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ABSTRACT
Overfitting describes the phenomenon where a highly predictive model on the training data gen-
eralizes poorly to future observations. It is a common concern when applying machine learning 
techniques to contemporary medical applications, such as predicting vaccination response and dis-
ease status in infectious disease or cancer studies. This review examines the causes of overfitting and 
offers strategies to counteract it, focusing on model complexity reduction, reliable model evaluation, 
and harnessing data diversity. Through discussion of the underlying mathematical models and 
illustrative examples using both synthetic data and published real datasets, our objective is to 
equip analysts and bioinformaticians with the knowledge and tools necessary to detect and mitigate 
overfitting in their research.
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Introduction

Machine learning (ML) and statistical modeling have 
become important tools in modeling medical data and 
prediction of disease outcomes and vaccination responses 
in immunological research.1–5 However, the application of 
ML algorithms necessitates caution. A common occur-
rence in misusing ML algorithms is overfitting, which 
arises when a predictive model fits well to training data 
but performs poorly on new data due to excessive model 
complexity.6,7 The implications of overfitting in medical 
research can result in the erroneous publication of immu-
nological markers that are highly predictive on the train-
ing data but generalize poorly to untouched test datasets. 
Put another way, overfitted models perform well in their 
respective studies, but do not generalize to novel datasets. 
To this end, recognizing and avoiding common pitfalls 
that can lead to overfitting in contemporary immunologi-
cal research is of paramount importance.

This review delves into the prevalent scenarios that 
contribute to overfitting and then presents strategies to 
counteract its effects. We structure the content into three 
primary themes:

● The double-edged nature of model complexity.
● Reliable model evaluation.
● Harnessing data diversity.

Our objective is to provide analysts and bioinformaticians 
with the concepts and tools required to detect and cir-
cumvent overfitting in their modeling and analysis endea-
vors, informed by the latest advances in statistics and 
machine learning.

Double-edged nature of model complexity

Model complexity, which quantifies the complexity of a model 
and its fit to the training data, is a crucial concept in under-
standing the phenomenon of overfitting. A predictive model’s 
complexity increases with increased number of independent 
features, such as analytes. Model complexity also increases 
when a more intricate model architecture is used, such as 
comparing linear regression to a deep neural network. 
Modern immunological studies have enabled access to a vast 
array of tens of thousands of analytes. In addition, off-the-shelf 
machine learning tools have facilitated easy access to non- 
linear modeling for capturing the interactive effects among 
biological processes.8 Both of these trends have given rise to 
more complex and flexible models and reduce the training 
errors which measure the estimation error of the response on 
the training data. However, a flexible model does not always 
lead to improved prediction accuracy on new data (referred to 
as test data) not used during model fitting.

On the one hand, a more complex model might have 
a smaller test error which measures the prediction error of 
the response on the untouched test data. This is achieved by 
reducing the model bias which measures the distance 
between the expected/average estimated models and the 
underlying true model. Here, the averaging of the estimated 
models is done across models constructed using repeated 
regenerations of training data. On the other hand, it is 
important to note that fitting a more complex model also 
introduces a higher model variance in the prediction func-
tion. That is, if the training data were regenerated indepen-
dently, the resulting fitted model could differ substantially. 
This interplay between model complexity, model bias, and 
model variance is commonly referred to as the bias-variance
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tradeoff. This offers a clear mathematical perspective on how 
model complexity affects the prediction performance on 
novel test data: while an overly simplified model might fail 
to capture strong predictive relationships and lead to under-
fitting, excessively high model complexity can cause the 
model to overfit by excessively fitting to the noise in the 
training data, thereby compromising its performance 
(Figure 1a).

The effects of underfitting and overfitting become evident 
when evaluating the model on novel datasets. For instance, if 
we employ ordinary least squares (OLS) to fit a linear regres-
sion model with an equal or greater number of features than 
the features in the training dataset, the model can usually 
perfectly explain the response in the training cohort. 
However, such models often fail to generalize well when pre-
dicting outcomes for new test samples. The same overfitting 
issue may happen when adopting a highly non-linear model. 
Another example described in a study by Peng et al.9 involves 
the use of support vector regression to forecast COVID-19 
cases in severely affected countries, employing both linear 
and non-linear predictive models. While the non-linear fit 
demonstrated superior performance during training, it was 
the linear fit that achieved the best results on the test data. 
These two examples emphasize the need for caution when 
employing machine learning models in medical decision- 
making.

