets for GREM1 and LRPPRC. 
Interestingly, an additional fact was ascertained: For 
LRPPRC and SLC39A4 whose expression trends were 
opposite, miR-484 (p-value = 0.0493) and miR-103a-3p 
(p-value = 0.0408) were thought to be regulatory to both 
genes (Fig.  8e, g). These 4 miRNAs may have critical 
modulatory roles for key genes.

ssGSEA immune infiltration results
An infiltration score scale for immune cells was obtained 
based on the paper (Supplementary material 1 in sup-
plementary materials). The heatmap revealed the level 
of infiltration of immune cell disc samples with dif-
ferent Thompson grades (Fig.  9a). In order to provide 
a better contrast between the infiltration of different 
immune cells in the samples, the samples were grouped 
into low-level (Thompson grade I-II) and high-level 
(Thompson grade III-V) and were visualized as box 
plots (Fig.  9b). The two plots presented here confirmed 
that the distribution of effector memory CD4 T cell 
(p-value < 0.05), immature B cell (p-value < 0.05), type 1 
helper T cell (TH1, p-value < 0.05), type 17 helper T cell 

(TH17, p-value < 0.05), myeloid-derived suppressor cells 
(MDSC, P-value < 0.01), immature dendritic cell (hiDCs, 
p-value < 0.01), macrophage (p-value < 0.01), plasmacy-
toid dendritic cells (pDC, p-value < 0.01) was statistically 
significantly different between the two groups. Another 
heatmap also showed the links between our key genes 
and immune cells (Fig.  9c). The role of key genes in 
immune infiltration was confirmed. Correlation analysis 
showed that all 3 key genes were negatively correlated 
with the proportion of infiltrating immune cells. It can be 
inferred that the trends of GREM1 with pDC, hiDCs and 
SLC39A4 with immature B cells are consistent with the 
development of IVDD.

Spatial distribution of key genes
A portion of the low-quality cells was filtered as per the 
expected method and the batch effect was successfully 
removed from the combined samples in GSE160756 
(See supplementary materials 2 and 3 for details about 
the quality control step). The cell clusterings in the three 
UMAP maps were automatically annotated according to 
the “SingleR” package (Fig.  10a, b, c). Accordingly, the 

Fig. 9  a Heatmap result: grades 1 to 5 represent the Thompson grade from I to V and the cool and warm colours symbolise the level of immune 
cell infiltration. b Boxplot: The horizontal axis represents the 28 immune cells from the literature and the vertical axis represents the infiltration 
fraction of different types of immune cells. c Heatmap of the correlation between key genes and immune cells: Green represents a negative 
correlation, red represents a positive correlation; The number of “*” is shown to indicate the magnitude of the level of statistical significance 
between groups: “***” means p-value < 0.001 “**” means p-value < 0.01, “*” means p-value < 0.05, “ns” means no significant difference
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spatial expression of LRPPRC, GREM1 and SLC39A4 
was visualized in these three tissues (Fig.  10). It can be 
inferred that these three genes have different distribu-
tions within different cell clusters.

Using UMAP and violin plots, a significant spatial dif-
ference in GREM1 in chondrocytes of NP was found. 
Based on the information of violin diagram, the chondro-
cyte clusters were divided into 3 subgroups according to 
the expression level of GREM1: Chondrocytes 1 to 4 were 
defined as “High GREM1” group, chondrocytes 5 and 6 
were defined as “Medium GREM1” and chondrocytes 7 
and 8 were defined as “Low GREM1”. Gene Set Enrich-
ment Analysis (GESA) was used to explore the potential 
biological functions behind the differential expression 
of GREM1 in chondrocytes. Several pathways and Gene 
Ontology annotations that were thought to be associated 
with the pathological progression of IVDD were selected 
for GSEA analysis, which included ECM (Extracellular 
Matrix) receptor interaction, ECM glycoproteins, forma-
tion of elastic fibres and organization of ECM [30–33]. 
The result of GSEA showed that “Low GREM1” group 
had significantly higher enrichment scores than “High 
GREM1” group in all of the above gene sets (Fig.  11). 
Accordingly, it could be assumed that with the increasing 
of GREM1 expression in chondrocytes, the NP gradually 
progressed gradual degenerative changes.

