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Abstract 
Background Despite an abundance of digital health interventions (DHIs) targeting the prevention and management of noncommunicable dis-
eases (NCDs), it is unclear what specific components make a DHI effective.
Purpose This narrative umbrella review aimed to identify the most effective behavior change techniques (BCTs) in DHIs that address the pre-
vention or management of NCDs.
Methods Five electronic databases were searched for articles published in English between January 2007 and December 2022. Studies were 
included if they were systematic reviews or meta-analyses of DHIs targeting the modification of one or more NCD-related risk factors in adults. 
BCTs were coded using the Behavior Change Technique Taxonomy v1. Study quality was assessed using AMSTAR 2.
Results Eighty-five articles, spanning 12 health domains and comprising over 865,000 individual participants, were included in the review. We 
found evidence that DHIs are effective in improving health outcomes for patients with cardiovascular disease, cancer, type 2 diabetes, and 
asthma, and health-related behaviors including physical activity, sedentary behavior, diet, weight management, medication adherence, and 
abstinence from substance use. There was strong evidence to suggest that credible source, social support, prompts and cues, graded tasks, 
goals and planning, feedback and monitoring, human coaching and personalization components increase the effectiveness of DHIs targeting 
the prevention and management of NCDs.
Conclusions This review identifies the most common and effective BCTs used in DHIs, which warrant prioritization for integration into future 
interventions. These findings are critical for the future development and upscaling of DHIs and should inform best practice guidelines.

Lay summary 
Digital health interventions (DHIs) that use technology to deliver lifestyle support for the prevention or treatment of noncommunicable diseases 
(NCDs) have grown in popularity and number in recent years. However, it is unclear what aspects make a DHI effective in changing lifestyle be-
haviors and improving health. The aim of this study was to review the existing scientific evidence to identify effective components in DHIs that 
address the prevention or management of NCDs and summarize the best available evidence to date. We conducted a comprehensive electronic 
search for peer-reviewed systematic reviews and meta-analyses published in English between January 1, 2007 and December 31, 2022. We sys-
tematically extracted details of the reviews and the intervention components and summarized the effectiveness of components for each health 
domain, prioritizing the best available evidence. Eighty-five articles, spanning 12 health domains and summarizing evidence from over 865,000 
individual participants, were included in the review. We found good evidence that DHIs are effective in preventing and treating NCDs. Specific 
intervention components that are effective and should be prioritized for inclusion in future DHIs include: using a credible source; social support; 
prompts and cues; graded tasks; goals and planning, feedback and monitoring, human coaching and personalization.
Keywords Digital health ∙ Intervention components ∙ Behavior change technique ∙ Lifestyle behaviors ∙ mHealth ∙ eHealth
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Introduction
Noncommunicable diseases (NCDs) such as cardiovascular 
diseases (CVDs), cancers, respiratory diseases, and diabetes 
are the leading causes of death and disability worldwide [1]. 
Furthermore, it is well established that many NCDs also in-
crease the risk for mental disorders [2–5], and that risk factors 
for NCDs such as tobacco use, harmful alcohol, unhealthy 
diet, and physical inactivity commonly cluster in people with 
mental disorders [6]. The combined health, societal, and eco-
nomic burden of NCDs and mental disorders is tremendous. 
Projections estimate the global cumulative economic cost 
of NCDs between 2010–2030 to reach US$47 trillion [7]. 
Furthermore, poor mental health currently costs the world 
economy around US$ 2.5 trillion per year and this figure 
is expected to rise to US$6 trillion by 2030 [8]. Therefore, 
tackling NCDs and their risk factors is a major public health 
challenge that threatens social and economic development 
throughout the world.