Finally, to illustrate the issue of overfitting in the immuno-
logical application, we present Example 2.1 where xgboost10,11 

was employed to identify common immune signatures that 
predict antibody responses using a recently curated database.

Example 1. Consider the identification of common PBMC 
transcriptomics signatures for predicting antibody responses

Figure 1. (a) Examples of underfitting, appropriate-fitting, and over-fitting a machine learning model to a training cohort. Underfitting oversimplifies the relationship 
between predictive features whereas over-fitting fails to generalize to novel test cohorts that were not used to train the machine learning model. (b) Schema for 
effective training of a predictive model, including data preparation, model training, model evaluation and selection, and finally test performance evaluation. Tools for 
good machine learning practice provided are further explored in the manuscript.

Figure 2. Training AUROC and validation AUROC for predicting high/low respon-
ders (y-axis) using xgboost against the training rounds (x-axis). It shows the 
model performances in training or cross-validation as the training rounds 
increased (increased model complexity) and compares the prediction perfor-
mance when using trees with depth being 1 (low non-linearity) or 6 (high non- 
linearity).
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across 13 different vaccines by Fourati et al.,7 covering live 
viruses, inactivated viruses, and glycoconjugate vaccines, col-
lected by the Human Immunology Project Consortium 
(HIPC) as the Immune Signature Data Resources.14 We 
demonstrate the phenomenon of overfitting by constructing 
models with varying complexity using the 500 most variable 
genes to separate high-responder (267 participants) from low- 
responder (265 participants) groups, defined from discretizing 
maximum fold change antibody responses (day 28/day 0). To 
evaluate how well the model generalizes to new test samples, 
we split the data into the training set and the validation set, 
with the model trained using only the training and classifica-
tion accuracies recorded for both the training and the valida-
tion. This scheme was repeated five times, and results were 
averaged to increase the evaluation stability. The classification 
accuracy is measured by area under the receiver operating 
characteristic (AUROC), with higher value indicating better 
classification. Figure 2 displays the training AUROC and vali-
dation AUROC of prediction models trained from xgboost 
over the training rounds, with the tree depth being 1 or 6. At 
each training round, xgboost constructs a tree of depth 1 or 6 
to improve the current fit and aggregate the newly constructed 
tree into the prediction model to increase model complexity. 
As the training rounds increased, the predictions within train-
ing samples achieved high accuracy, with AUROC improving 
for both tree depths. However, the validation AUROC is much 
lower. Selecting a model with highest training AUROC can 
lead to overfitting where the validation AUROC is worse 
compared to earlier training rounds. Furthermore, the model 
with a tree depth of 6 quickly overfitted from the inclusion of 
highly non-linear. It achieved almost perfect training AUROC 
but achieved worse validation AUROC than the simpler 
xgboost model with a tree depth of 1.

Ideally, the objective is to construct a model that strikes 
a favorable tradeoff between model bias and model variance, 
thereby achieving an appropriate level of fitting for good 
prediction performance on the test samples (Figure 1a). In 
this review, we discuss three important aspects of good 
practices for appropriate model fitting: model training, 
model selection, and evaluation (Figure 1b). Finally, we 
review the utilization of data diversity and its application 
to avoiding overfitting.

Model complexity reduction

Learning the available strategies to effectively control or reduce 
model complexity is an important step in taking full advantage 
of the wide array of machine learning tools. Here, we review 
model complexity reduction approaches based on regulariza-
tion and dimensionality reduction.

Regularization

Regularization is one of the most widely used techniques for 
reducing the model complexity of prediction models. Given 
a loss function, which is the user-specified objective that mea-
sures the goodness of model fit, e.g., mean-squared error is the 
loss function for OLS, the standard regularization involves 

adding a penalty term to the loss function to discourage the 
model from learning overly complex patterns. As a concrete 
example, let xi and yi be the observed p analytes and response 
for training sample i, with i ¼ 1; . . . ; n, for n total samples. 
Regularized linear regression considers the following regular-
ized loss function: 

Lλ βð Þ ¼
1
2

Xn

i¼1
xiβ � yið Þ

2
þ λJ βð Þ;

where β is a vector contains the coefficients of the linear model 
and βj is the coefficient for analyte j for j ¼ 1; . . . p, and J βð Þ is 
the regularization or penalty term to encourage simpler β, 
thus, a less complex model. λ is the amount of penalty 
included, with larger λ favoring a simpler model. Some of the 
popular forms for J βð Þ are listed below.