The R package “monocle2” (v.2.18.0) was used to con-
duct the pseudo-time series analysis between those 3 
chondrocyte subgroups (Fig.  12). “Low GREM1” group 
was defined as the biological starting point for pseudo-
time based on aforementioned conclusion. The results 
suggested that the level of GREM1 and the differentia-
tion trajectory of NP chondrocytes were generally con-
sistent. GREM1 may exacerbate the degeneration of NP 
cells in IVDD. The top 50 genes that had the most sig-
nificant variation with pseudotime were obtained based 
on this and plotted the corresponding heat map was plot-
ted (Fig. 10d). Based on the clustering results, the genes 
can be broadly classified into up-regulated and down-
regulated types. Enrichment analysis was conducted for 
both types of those genes (Fig. 12e, f ). It can be seen that 
down-regulated genes are mainly associated with the 
Amoebiasis pathway, TGF-β signaling pathway, fibronec-
tin binding etc. In contrast, up-regulated genes are asso-
ciated with ribosome metabolism, 5S rRNA binding and 
ubiquitin−protein transferase regulator activity and so 
on.

Discussion
IVDD is a prevalent degenerative condition with a com-
plex etiology that presents numerous difficulties for 
both society and medicine. It is crucial to investigate 

Fig. 10  SingleR-based annotation of cell populations of AF (a), CEP (b) and NP (c) containing subpopulations of chondrocytes with different marker 
genes and some monocytes, stem cells, fibroblasts, and endothelial cells. The UMAP plots and violin plots about the spatial distribution of LRPPRC, 
GREM1 and SLC39A4 in AF (d, e), CEP (f, g) and NP (h, i). The blue bar depth indicates the counts of genes
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the underlying processes of IVDD and define it with 
more precise characteristics that will enable clinical 
diagnosis and early management [34]. With the pro-
gress in research methods, disease markers will be 
targeted based on sequencing data, leading to the full 
elucidation of their hidden mechanisms and opera-
tional characteristics. 2 independent GEO microar-
ray datasets (GSE34095 and GSE147383) were used 
for the screening of DEGs and hundreds of DEGs were 
screened and identified. A large number of relevant 
entries were enriched using GO enrichment analysis. 
Among the overlapping GO terms were collagen-con-
taining extracellular matrix, cohesin complex and 
endosome membrane. The ECM [35, 36] is defined as 
a complicated macromolecular network composed of 
collagen, proteoglycan, cohesin and several other gly-
coproteins that not only plays a supportive, protective 
and nutritional role for tissue cells, but is also closely 
related to basic life activities such as cell proliferation, 
differentiation, metabolism, recognition, adhesion and 
migration. Degradation of the intervertebral disc ECM 
is one of the main pathological changes of IVDD in 
several studies [37, 38]. Yao M et al. [39] used Marein 
as a protective agent against intervertebral disc ECM 
degeneration and effectively resisted apoptosis of NP 
cells. Neidlinger-Wilke C et al. [40] revealed that ECM 
remodeling altered the mechanical microenviron-
ment of the IVDD thereby compromising disc func-
tion. Endosomes are small vesicles produced by cells 
through endocytosis and this sorting function is essen-
tial for critical cellular functions [41]. The biological 
processes of the majority of DEGs are confirmed by our 

enrichment results, which also give a theoretical foun-
dation for further investigation.

Previous research frequently exclusively employed the 
microarray data from the disease group and the control 
group for simple difference comparison analysis when 
investigating the genetic biomarkers of diseases. Future 
bioinformatics studies must delve deeper into statistical 
findings based on existing clinical and biological theory. 
2 other datasets (GSE23130 and GSE70362) were used 
that included Thompson grades of IVDD to validate the 
DEGs. Thompson grading system is a common and well-
established tool to evaluate degenerative abnormalities 
on T2-weighted sagittal MRI in daily clinical practice. It 
differentiates IVDD into 5 levels based on the signal of 
the central NP and peripheral NF and the height of the 
intervertebral space. The Thompson grades were included 
as outcome variables for assessing DEGs. One way that 
external data can contribute is by preventing false posi-
tive or negative results. However, using Thompson grades 
also increases the applicability of the findings to clini-
cal practice. The idea of variable screening of prediction 
models to further screen out genes with predictive value 
was then applied. With fewer variables included, a best 
subset selection regression was used and our final 3 key 
genes based on Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC) were identified. 
The maximum AUC for prediction models combining 
these 3 genes can reach 0.78, as shown by the ROC plots, 
indicating that the key genes in our screen are predictive 
of the progression of IVDD’s disease course.

The key genes were analyzed based on existing data-
bases such as GeneCards (http://​www.​genec​ards.​org/). 