Targeting risk factors that can be modified on an indi-
vidual level, for example, through lifestyle behavior change, 
can assist in the prevention and management of NCDs [9, 
10]. Lifestyle interventions are effective in the prevention, 
treatment, or management of coronary heart disease [11, 12], 
obesity [9], diabetes [13, 14], and cancer [15]. However, suc-
cessful lifestyle behavior change is often difficult to achieve 
and is only implemented by a fraction of those in need [16]. 
Furthermore, the personal everyday coaching by human 
healthcare professionals that often accompanies lifestyle be-
havior interventions is neither scalable nor financially sustain-
able by healthcare systems [17].

Over the last two decades, technological advances in 
healthcare have created new opportunities in developing 
evidence-based digital health interventions (DHIs) that 
use information and communication technology to deliver 
health services or treatments. Such DHIs now allow medical 
doctors, health professionals, and other caregivers to scale 
and tailor lifestyle behavior support to individuals in need 
at sustainable costs [18, 19]. Behavior change interventions 
usually contain several potentially active components or be-
havior change techniques (BCTs), herein referred to as BCTs, 
to which a change in the target behavior can be attributed. 
Despite growing research in the field of DHIs (since 2012, 
over 1,700 systematic reviews have been published on the 
topic of DHIs [PubMed search “digital health intervention,” 
filter “systemic review,” date range “2012–2022”]), it re-
mains unclear which BCTs in DHIs are the most effective in 
changing lifestyle behaviors. Given the relevance of lifestyle 
behavior interventions for the prevention and treatment of 
a broad range of NCDs, understanding the BCTs that are 
consistently eliciting positive behavioral effects could help 
in the design of more effective and more efficient DHIs that 
have a greater impact on health outcomes. Therefore, the 
objective of this study was to conduct a narrative umbrella 
review of systematic reviews to identify the most effective 
health-related BCTs in DHIs that address the prevention or 
management of the most common NCDs and provide re-
commendations that will guide future research related to the 
development of effective DHIs.

Methods
An umbrella review, also referred to as an “overview of re-
views” or “review of reviews”, is a synthesis of existing 

systematic reviews that summarizes the highest level of evi-
dence available, allowing decision makers to gain a clear 
understanding of a broad topic area [20]. This umbrella 
review was conducted in accordance with the registered 
protocol (Open Science Framework Registry; https://doi.
org/10.17605/OSF.IO/GE2RS), and the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA) 
2020 statement [21].

Search Strategy
We searched the following electronic databases for English 
language articles published between January 1, 2007 (coin-
ciding with the release of the iPhone and therefore expansion 
of mHealth studies) and January 24, 2021: OVID (Medline), 
CINAHL, Web of Science, PsychInfo, and Embase. In add-
ition, we hand-searched reference lists of identified studies 
and systematic reviews to identify potentially relevant studies. 
The search was later updated to December 31, 2022. The en-
tire electronic search strategy is presented in Supplementary 
File 2.

Inclusion and Exclusion Criteria
Eligible participants, interventions, comparisons, outcomes, 
and study designs (PICOS) were identified a priori and are 
outlined below.

Population
Studies that included adults, or predominantly adults (not 
more than 25% of included primary studies targeting children 
or adolescents), aged 18 years or over were eligible for inclu-
sion. Participants could be from a clinical population. Studies 
that included papers targeting indirectly affected groups of 
people (e.g., relatives, medical professionals, or parents) were 
excluded.

Intervention
Eligible interventions were those that used e- or mHealth to 
target the modification of one or more NCD-related risk factors. 
E- and mHealth interventions are defined as those that use in-
formation and communication technologies to improve health 
and healthcare. eHealth interventions mainly use the Internet 
while mHealth interventions use mobile devices such as mobile 
phones, patient monitoring devices, personal digital assistants, 
and other wireless devices [22]. Reviews were excluded if they 
included interventions where e- or mHealth functions were not 
the primary intervention component, for example interven-
tions using human-based coaching via telephone as a primary 
component. Interventions that took place primarily via social 
networks (e.g., via Twitter or Facebook) were also ineligible.