● Best subset selection defines J βð Þ ¼
Pp

j¼1 βj

�
�
�

�
�
�

0 
with βj

�
�
�

�
�
�

0 

being 0 if βj is 0 and 1 otherwise. It penalizes the number 
of non-zero entries in β. The problem of best subset 
selection can be difficult to solve in general.12 There 
have been many approximation algorithms for this pur-
pose. For example, forward stepwise selection can be seen 
as a greedy algorithm for the best subset selection.13

● Ridge (or l2) regularization defines J βð Þ ¼
Pp

j¼1 βj

�
�
�

�
�
�

2 
as 

the square sums of entries in β.14

● Lasso (or l1) regularization defines J βð Þ ¼
Pp

j¼1 βj

�
�
�

�
�
� to 

penalize sum of the absolute values of entries in β15

In the family of penalty loss J βð Þ ¼
Pp

j¼1 βj

�
�
�

�
�
�

α 
that penalizes 

the αth power of βj

�
�
�

�
�
�;the lasso penalty with α ¼ 1 is a special 

case because it is the turning point where we can encourage 
sparsity (a small number of non-zero entries in β) while being 
able to solve the problem effectively. That is, when α � 1, 
sparsity is encouraged in β, but it is difficult to solve the 
general problem exactly for all α< 1.

There are other types of regularization penalties proposed by 
statisticians. For example, the elastic net penalty16 considers 
a mixture of lasso penalty and ridge penalty to encourage spar-
sity and the co-selection of highly correlated features, which can 
be desirable in immunological applications for interpretation.17 

The grouped lasso penalty encourages the co-selection of fea-
tures from the same group specified by the users.18

The idea of regularization through penalty losses is also 
applicable to other non-linear machine learning techniques, 
such as boosting and neural networks. In addition, regulariza-
tion does not only come in the form of penalty losses. For 
example, dropout is a popular and effective technique to pre-
vent overfitting in neural networks.19 At each updating step 
during training, a percentage of nodes and connections from 
the neural network are randomly dropped. This can also be 
viewed as training with an adaptive regularizer that incorpo-
rates the effect of artificial feature noising.20

Early stopping is another technique used to train machine 
learning models, including boosting and neural networks, to 
prevent overfitting by stopping the training process before the 
model starts to overfit the training data.7,21 This procedure can
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be viewed as a form of implicit regularization with effects 
similar to ridge regularization in some cases.22,23

Dimension reduction

Dimension reduction can also be an effective way to reduce 
model complexity and is commonly used in contemporary 
immunological studies. It has been one of the main techniques 
for working with high-dimensional immune profiles, such as 
high-dimensional transcriptomics or complex multi-omics 
observations.24–26 Dimension reduction addresses the chal-
lenge of high dimensionality by constructing low- 
dimensional factors to capture data variation from available 
omics. These factors can be used for both biological interpre-
tation and prediction tasks of interest (Figure 3).27,28 Working 
with low-dimensional factors helps to alleviate potential over-
fitting issues because the number of features, and therefore 
model complexity, is reduced.

Matrix factorization provides core concepts for dimension 
reduction with high-dimensional data and serves as the foun-
dation of many dimension reduction tools for omics and 
multi-omics analyses in immunological studies. Suppose we 
have collected observations for p analytes across n samples and 
denote the observed matrix as X 2 R n�p for these n samples 
and p analytes. The number of analytes, p; is often large. The 
central goal of matrix factorization is to approximate X by the 
product ofa factor matrix U 2 R n�K and a loading matrix 
V 2 R p�K for some K much smaller then p :

X � UV`:

The factor matrix is constructed for capturing the variation 
across n samples using K factors (columns in U), and the 
loadings matrix describes each factor’s influence on the ana-
lytes (columns in V). For example, in gene expression analysis, 
it can identify groups of genes that may be involved in 

underlying biological processes or functions, with factors cap-
turing the variation of these processes across samples.

