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Abstract

Scarcity of labels for medical images is a significant barrier for training representation learning 

approaches based on deep neural networks. This limitation is also present when using imaging 

data collected during routine clinical care stored in picture archiving communication systems 

(PACS), as these data rarely have attached the high-quality labels required for medical image 

computing tasks. However, medical images extracted from PACS are commonly coupled with 

descriptive radiology reports that contain significant information and could be leveraged to pre-

train imaging models, which could serve as starting points for further task-specific fine-tuning.

In this work, we perform a head-to-head comparison of three different self-supervised strategies 

to pre-train the same imaging model on 3D brain computed tomography angiogram (CTA) 

images, with large vessel occlusion (LVO) detection as the downstream task. These strategies 

evaluate two natural language processing (NLP) approaches, one to extract 100 explicit radiology 

concepts (Rad-SpatialNet) and the other to create general-purpose radiology reports embeddings 

(DistilBERT). In addition, we experiment with learning radiology concepts directly or by using 

a recent self-supervised learning approach (CLIP) that learns by ranking the distance between 

language and image vector embeddings. The LVO detection task was selected because it requires 

3D imaging data, is clinically important, and requires the algorithm to learn outputs not explicitly 

stated in the radiology report.

Pre-training was performed on an unlabeled dataset containing 1,542 3D CTA - reports pairs. 

The downstream task was tested on a labeled dataset of 402 subjects for LVO. We find that the 

pre-training performed with CLIP-based strategies improve the performance of the imaging model 

to detect LVO compared to a model trained only on the labeled data. The best performance was 

achieved by pre-training using the explicit radiology concepts and CLIP strategy.
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1. INTRODUCTION

Scarcity of high quality labeled medical imaging data is a major hurdle for the development 

of machine learning models, and especially for deep neural networks. This is because data 

annotation is a manual and time-consuming process that can be expensive and necessitates 

medical expertise. Medical imaging data is typically stored in a picture archiving and 

communications system (PACS) server, to facilitate storage and sharing. In addition to 

images, PACS also store radiology reports that contain significant information that could be 

leveraged to pre-train imaging models with large datasets and no manual labeling. Several 

model pre-training and self-supervision approaches have been proposed to reduce model 

dependency on larger annotated datasets [1, 2, 3]. Recent studies [4, 5] have shown that the 

network can be trained without any explicit data annotation by joint modeling of radiology 

reports and medical images. These approaches have been using pre-trained imaging models 

and 2D X-ray images and, with a downstream task closely resembling what has been 

explicitly described in the radiology reports. It is not clear how self-supervised strategies 

trained on radiology reports would work on more complex downstream tasks and with 3D 

image data.

Here, we use 3D Brain CT angiography (CTA) data with a large unlabeled dataset 

containing radiology reports, and a smaller labeled dataset with Large vessel occlusion 

(LVO). LVO is the obstruction of large, proximal cerebral arteries which accounts for 24–

46% of acute ischemic stroke (AIS), when including both A2 and P2 segments of the 

anterior and posterior cerebral arteries [6]. Significant brain regions are frequently damaged 

by the involvement of proximal vasculature, leading to significant neurological impairments. 

LVO is never explicitly mentioned in the reports and its detection requires the use of 3D-

based feature representation as vessel occlusions can happen in any direction and cannot be 

visible from 2D slices evaluated independently. We experiment with three different strategies 

using the same imaging model backbone and compare them to a model trained only on 

labeled data. In the first strategy, we use a natural language processing (NLP) model, 