Comparison
As this was an umbrella review of published systematic re-
views, a comparator or control group was not required for 
inclusion in this study. However, given our interest in effect-
iveness of interventions and BCTs, we included reviews where 
evidence from primary experimental studies with an appro-
priate comparator was available.

Health domains and outcomes
Given the breadth of potentially relevant papers, we deemed 
it necessary to limit the focus of this review to those papers 
which focused on the prevention or management of the most 
common NCDs and risk factors. These were:

https://doi.org/10.17605/OSF.IO/GE2RS
https://doi.org/10.17605/OSF.IO/GE2RS
http://academic.oup.com/abm/article-lookup/doi/10.1093/abm/kaad041#supplementary-data
http://academic.oup.com/abm/article-lookup/doi/10.1093/abm/kaad041#supplementary-data
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•	 NCDs: CVD, cancer, type 2 diabetes, and asthma.
•	 Risk factors: physical activity, diet, weight man-

agement, medication adherence, and substance use 
(including tobacco smoking, problem drinking, and 
drug use).

We did not limit our search of papers within these health 
domains to those reporting on specific outcomes given the 
purpose of the review was to qualitatively review effective 
BCTs across a range of health conditions rather than quan-
titatively synthesize effectiveness on disease-specific health 
outcomes.

Study designs
Published systematic reviews and meta-analyses of 
randomized-controlled trials (RCTs), nonrandomized 
controlled trials (NRCTs), case–control studies, quasi-
experimental studies, or single-arm pre–post studies reporting 
both intervention effectiveness outcome data and BCTs were 
eligible for inclusion. Purely narrative or qualitative reviews 
and single studies were ineligible.

Study Selection
Bibliographic records were extracted and imported into 
Covidence (https://www.covidence.org/). After excluding du-
plicates, titles and abstracts were independently assessed by 
two researchers. In the event of discrepancies, a final evalu-
ation was carried out by a third independent person. The full 
texts of relevant articles were independently reviewed by two 
researchers for compliance with the inclusion and exclusion 
criteria. In the event of discrepancies, a final evaluation was 
carried out by a third independent person.

Data Extraction
Data were extracted independently by one researcher using 
a pre-piloted data extraction form prepared using Microsoft 
Excel. A second author (J.L.M) checked all data extraction 
for accuracy. Disagreements were resolved by consensus. 
Extracted data included: (a) title of publication, (b) year of 
publication, (c) name of the journal, (d) first author, (e) health 
domain studied, (f) aim of the review, (g) publication period of 
the primary studies, (h) sample/population: clinical or general 
population, (i) study design of primary studies, (j) number of 
primary studies, (k) total sample size, (l) main contents of the 
intervention, (m) results on intervention effectiveness, (n) risk 
of bias and evidence certainty information, and (o) findings 
related to BCTs.

Quality Assessment
Two reviewers (A.S.-S. and B.F.F.) independently assessed the 
methodological quality of each systematic review using the 
AMSTAR 2 rating scale [23]. AMSTAR 2 contains 16 items 
to critically appraise the methodological aspects of system-
atic reviews that include randomized or nonrandomized 
studies of healthcare interventions. Any disagreements were 
discussed and agreed upon between the two reviewers and 
a third reviewer (J.L.M) checked all final assessments for 
accuracy.

Data Analysis and Synthesis
The information extracted from the individual reviews was 
summarized narratively and categorized according to health 
domains. Categories were not determined a priori. Instead, 

based on the identified reviews, the relevant areas were de-
termined iteratively, to which the individual reviews were 
then assigned. In this way, it was also possible to consider 
reviews that combined studies on digital interventions ad-
dressing several areas simultaneously (so-called lifestyle 
interventions, e.g., on nutrition, physical activity, and weight 
reduction).