Widely used matrix factorization techniques principal com-
ponent analysis (PCA) and single-value decomposition 
(SVD)29,30 derive U such that U can explain the maximum 
amount of variance across features in X. Non-negative matrix 
factorization (NMF) requires additionally that U and V con-
tain only non-negative values, which was originally proposed 
to work with image data where this non-negativity constraint 
leads to better interpretability.31 The sparse PCA algorithm 
imposes that columns in V have sparse non-zero entries, 
which can lead to higher quality estimation in high dimensions 
and often improved interpretability by highlighting a smaller 
set of features for each factor.32 There are many other variants 
of PCA for dimension reduction that could prove useful in 
analyzing omics data, such as hub-feature identification which 
identifies a small subset of hub-features as drivers of the 
systematic level changes33,34 and autoencoder methods for 
dimension reduction with non-linear model architectures.35

Of note, the concept of matrix factorization is frequently 
combined with co-expression networks in omics analysis.36,37 

For instance, the widely used weighted correlation network 
analysis (WGCNA)38 approach first identifies modules as non- 
overlapping subsets of co-expressed genes or other features 
and uses the eigenvectors for genes from each module to 
capture variability of features in the given module.

Given the increasing availability of large-scale multi-omics 
data, it is crucial to perform dimension reduction appropri-
ately with multi-omics observations. While matrix factoriza-
tion approaches can be directly applied after concatenating 
features from different omic assays, this is generally not advi-
sable due to the varying dimensionality and data properties 
from different technologies. For example, instead of using 
WGCNA on concatenated data, it has been suggested to per-
form a two-step procedure where we first apply WGCNA to

Figure 3. An illustration workflow of multi-omics dimensionality reduction. (a) Multi-omics assays are profiled from the same cohort, resulting in multi-omics profiles for 
the same N samples. (b) P biological analytes are condensed via dimensionality reduction into the construction of low-dimensional factors, consisting of factor loadings 
and factor scores. Factor loadings are coefficients that indicate which biological analytes are contributing to construction of the each factor. (c) All N samples from the 
cohort are assigned a score for each of the K factors, resulting in the factor scores matrix. (d) The resulting factor scores can be used as machine learning features to 
predict responses of interest in a prediction model.
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individual omics assays and align different assays as a second 
step.39

Many popular matrix-factorization-based approaches have 
been developed for dimension reduction with multi-omics 
data, such as JIVE40 as a generalization of PCA, jNMF and 
iNMF as generalizations of NFM.41–43 Multi-omics integration 
methods based on Bayesian factor models have also gained 
popularity, which enables flexible modeling of different omic 
data types and introduction of suitable priors. Multi-omics 
integration tools like iCluster,44 iClusterBayes,45 and 
MOFA46,47 employ such Bayesian factor models.

A different perspective for dimension reduction is taken by 
Canonical correlation analysis (CCA),48 which extracts factors 
to capture co-varying patterns between two matrices instead of 
aiming for the maximization of explained variance as in matrix 
factorization. This idea can be useful by connecting different 
types of omics together to form a more comprehensive picture 
of the underlying biology. For instance, Li et al.28 linked 
metabolomic profiles with transcriptomic profiles using CCA 
to gain an improved understanding of vaccination response. 
This concept has been generalized to work with multiple data 
blocks simultaneously, and we consider all methods based on 
the generalization of CCA as belonging to the generalized CCA 
(GCCA) family. GCAA has motivated the development of 
several multi-omics integration methods such as multiple co- 
inertia analysis (MCIA),49,50 regularized GCCA (rGCCA),51,52 

and multi-block sparse CCA (msCCA).53

In this direction, supervised dimension reduction techni-
ques have been proposed to identify factors predictive of 
responses of interest.54–59 In multi-omics analysis, for exam-
ple, DIABLO58 includes the response matrix as another assay 
in dimension reduction using GCCA, while SPEAR59 priori-
tizes the construction of factors in a Bayesian multi-omics 
factor model. To some extent, we can view supervised dimen-
sion reduction as preventing overfitting by using regulariza-
tion to deviate from the meaningful data variation directions.

Reliable model evaluation and selection

In the previous section, we discussed many popular techniques 
for model complexity reduction, which can effectively avoid 
overfitting. Equally important is the reliability of model eva-
luation, crucial for parameter tuning, model selection, and 
understanding the prediction model and its usefulness. In 
this section, we will review model evaluation methods and 
discuss potential pitfalls.