Rad-SpatialNet [7], to extract 100 explicit concepts from the reports and use them as a 

target for pre-training the imaging network with a cross-entropy loss; in the second strategy, 

we use the DistilBERT NLP model [8] to generate a radiology report vector embedding 

and then pre-train the imaging model by minimizing the image model vector embeddings 

to the matching report vector embeddings using the CLIP strategy [9], which is a recently 

developed type of contrasting learning for language–image training; in the third strategy, 

we pre-train the imaging model using the explicit concepts from reports, as in the first 

experiment, but this time by using the CLIP strategy to minimize the distance between the 

image model vector embeddings to the vector embeddings generated by the explicit concepts 

from reports. The performance of these different strategies demonstrated that explicit labels 

are not required to perform well on interpretation tasks when corresponding radiology 

reports/concepts are used for pre-training. This could be because the reports are naturally 

labeled and can provide a natural source of supervision. The LVO detection task was 

selected because it requires 3D imaging data, it is clinically relevant, and because radiology 

reports will not verbatim state the presence of an LVO. To the best of our knowledge, our 
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approach is the first to compare and contrast pre-training strategies using radiology reports 

and 3D imaging data.

2. MATERIALS AND METHODS

Materials:

The data for LVO detection includes unlabeled data (brain CTA images with corresponding 

radiologist reports) and labeled data (brain CTA images without any reports). This study was 

performed in accordance with the guidelines from the Helsinki Declaration and under IRB 

HSC-MS-19–0630 approved by the University of Texas Health Science Center at Houston 

(UTHealth Houston) IRB and Memorial Hermann Hospital. The unlabeled dataset contains 

1542 subjects. The labeled dataset contains 402 ischemic stroke subjects, 170 without LVO 

and 232 with LVO. The data was acquired at Memorial Hermann hospital system, Houston, 

Texas, USA. LVO labels were manually extracted from the stroke center’s radiologist reports 

where LVO is defined as an occlusion in the ICA, M1, M2, A1 brain vasculature, high-grade 

stenosis, or near-complete occlusions that are not considered LVOs.

Method:

Figure 1 depicts the network architecture with four distinct experiment pipelines. Let LI

and y represent the CTA image and label from the labeled dataset, and UI and UT  represent 

the CTA image and text report from the unlabeled dataset. ΔE
I  and ΔE

T as the image and text 

encoder in stage 1 respectively to learn image and text feature representations I1 UI; ΔE
I  and 

T UT ; ΔE
T ⋅ ΔC

I  is the image encoder used in stage 2, to learn image feature representations 

I2 LI; ΔC
I . In all experiments, the same image encoder backbone, a standard 3D ResNet18, is 

used.

Supervised classifier (SC):

The network for SC consists of an image encoder that has been trained on the labeled 

dataset. Given brain CTA images from the labeled dataset Lj
I  and corresponding labels 

yj ∈ 0, 1 , j = 1, 2, …, n (n is the number of CTA images), the goal is to learn mapping 

Lj yj that correctly classifies a brain CTA image as having LVO yj = 1  or no LVO yj = 0 . 

The weights for the image encoder were randomly initialized. The image representations 

generated by the image encoder are then passed to the decision layer which is a fully 

connected layer. The binary cross entropy (BCE) was used as the loss function for training 

the classifiers and the image encoder on the labeled data.

Supervised multi-label classifier (SMC):

First, NLP concepts were extracted using a two-stage relation extraction model [10], where 

the first stage extracts concepts (e.g., findings, devices, anatomical locations, spatial trigger 

terms), and the second stage connects the concepts through relations as well as identifying 

other secondary concepts (e.g., distance, laterality, negation). The underlying machine 

learning model used for each stage is a BERT [11] question-answering-style information 

extraction (QA-as-IE) approach. See [7] for more information on the underlying Rad-
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SpatialNet schema. The radiology reports described both brain and neck CTA acquisitions, 

since the images used were pre-processed to include the brain only, we removed any 

radiology concept referring to non-brain areas.

The SMC network consists of an image encoder that is trained as a multi-label classification 

problem on the labels extracted from NLP-extracted concepts. Given brain CTA images 

from the unlabeled dataset Uj
I  and corresponding multi-labels zji ∈ 0, 1 , j = 1, 2, …, n (n 

is the number of CTA images) and i = 1,2,…100, the goal is to learn mapping Uj zji

that correctly classifies a brain CTA image as having one or more of the multi-label which 

signifies the presence of LVO. Multi-label cross entropy (CE) was used as the loss function 

for training the image encoder:

LSMC(ΔE
I , Uj, zj) = − ∑

i = 0

99
zji logz i(I1(Uj

I; ΔE
I)) (1)

where z is the predicted class probability. Here, the unknown class labels were ignored while 

calculating CE loss. Then, using labeled data, the downstream task (stage 2) was trained and 

tested in the same manner as the SC method, with the only difference being that the weights 

are not initiated randomly, but rather copied from stage 1.