The effectiveness of DHIs was first described separately 
for the individual areas, based on the identified reviews 
and meta-analyses. Due to heterogeneity of DHIs and out-
comes, both across and within health domains, pooled 
meta-analyses were not possible, therefore effect data are 
narratively summarized as reported by the authors of the 
included reviews. In a second step, the effectiveness of 
BCTs in the respective health area was evaluated. The ap-
proach was guided by Michie et al. [24] whereby all avail-
able evidence can be used to draw appropriate conclusions 
about BCTs that can be generalized to other settings and 
contexts. Initially, the most comprehensive relevant study 
was identified (e.g., where all features are closest to the spe-
cific behavior, intervention delivery, and target population) 
and an assessment was made on the effect of the relevant 
BCTs on the respective target behavior, and the generaliz-
ability to other health domains. Quantitative evidence, for 
example from meta-regression or subgroup analysis, were 
weighted more highly than qualitative summaries such as 
the frequency of BCTs used within effective interventions. 
This assessment was then iteratively supplemented and up-
dated based on other relevant studies, considering the rele-
vance and quality of these studies. This approach follows 
the Bayesian principles of creating an initial level of con-
fidence in a hypothesis that is then progressively supple-
mented and updated with new information. The extent to 
which the new information changes the existing informa-
tion depends on the effect size and relevance of the study. 
In a third step, the evidence for BCT effectiveness was sum-
marized by health domain using a five tier classification 
whereby “▼” indicates good evidence of a negative effect 
of a BCT from subgroup or meta-regression analyses; “O” 
indicates mixed evidence or no effect of a BCT; “O−” and 
“O+” indicate some evidence for positive or negative effect 
of a BCT, respectively, derived from low-quality evidence 
such as frequency of individual BCTs within effective inter-
ventions; and “▲” indicates good evidence of a positive ef-
fect of a BCT from subgroup or meta-regression analyses. 
The aim of this catalog of criteria was to provide clear 
recommendations for BCT use within each health domain. 
BCTs were coded using the Behavior Change Technique 
Taxonomy version 1 [25] where possible, and where 
coding was not possible due to limited information, the 
description of the component or technique provided by the 
original authors was maintained.

Differences From Protocol
The final protocol of this review slightly deviated from the 
originally registered protocol (Open Science Framework 
Registry; https://doi.org/10.17605/OSF.IO/GE2RS) due to 
significant differences in the reporting of BCTs within re-
search trials and reviews of NCDs and common mental dis-
orders (CMDs). Initially, it was our intention to summarize 
the evidence for NCDs and CMDs collectively but during 
data extraction, it became evident that studies of CMDs 
focus more on the effect of therapeutic strategies than BCTs 

https://www.covidence.org/
https://doi.org/10.17605/OSF.IO/GE2RS
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which precluded qualitative synthesis across these domains. 
Additionally, the search was updated to December 31, 2022 
prior to publication to ensure the most recent best evidence 
was summarized.

Results
After removing duplicates, 1,233 records were identified by 
electronic searches and three additional articles from hand-
searching strategies. After title and abstract screening, 242 
full-text articles were reviewed and 86 met the inclusion cri-
teria. Following data extraction, one paper [26] was subse-
quently excluded due to duplicate data from another included 
review [27], resulting in 85 included reviews. The PRISMA 
flowchart with exclusion reasons is presented in Fig. 1. A sum-
mary of the included reviews is presented in Supplementary 
File 1 with the most comprehensive and relevant study for 
each health domain listed first, followed by other relevant 

studies. Excluded studies with reasons for exclusion are listed 
in Supplementary File 3. The evidence for the effectiveness of 
BCTs is summarized in Table 1.

Quality of the Evidence
Only four included reviews were rated as high quality using 
AMSTAR 2. Most reviews were rated as either moderate 
(k = 22), low (k = 29), or critical low (k = 30). Reasons for 
low ratings were largely due to critical flaws whereby there 
was no preregistered protocol or consideration of bias when 
interpreting results. Secondly, primary studies within these re-
views were typically subject to high risk of bias, and effect 
sizes were often assessed with high statistical heterogeneity. 
However, in most cases, the risk of bias was compromised 
due to the lack of blinding of participants, which is often not 
possible due to the nature of behavior change interventions. 
The full quality assessment using AMSTAR 2 is presented in 
Supplementary File 4.