AIC, BIC, and additive randomization

Akaike Information Criterion (AIC)60 jointly considers the 
goodness-of-fit and model complexity, measured by the num-
ber of parameters in the model: 

AIC ¼ �
2
n
� loglik þ 2 �

s
n
;

where loglik is the achieved log-likelihood summed over all n 
training samples, and s is the number of parameters used to 
characterize model training. For instance, if we consider 
a linear regression model where the noise follows a standard 

normal distribution, then, 2n � loglik becomes the mean-squared 
error in OLS and s is the number of features used in the linear 
model. In this case, the AIC statistic is equivalent to Mallow’s 
Cp statistic,61 whose expectation is unbiased for the prediction 
error. In general, the AIC aims to achieve this unbiasedness. 
Hence, by design, lower AIC statistics indicate better fitting of 
models, which can be very useful for selecting among compet-
ing models.

However, AIC may not always achieve this goal in practice. 
One significant issue in using AIC is determining s, as it is 
common that the number of parameters appearing in the 
trained model, does not always reflect the actual complexity 
of the model’s training process.

Bayesian Information Criterion (BIC)62 adopts a similar 
form to AIC, with more penalization on s: 

BIC ¼ �
2
n
� loglikþ p �

s
n
;

where p is the total number of parameters. Since p> 2 in most 
settings, it penalizes complex models more heavily and favors 
the selection of simpler models compared to AIC. Despite the 
similarity between BIC and AIC, BIC has a different motiva-
tion. Approximately, selection of the model with minimum 
BIC is equivalent to choosing the model with the largest 
posterior probability in the Bayesian framework.63

Determining s to reflect the model complexity can be chal-
lenging at times, even in the linear regression setting as 
demonstrated in Example 3.1.

Example 2: Suppose that x 2 R 1000 is a vector contains 1000 
features, where each feature xj is generated from a standard 
normal distribution for j ¼ 1; . . . ; 1000, and the response 
y ¼ x1β1þ ε depends only on the value of the first feature. 
Independent noise εð Þis then generated from a standard nor-
mal distribution. Figure 4a,b show training errors, AIC, BIC, 
and prediction errors as well as error estimates from the 
additive randomization method (see later) for forward step-
wise selection with subset size 0 � s � 10, averaged over 10 
random repetitions.

The issue with using AIC and BIC in Example 2 arises from the 
fact that the model at each subset size s is not fixed but 
adaptively constructed and selected from the data, which is 
common with high-dimensional data. Following the endeavor 
of AIC to perform a fair evaluation of the bias-variance trade- 
off, the additive randomization method64 was proposed to 
measure the prediction performance among competing mod-
els regardless of complex training and selection procedures. 
The core idea of additive randomization is to construct rando-
mized responses yþ and y� as shown below, 

yþ ¼ yþ αω ¼ μþ εþ αω; y� ¼ y �
1
α

ω ¼ μþ ε �
1
α

ω;

where μ ¼ μ xð Þ is the underlying signal depending on the 
feature value x, and ω is additional additive noise from 
a standard normal distribution generated by the analyst, 
which is used in the construction of responses yþ and y�
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after multiplying by the scalers α and 1
α respectively. This 

particular form of construction guarantees the mutual inde-
pendence between yþ and y� . Motivated by such an observa-
tion, the additive randomization method uses yþ for all model 
training, while using y� to measure the model predictive 
performance and select a final model with the smallest loss 
using y� . It is worth noting that only the relative loss values 
here are meaningful, as the absolute loss calculated from using 
y� does not resemble the true prediction error. In Figure 4, we 
have shifted the loss estimated with additive randomization 
such that the best model corresponds to a value of 1. Unlike 
AIC and BIC, the evaluations from using additive randomiza-
tion successfully identified the model with the best prediction 
performance in both experiment settings. The drawbacks of 
the additive randomization are threefold: (1) it is currently 
only applicable to linear regression problems with Gaussian 
data, (2) it requires knowledge of the noise distribution, and 
(3) the randomization renders higher variability, as seen in 
Figure 4.

Cross-validation

Cross-validation (CV) is a widely used technique for assessing 
the performance of machine learning models and model selec-
tion to prevent overfitting.65,66 Its popularity can be attributed 
to its conceptual simplicity, improvement of data utilization 
efficiency over sample-splitting, and wide applicability to all 
types of supervised machine learning models.