Fig. 11  GSEA results for differential genes in “Low GREM1” group (a, b, c, d) and “High GREM1” group (e, f, g, h)

http://www.genecards.org/
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Leucine-rich pentatricopeptide repeat containing 
(LRPPRC) encodes a kind of leucine-rich protein that 
has multiple pentatricopeptide repeats (PPR) [42]. The 
role of this protein is unknown and may play a role in 
cytoskeletal organization, vesicular transport, or in 
transcriptional regulation of both nuclear and mito-
chondrial genes. Various studies demonstrate that high 
expression of LRPPRC is associated with poor progno-
sis in a variety of malignancies, such as bladder urothe-
lial carcinoma [43], lung cancer [44] and pancreatic 

cancer [45]. Maimaiti et al. [46] defined LRPPRC as an 
N6-methyladenosine (m6A) modification for intrac-
ranial aneurysms. Ghavami S et  al. [47] reported that 
LRPPRC was associated with multiple neurodegenera-
tive diseases via autophagy and apoptosis. In our study, 
LRPPRC is considered to be upregulated in the degen-
erated disc tissue and expressed in endothelial cells and 
fibroblasts in addition to different types of chondro-
cytes. Accordingly, it is speculated that LRPPRC may 
also be involved in the pathological changes of IVDD in 

Fig. 12  Monocle2-based pseudotime trajectory colored by GREM1 expression subgroup (a), pseudotime (b) and seurat-based cell clusters (c). 
Pseudotime-related genes heatmap (d) and corresponding Go term enrichment results of down-regulated genes (e) and up-regulated genes (f)
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an autophagic or apoptotic pathway, with the involve-
ment of multiple cells.

Gremlin1 (GREM1) is known as a member of the 
transforming growth factor-β (TGF-β) signaling fam-
ily encoding antagonists to bone morphogenetic protein 
(BMP) which potentially plays a role in the regulation 
of organogenesis, body patterns and tissue differentia-
tion and its related pathways include mainly angiogen-
esis (CST) and BMP signaling [48, 49]. HKišonaitė M 
et  al. [50] concluded that GREM1 could inhibit BMP2-
mediated osteoblast differentiation from in  vitro stud-
ies. Kobayashi H et  al. [51] identified GREM1 and Islr 
as CAF-specific genes involved in BMP signaling and 
derived Colorectal Carcinogenesis. Shunlun Chen et  al. 
[52] found that GREM1 promoted myeloid apoptosis and 
IVDD by inhibiting TGF-β-mediated Smad2/3 phospho-
rylation, which is coherent with our findings. Although 
the function of BMP in IVDD is unclear, it is character-
ized by a variety of and versatility in BMP as well as its 
signal pathways and inhibitors. Hollenberg AM et  al. 
[53] demonstrated a correlation between the expression 
level of BMP-2 and Thompson grades, while Hascht-
mann D et al. [54] concluded that BMP-2 resulted in an 
up-regulation of Col I and type II, and of aggrecan gene 
expression. According to most recent studies, BMP may 
promote AF ossification. The effectiveness of BMP on the 
overall disc tissue is still unknown, hence it is unclear if 
it may serve as treatment for IVDD. It was inferred from 
the prediction models that GREM1 was the strongest 
predictor among the 3 genes so it will also be the center 
of our research and discussion afterwards. Our study 
first proved the potential of GREM1 as a gene marker for 
IVDD, which is also in line with several previous studies 
[55, 56]. GREM1 can affect cellular function by multi-
ple mechanisms in addition to acting as a type of BMP 
inhibitor [57–59]. Whether GREM1 could also promote 
the development of IVDD is another area that warrants 
academic attention.

SLC34A4 encodes a member of the zinc/iron-regulated 
transporter-like protein (ZIP) family which localizes to 
cell membranes and is required for zinc uptake in the 
intestine. Metal ion SLC transporters and the Transport 
of inorganic cations, anions, and amino acids/oligopep-
tides are two of its related pathways (http://​www.​genec​
ards.​org/). The main diseases associated with SLC39A4 
are Acrodermatitis Enteropathica [60], Zinc-Deficiency 
Type Acrodermatitis [61], and there are relatively few 
studies other than the aforementioned two conditions. 
Zinc is a necessary element for humans and is involved 
in the upkeep of numerous metabolic processes. Recent 
research has connected metabolic modifications to cell 
fate. Liang J et  al. [62] discovered that type II alveo-
lar epithelial cell ZIP8 deficiency in young mice results 

in reduced precursor cell function and impaired self-
renewal. Chen PH et  al. [63] identified an unexpected 
role for ZIP7 in Ferroptosis by maintaining endoplasmic 
reticulum homeostasis. These findings may have thera-
peutic implications for diseases involving iron death 
and zinc dysregulation. The connection between genes 
involved in zinc metabolism and IVDD has not been 
extensively studied. Staszkiewicz R et al. [64] investigated 
the relationship between the concentration of local metal 
ions in the patient’s disc tissue and the degree of progres-
sion of IVDD. They discovered that the strongest rela-
tionships were noted between the concentrations of zinc. 
It is hypothesized that abnormalities in SLC39A4 cause 
an imbalance in zinc metabolism inside and outside the 
disc tissue cells, which may promote IVDD through sev-
eral pathways, including programmed cell death. Our 
study suggests that the down-regulation of SLC39A4 may 
be another significant feature of IVDD. Additional exper-
imental verification is required to determine the precise 
mechanism and principle.