Self-supervised classifier (SSC):

The SSC network consists of an image encoder and a text encoder that were trained on 

images and reports from unlabeled datasets using CLIP. Given brain CTA images from the 

unlabeled dataset Uj
I  and corresponding text report Uj

T , the goal is to learn a mapping 

Uj
I Uj

T that correctly classifies a brain CTA image as having LVO or no LVO. The 

image features Ue
I  and the text features Ue

T  are represented as 2048 and 768-dimensional 

vectors, respectively. A separate projection module was used to make the encodings have a 

similar shape (256 in our case). Then CLIP-based loss was then used as the loss function 

for jointly training the image and text encoders. The logits and target are calculated as 

logits = sim Ue
I, Ue

T /τ and targets = σ sim Ue
I, Ue

I + sim Ue
T, Ue

T /2 * τ . Where sim(·, ·) is the 

similarity measurement defined as dot ⋅ , ⋅ ⋅⊤  where ⊤ is the transpose function, and τ is 

the temperature parameter, which is τ = 1. Then, using labeled data downstream task (stage 

2) was trained and tested in the same manner as the SC method, with the only difference 

being that the weights are not initiated randomly, but rather copied from stage 1.

Self-supervised classifier using multi-labeled data (SSCM):

The SSCM network consists of an image encoder trained on images and a structured 

variational encoder whose input is multi-label data used as features. The network is trained 

on the unlabeled dataset using CLIP. Given brain CTA images from the unlabeled dataset 

Uj
I  and corresponding NLP-extracted concepts zji

T , the goal is to learn a mapping Uj
I zji

T

that correctly classifies a brain CTA image as having LVO or not. The image features 

Ue
I  and the structured variational encoder features ze

T  are represented as 2048 and 16-

dimensional vectors, respectively. A separate projection module was used to make the 

encodings have a similar shape (256 in our case). Then a CLIP-based loss function was 
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then used as the loss function for joint training. The logits and target are calculated as 

logits = sim Ue
I, ze

T /τ and targets = σ sim Ue
I, Ue

I + sim ze
T, ze

T /2 * τ . Where τ = 1. Then, using 

labeled data, the downstream task (stage 2) was trained and tested using labeled data in the 

same manner as the SC method, with the only difference being that the weights are not 

initiated randomly, but rather copied from stage 1.

Pre-processing:

The skull stripping in each CTA volume was performed using the FSL-based pipeline 

described in [12] and then linearly registered to a common template with 1mm isometric 

voxels and image resolution of 182×218×182. All image registrations were manually 

checked for errors, when registrations errors were found, the images were not included 

in the dataset.

For the radiologist reports, we extracted the impressions section, since it contains a 

concise summary of the entire report. Text from reports was tokenized using the DistilBert 

Tokenizer. Two special tokens, CLS and SEP, were added to the actual input tokens. These 

special tokens indicate the beginning and end of a sentence. To capture the entirety of a 

sentence, we used the CLS token’s final representations, and this representation captures the 

overall meaning of the sentence.