CV starts by dividing the training samples into K disjoint 
subsets (folds) randomly, usually of roughly equal size. For 
each fold K, CV evaluates the prediction accuracy of a training 
procedure by fitting it on the remaining K � 1ð Þ folds. For 
example, we may fit a Lasso regularized linear regression with 

penalty λ to the remaining K � 1ð Þ folds, with cβ� k being the 
estimated regression coefficient. Then, for each sample i, sup-
pose it in fold k ið Þ, let xnþ1; ynþ1ð Þbe its associated feature 
value and response. We then calculate the squared error loss 

with l� k ið Þ
i ¼ yi � x`

i
dβ� k ið Þ

� �2 

for all k ¼ 1; . . . ;K. The CV 

error is defined by pooling together all cross-validated 
errors l� k ið Þ

i : 

dErrCV ¼
1
n

Xn

i¼1
l� k ið Þ
i :

The CV error dErrCV is used as the evaluation for the trained 
model. By selecting a model with a small CV error from a set of 
competing models, we can select a relatively good model 
among them and mitigate overfitting. While AIC, BIC, and 
additive randomization estimate the prediction error with 
fixed feature values, CV aims to estimate the expected test 
error on new data as the both the features and response are 
independently generated together.7,67

A common choice for the number of folds is K ¼ 5 or 
K ¼ 10 as suggested by Kohavi et al.68 However, practitioners 
may want to use a larger K, even leave-one-out cross- 
validation which treats each sample as its own fold in CV, 
when the sample size n is small. The fold number K indicates 
a different kind of bias-variance tradeoff: when K is large, the 
per-fold model in CV has a comparable training sample size as 
the original model, thus, CV induces less learning bias due to 
reduced sample size; however, when K is large, the model 
similarity across folds becomes increased, and dErrCV has 
increased variability for estimating the expected test error.7

Practitioners should exercise caution when applying 
CV. Firstly, the estimated CV error of the selected model 
can be biased and an underestimation of the actual test 
error due to selection, especially when the space of candi-
date models is large.69 Guan and Tibshirani70 proposed 
a randomized CV, which combines CV with the idea of 
additive randomization, enabling unbiased test error esti-
mation after arbitrary selection in the CV procedure. 
Secondly, careless application of CV can fail even for 
model selection purposes. This often happens if there is 
unintended information leakage, in which data informa-
tion from the validation set is not perfectly hidden from 
practitioners during the training and leaked to practi-
tioners during model training. Here, we demonstrate that

Figure 4. A comparison of error estimate from additive randomization (denoted as “additive”), AIC, BIC, the true prediction error (denoted as “test”), and training error 
(denoted as “train”) in example 2. Panels a and B shows the results for β ¼ 0 and β ¼ 1; respectively as we vary the subset size (sÞ. The prediction performance in this 
example is not able to be tracked by the training error, AIC or BIC.
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information leakage invalidates CV under two most 
encountered settings in practice: (1) Explicit information 
leakage due to using response (e.g., feature filtering) out-
side the CV loop, and (2) Implicit information leakage due 
to unaccounted sample structure.

We first demonstrate that information leakage can hap-
pen when preprocessing steps occur before CV. Example 3 
is a simple demonstration built upon section 7.10.2 from 
Hastie et al.7 which highlights the danger of severe over-
fitting caused by analysis steps (e.g., feature filtering) out-
side of the CV loop.

Example 3: Suppose we have n ¼ 50 samples with half from 
class 1 and the other half class 2. Suppose we have p ¼ 5000 
quantitative features, such as gene expression levels, that are 
independently generated from the standard Gaussian distribu-
tion and are independent of the class assignment. Consider the 
following invalid but typical CV analysis strategy: (1) perform 
feature filtering by selecting d features with the largest associa-
tions with the response, (2) construct a one-nearest neighbor 
classifier (1NN) using the selected features. This CV scheme is 
invalid because the feature filtering step has used all data 
before CV is carried out. Since the data contains pure noise, 
we expect the test error to be 50%. However, as we vary 
d 2 10; 50; 100; 500; 1000; 2000; 3000; 4000; 5000f g, CV clas-
sification errors from step 2 are much lower than 50% when 
we adopt the feature filtering scheme and let d be smaller than 
5000 (Figure 5a).

When applying CV, it is also crucial to understand sample 
structures that may contribute to potential information 
leakage sources and account for them. Example 4 illustrates 
the importance of accounting for the sample structure 
when performing CV. In this example, a completely 

random splitting of samples into different folds results in 
an invalid CV scheme.