Fig. 1. PRISMA flowchart.

http://academic.oup.com/abm/article-lookup/doi/10.1093/abm/kaad041#supplementary-data
http://academic.oup.com/abm/article-lookup/doi/10.1093/abm/kaad041#supplementary-data
http://academic.oup.com/abm/article-lookup/doi/10.1093/abm/kaad041#supplementary-data
http://academic.oup.com/abm/article-lookup/doi/10.1093/abm/kaad041#supplementary-data
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Summary of the Evidence
Metabolic syndrome
Only one low-quality systematic review and meta-analysis 
of RCTs focusing on eHealth interventions for patients 
with, or at risk of, metabolic syndrome (n = 2,865) was 
included [28]. EHealth interventions were found to have 
moderate to large effects on a range of metabolic risk fac-
tors, including waist circumference, glucose and lipid pro-
files, blood pressure, body mass index, and body mass, 
when compared with a comparison group. However, no 
significant between group effect was detected for glycated 
haemoglobin (HbA1c).

There was insufficient evidence to determine associations 
between BCTs and eHealth intervention effectiveness.

Cardiovascular disease
One integrative review [29], three systematic reviews [30–
32], and five systematic reviews with meta-analysis [33–
37] on DHIs for patients (total participants n = 28,991) 
with CVD or hypertension were identified. Two reviews 
were of moderate quality [31, 33], four were low quality 
[29, 32, 35, 36] and three were of critically low quality 
[30, 34, 37]. In the most comprehensive meta-analysis of 
RCTs available, Li et al. [33] found a significant differ-
ence in systolic (mean difference [MD] −3.78 mm Hg; p 
< .001; 95% confidence interval [CI] −4.67 to −2.89; k = 
16) and diastolic (−1.57 mm Hg; p < .001; 95% CI −2.28 
to −0.86; k = 12) blood pressure between SMS- and app-
based hypertension self-management interventions and 
control. In the meta-analysis of seven RCTs by Khoong et 
al. [37], no significant differences in systolic blood pres-
sure between mobile app-based intervention groups com-
pared with control were reported, but significant decreases 
at 6-month follow-up were found in the intervention 
group only (MD −4.10 mm Hg; 95% CI −6.38 to −1.38). 
Akinosun et al. [36] conducted meta-analyses of RCTs 
and reported significant main effects of DHIs versus usual 
care for total cholesterol, high-density lipoprotein choles-
terol, low-density lipoprotein cholesterol, physical activity, 
and food intake, but no differences for body mass index, 
triglycerides, blood pressure, HbA1c, or other lifestyle  
behaviors.

Overall, there was good evidence to suggest self-
monitoring (behavior), prompts and cues, graded tasks, 
and credible source are effective BCTs in DHIs for the man-
agement of CVD (Table 1). Three reviews reported on the 
effectiveness of BCTs for self-management of CVD using 
quantitative analysis. In the most comprehensive review 
of RCTs, subgroup analyses revealed mHealth interven-
tions offering tailored prompts and cues based on patient 
health status and readiness, interactive two-way communi-
cation with a credible source (i.e., the treating physician), 
and multiple (vs. single) features were associated with better 
self-management of hypertension [33]. In a meta-regression 
comparing the effect of individual BCTs within mHealth 
apps, action planning and graded tasks were moderately as-
sociated with increased physical activity, but negative asso-
ciations were found for self-monitoring outcomes, receiving 
biofeedback and information on health consequences [35]. 
In a meta-analysis of four RCTs [34], self-monitoring of 
physical activity using a pedometer or accelerometer in-
creased step count in patients with CVD by 2,503 steps/day 
(95% CI 1,916–3,090; p < .05).