Implementation Details:

The network architectures include a 3D ResNet18 [13], for the image encoder and a 

DistilBERT [8] for the text encoder. The 3D ResNet18 weights were not initialized using 

any type of external datasets, such as ImageNet. We used DistilBERT pre-trained on the 

Book-Corpus dataset in a self-supervised setting. This model is uncased (e.g., does not 

differentiate between “disease” and “Disease”). The image encoder has a base size of 33 

million parameters and 70 layers of architecture, with 18 deep layers. The text encoder 

employs text embeddings with a maximum token length of 200. We used the Adam to 

minimize the loss with a learning rate of 0.0001 and 0.00001 for stage 1 and stage 2 

respectively. The model has a batch size of 14 and is trained for 100 epochs. All of the 

images from the unlabeled dataset are used for training stage 1 and the labeled dataset is 

divided into train (60%), validation (20%), and test set (20%). This same data split is used 

for stage 2 of all four experiments. The final model performance is evaluated on the test 

set. In both stages, the validation mean area under the ROC (AUC) after each epoch is 

calculated, and the best model checkpoint is saved if the model outperforms the previous 

best model during training.

3. RESULTS

We used the AUC for our model evaluation. Table 1 gives the AUC score for SC, SMC, 

SSC, and SSCM networks. The AUC obtained for the self-supervised network using reports 

(0.80) and multi-label data as features derived from NLP-extracted concepts from reports 

(0.75) is better than the supervised network on binary data (0.73) and multi-label data (0.64). 

In self-supervised models, the SSC model recognizes the presence of LVO better than the 
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SSCM model, which signifies the NLP-extracted concepts from reports might not capture as 

much information as the radiologist reports themselves.

4. DISCUSSION AND CONCLUSION

Self-supervised strategies to pre-train medical image computing models using radiology 

reports have the potential of enabling researchers to leverage large amounts of unlabeled 

data, reducing the need for labeled datasets and the inefficiencies caused by extensive 

labeling efforts. In this work, we performed a head-to-head comparison of three different 

self-supervised strategies to pre-train the same imaging model on 3D brain CTA images, 

with LVO detection as the downstream task. The first strategy (SMC) evaluated an NLP 

approach with extracted radiology concepts as target labels. The second (SSC) and third 

(SSCM) strategies experimented with reports embeddings and NLP-extracted radiology 

concepts by using a self-supervised learning approach (CLIP) that learns by ranking the 

distance between language and image vector embeddings. Our results indicated that both 

pre-trained models using CLIP achieved higher performance compared to a model trained 

only on the labeled data. Specifically, the SSC and SSCM methods achieved an AUC +0.07 

and +0.02 AUC points above that of the fully supervised model (SC). Surprisingly, the SMC 

model achieved lower performance than SC, this is likely due to a local minimum in the 

pre-training phase which cannot be overcome by the smaller learning rate used during the 

fine-tuning. Increasing the learning rate would lead to similar performance as SC, however, 

this would not be a head-to-head comparison with the other strategies.

The image encoder used is a standard 3D ResNet not specialized for LVO detection, other 

architectures [14, 15, 16] can lead to higher absolute performance, however, we decided 

not to use them to better evaluate any gains on a general 3D convolutional neural network 

that has not been specifically optimized for the downstream tasks, whose specialized design 

could bias the findings.

In addition, we did not evaluate the imaging model performance as a zero-shot learner by 

inputting text prompts to the text encoder as described in [4]. This is because it would have 

only be possible in the SSC approach, not allowing a head-to-head comparison, and it would 

have been severely limited by the fact that LVO is rarely explicitly stated in the radiology 

report making the design of the text prompt a challenge.

In future work, we will train Rad-SpatialNet on CTA reports for improving the text encoder, 

evaluate other strategies to initialize the model weights, and we will investigate the potential 

of SSC and SSCM with general-purpose image encoders based on vision transformers and 

other downstream tasks with alternative 3D imaging modalities such as MRI.
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Fig. 1. 
Four training strategies compared. Stage 1 is the training pipeline with the unlabeled 

dataset. The model learns features from raw radiologist reports, which serve as a natural 

source of supervision. Stage 2 is the training pipeline with the labeled dataset. SC: 

supervised classifier, SMC: supervised multi-label classifier, SSC: self-supervised classifier, 

and SSCM: self-supervised classifier using multi-labeled data.
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Table 1.

AUC score for SC, SMC, SSC, and SSCM networks.

Approach SC SMC SSC SSCM

AUC 0.73 0.64 0.80 0.75
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