Example 4: The lipidomic breast cancer data from the lab of 
Livia Schiavinato Eberlin at UT Austin consist of 806 features 
measured on 15,359 pixels in tissue images from 24 breast 
cancer patients, and this data is used by Guan et al.37 The 
pixels are divided into two classes, the normal class and the 
cancer class, and we fit a regularized logistic regression model 
using each procedure. In this example, randomly splitting CV 
folds is an invalid scheme since pixels from the same patient 
reveal patient-specific information, and the resulting CV 
errors are over-optimistic for test error evaluation on samples 
from a new patient. Instead, a better CV scheme is to consider 
the stratified population structure and randomly split samples 
based on their patient ids. Indeed, we observe that the CV 
errors using random sample splitting to be much smaller than 
that using random patient-id splitting (Figure 5b), as a result of 
sample associations from the same patient.

Apart from such population stratification as demonstrated in 
Example 4, the random sample splitting scheme is also often 
invalid for time series data where the noises from nearby time 
points are often correlated. In this case, randomly sampling long 
blocks consisting of consecutive time points can usually alleviate 
this problem.71,72

These examples highlight the importance of the proper 
implementation of cross-validation. For practitioners who uti-
lize CV in their research, it is beneficial to think about the 
following questions when designing the CV scheme instead of 
blindly using the default choice:

(1) Are the samples independent or are they correlated 
with each other? If samples are correlated with each

Figure 5. A) CV evaluation using 1NN with feature filtering as described in example 3. The x-axis shows the number of remaining features after filtering (d) with 
d ¼ 5000 representing no-filtering, and the y-axis shows the misclassification error using CV. The actual test error should be 0.5 (red dashed line), which is much higher 
than the CV error in the presence of strong filtering (small d). B) CV evaluation with different randomization schemes using the lipidomic breast cancer dataset in 
example 4. The x-axis shows the logarithm of lasso penalty (λ), and the y-axis is the deviance loss. The achieved deviance when using CV with the stratified 
randomization grouped by patient id (in red) is considerably higher than that from using CV with the completely randomized scheme (in turquoise).
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other, correlated samples should be grouped together 
when constructing the CV folds, such as samples from 
the same patient, samples from consecutive time, etc.

(2) Has the information from the response been used out-
side of the CV loop? Any analysis utilizing the response 
itself is not allowed outside the CV loop. For example, if 
we use feature filtering as a preprocessing step before 
feeding data into the machine learning model, this must 
also be done using only samples excluding the fold 
under evaluation.

To further guard against potential negligence of using CV, 
alternative model-free approaches such as permutation-based 
analysis can be employed.73 Lu et al.74 used a random permu-
tation approach to assess the degree to which their modeling 
approach was susceptibly overfitting and raised the alert of 
over-training if the prediction accuracy is much better than 
random guess.

Finally, it is always beneficial to set aside a separate test 
dataset to mimic future independent observations. Similarly as 
in CV, the test dataset aims to contain independent samples 
from the remaining training data, for example, samples from 
the same patient are not shared by the test dataset and the 
training. Once set aside, the test dataset should not be used 
during the entire pipeline consisting of training, evaluation, 
model selection, and comparisons, and is only used for the 
final validation (Figure 1b). Evaluations on this independent 
test set can provide a reliable assessment of model perfor-
mance, and huge discrepancy between CV error and the pre-
diction error on the test set can help raise concerns about the 
adopted CV scheme.

Note that even if our cross-validation or other evaluations 
are not overfitted toward the noise, there is no guarantee that 
we will always achieve the same level of accuracy on a future 
dataset. For instance, the prediction errors on the test set could 
still be significantly smaller than the prediction error on 
a future dataset. This situation can arise if the future data 
introduce new sources of variation that were not present in 
the training data. For instance, measurements collected on 
COVID-19 infected patients in 2020 may not completely 
reflect the biology of new variants of interest, and a model 
trained on medical data collected from one hospital might not 
generalize well to another hospital.

Utilization of data diversity

The lack of reproducibility in generalizing discoveries to novel 
datasets is an issue that has been well recognized by the 
scientific community.75 Here, we ask the question: Can we 
mitigate overfitting toward certain environments to improve 
the prediction model’s generalizability to underrepresented or 
new environments?