Current studies on miRNAs in IVDD have confirmed 
that a variety of miRNAs play critical roles in the pro-
cess of IVDD through apoptosis, aberrant proliferation, 
inflammatory response and ECM degradation [65–67]. 
Another major research interest in miRNA is its impor-
tant role in exosome therapy [68]. Exosome therapy 
is achieved by direct in  vitro injection of extracellular 
vehicles (EVs) containing miRNAs or by building vec-
tors to intervene in cellular metabolism using paracrine 
signaling regulation [69, 70]. However, caution must be 
exercised when studying the application of miRNAs, as 
miRNA-mRNA and miRNA-miRNA regulatory pathways 
may not similar in different tissues [71], and misuse may 
lead to an imbalance in the ceRNA regulatory network. 
In this study, meaningful mRNA-miRNA pairs (GREM1-
mir-665, LRPPRC-mir-107, LRPPRC/SLC39A4-mir-484, 
LRPPRC/SLC39A4-miR-103a-3p) were screened for 
these 3 key genes by combining the miRNA target pre-
diction database miRnet and external miRNA microar-
ray dataset GSE63492. The application and validation of 
these miRNAs require additional experimental.

The pattern of immune infiltration is another crucial 
issue. Our findings on the immune infiltration by ssGSEA 
in patients with various Thompson grades demonstrate 
a decreased infiltration of effector memory CD4 T cells, 
pDC, and hiDCs and increased infiltration of TH1, TH17, 
MDSC, macrophage, and pDCs in disc tissues of high 
degeneration grade as compared to low degeneration 
grade. The concomitant association of GREM1, hiDCs, 
and SLC39A4 with immature B cells is noteworthy. On 
the one hand, infiltration of immune cells in degener-
ated discs can further amplify the inflammatory cascade 
response [72, 73], and on the other hand, immune cells 

http://www.genecards.org/
http://www.genecards.org/
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may lead to vascular invasion and the release of neuro-
genic factors [74]. Our study confirmed the involvement 
of some immune cells in IVDD and provided potential 
mechanisms [75, 76]. However, the role of dendritic cells 
(DCs) in IVDD has not been extensively studied. It is 
hypothesized that the migration and antigen-presenta-
tion functions of DCs are critical for disc tissue inflam-
mation initiation and tolerogenic immune responses [77]. 
Future experimental investigations must test the afore-
mentioned hypothesis.

There are still many limitations in the current study. 
For instance, the Thompson grades were demarcated 
based on our clinical experience which reduced the 
detail of the outcome variables and was constrained by 
the sample size. We integrated data from multiple GEO 
datasets, increasing the sample size on the one hand. 
However, this might also affect the results due to the het-
erogeneity of patients or donors (age, gender, location 
of the intervertebral discs, underlying disease, or other 
unforeseen biases due to batch effects, etc.). The trend 
in LRPPRC predicted by logistic regression is the oppo-
site of that screened by the linear model, which might 
be due to the different definitions of IVDD in different 
datasets. In the future, the expression of key genes or 
proteins under different grades should be studied based 
on Thompson grades. Second, no equivalent degenerated 
group was included in the study of single-cell transcrip-
tome data. P-values were used to screen for significant 
miRNAs, which could have entailed may result in a 
degree of false positives. Additionally, the cells were pri-
marily separated into chondrocytes and non-chondro-
cytes during the single-cell sequencing clustering step. 
We have performed initial validation of key genes at the 
RNA and protein level. Our Western Blot results do not 
confirm the difference in protein levels between LRPPRC 
and SLC39A4 which may be due to the small sample size 
and more experiments are still needed in the future. Our 
future studies will incorporate other omic approaches 
that incorporate genomics, proteomics and metabo-
lomics, complemented by more experiments, to more 
fully address the relevant role of IVDD biomarkers.

Conclusions
In conclusion, 6 DEGs of IVDD were identified by dif-
ferential analysis of microarray data, and 3 key genes 
(GREM1, SLC39A4, LRPPRC) were screened by exter-
nal data validation. The prediction models using four 
machine learning methods: SVM, RF, XGBoost, and 
Logistic Regression were validated. Finally, the immune 
infiltration of key genes was analyzed using the method 
of ssGSEA and the immune infiltration pattern of IVDD 
in combination with Thompson grades were predicted. 

The upstream miRNAs of key genes were predicted 
using miRNet and external data and the distribution of 
key genes in NP, AF, CEP was analyzed using single cell 
sequencing data. The change in GREM1 expression for 
the distinct transcriptional states was compared using 
pseudo-time analysis. Our study offers a new perspec-
tive to identify credible and effective gene therapy tar-
gets in IVDD.
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