In many instances, the prediction accuracy can increase 
significantly by increasing the volume of the training dataset. 
The power of data expansion goes beyond prediction improve-
ment solely based on the volume boosting. Previously, it has 
been shown that a suitable meta-analysis of multi-cohorts’ 
study can enhance the reproducibility of signature discovery 
via hypothesis testing.76 Similarly, the diversity of data could 

play a critical role in improving the generalization of the model 
to under-represented environments. For example, Fourati 
et al.5 and Hagan et al.77 considered the problem of identifying 
common immune signatures predictive of antibody response 
among 13 different vaccinations, leading to signatures with 
increased generalization potential.

Apart from data expansion efforts, we may further consider 
adapting machine learning approaches to explicitly utilize data 
diversity. Standard model training criteria involve empirical 
risk minimization (ERM), which aims to achieve overall high 
accuracy on another independently and identically generated 
test cohort, e.g., the test cohort behaves similarly as the train-
ing data with some newly generated data noise. However, 
models from ERM may perform poorly on certain subgroups 
of samples due to heterogeneous subpopulation structure and 
inclusion of non-generalizable predictive relationships.78–81 

Alternatively, we can construct models that favor uniformly 
good performance across different subpopulations rather than 
focusing on overall accuracy, often referred to as distributional 
robust optimization (DRO).81–86

Below, we describe a standard DRO where we find the 
model parameter β̂to minimize the loss (min

β
) in the worst 

subpopulation or group (max
g2G

): 

β̂ ¼ argmin
β

max
g2G

1
J g
�
�
�
�

X
i 2 J ,β xi; yið Þ þ J βð Þ;

where g 2 G represents the group assignment, J g contains 
samples in group g, J g

�
�
�
� is the size of J g , β is the model 

parameter, J βð Þ is some regularization penalty on the para-
meter β, ,β xi; yið Þis the achieved loss at sample i with model 
parameter β. The above minmax formulation enables predic-
tions with more uniform performance across groups. This 
DRO framework has been used in linear and other more 
flexible models such as neural networks and is effective for 
robust classification against distributional changes, including 
future changes in the test cohort, and helps identify invariant 
or generalizable predictive relationships across different popu-
lations. Example 5 demonstrates this desirable property of 
DRO over ERM in a simulated example.

Example 5: Consider a classification task where the 
response is y 2 0; 1f g, the hidden group is g 2 0; 1f g. 
Given the class label yand the group assignment g, the 
observed feature values x are from a 10-dimensional 
Gaussian distribution. The first dimension of xseparates 
the two response classes in the same way and the second 
and third dimensions have opposite effects for samples from 
the two groups. We generate the samples with 90% of them 
from group 1 and 10% of them from group 2 and predict y 
using feature x. Figure 6a shows the boxplots of predicted 
probability of y ¼ 1 separately for the two groups using an 
ERM model and a DRO model, which minimizes the worst 
group performance.85 For samples from group 2, the ERM 
model achieves no better accuracy than random guessing, 
even though it achieves high classification accuracy in group 
1. In contrast, the DRO model performs similarly well in
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both groups. The estimated model coefficients are shown in 
Figure 6b, with the ERM model depending heavily on all 
three features and the DRO model largely dependent on the 
first invariant feature.

The idea of explicitly utilizing population diversity for 
robust learning has not been widely exploited in medical 
studies, with only a few works adopting this modern 
learning scheme. For example, Yang et al.87 considered 
robust COVID-19 risk predictions across sex and ethni-
city, opening opportunities for novel analysis in this 
direction.

Discussion

When applying machine learning methods to predictive 
tasks in immunological and other biomedical applications, 
researchers need to be aware of both the strengths and 
limitations of these methods. Overfitting is one common 
issue encountered during the construction of prediction 
models in contemporary applications, which often deal 
with complex and high-dimensional data. Gaining 
a thorough understanding of the causes behind overfit-
ting, the associated challenges, and cutting-edge strategies 
for diagnosis and mitigation is critical for appropriately 
applying various techniques.

Traditional perspectives on overfitting typically assume 
that training and test samples exhibit similar characteris-
tics. In practice, however, test samples might follow dif-
ferent patterns than the training counterparts. In such 
situations, it becomes increasingly important to develop 
models that can capture invariant relationships, which can 
be more effectively achieved by leveraging the diversity of 
populations within the training data. Although discussions 
on this topic are currently limited, recognizing this crucial 
aspect of research could lead to significant advancements, 
particularly in light of the growing international efforts to 
conduct large-scale studies spanning multiple environ-
ments, as exemplified by various study centers, cohort 
populations, and responses of interest.88–91
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