Type 2 diabetes
Four systematic reviews [38–41] and three systematic reviews 
with meta-analysis [42–44] on type 2 diabetes self-manage-
ment (total n = 19,368) were identified. One review was of 
high quality [42], one was moderate quality [44], one was 
low quality [43], and four were of critically low quality [38–
41]. In the Cochrane review of RCTs by Pal et al. [42], there 
was moderate-quality evidence for a small pooled effect on 
HbA1c of 2.3 mmol/mol (MD −0.2%; 95% CI −0.4 to −0.1; 
k = 11) for computer-based interventions over comparator 
groups. The most recent meta-analysis of RCTs on the effect-
iveness of mobile apps for self-management of type 2 diabetes 
reported a significant effect on HbA1c (MD −0.38, 95% CI 
− 0.50 to − 0.25; p < .0001; k = 21) in favor of intervention 
groups compared with standard care treatment [43]. There 
was no evidence that eHealth interventions were effective in 
improving health-related quality of life or wellbeing [42, 44]. 
The included systematic reviews reported some evidence of 
significant improvements in HbA1c [38–41], body weight 
[39], dietary behavior [39], fasting blood glucose [38, 39], 
waist circumference [39], cholesterol [38], triglycerides [39], 
general health behaviors [38], and psychological outcomes 
[38] in DHI groups, but overall effectiveness in comparison 
to control or usual care could not be established.

Overall, there was good evidence to suggest action plan-
ning and self-monitoring outcomes of behavior are effective 
BCTs in DHIs for the management of type 2 diabetes (Table 
1). Subgroup analyses from El-Gayar et al. [43] showed that 
action planning and self-monitoring outcome(s) of behavior 
were present in interventions reporting statistically signifi-
cant reduction in HbA1c compared with the interventions 
not supporting these techniques. Pal et al. [42] found that 
self-monitoring outcome(s) of behavior and feedback on out-
comes of behavior were the most commonly used BCTs in 
interventions that had a significant impact on HbA1c. Fu et 
al. [40] found that diabetes apps that elicited a significant re-
duction in HbA1c included feedback on behavior and alert 
reminders. van Vugt et al. [38] reported that online type 2 
diabetes self-management interventions incorporating feed-
back on behavior, information about health consequences, 
problem solving, self-monitoring of outcome(s) of behavior, 
self-monitoring of behavior, and social support were all 
linked with improvements in health behaviors, clinical out-
come measures, and psychological outcomes. Additionally, 
goal setting (behavior) was linked to improvements in clin-
ical outcomes and social comparison was associated with im-
provements in psychological outcomes.

Cancer
Two systematic reviews [45, 46] and three systematic reviews 
with meta-analysis [47–49] on DHIs for patients with cancer 
or cancer survivors (total n = 22,653) were included. Two 
reviews were of moderate quality [45, 48] and three reviews 
were low quality [46, 47, 49]. The most comprehensive re-
view of RCTs to date [47] found eHealth interventions were 
more effective in increasing physical activity (standardized 
mean difference [SMD] 0.34; 95% CI 0.21–0.48; k = 15), 
improving dietary behavior (SMD 0.44; 95% CI 0.18–0.70; 
k = 6) and reducing anxiety (SMD 1.21; 95% CI 0.36–2.07; k 
= 4) in current or former cancer patients compared with con-
trol. Modest but favorable trends were also found for quality 
of life, fatigue, and depression. Significant improvements in 
moderate to vigorous physical activity (MVPA) were found in 
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a meta-analysis of five RCTs (MD = 49 min per week; 95% 
CI 16–82; p = .004; k = 5) and reductions in body mass index/
weight in a meta-analysis of RCTs and pre–post studies (SMD 
−0.23; 95% CI −0.41 to −0.05; p = .011; k = 4) [48]. Another 
meta-analysis found connected health interventions to be ef-
fective in reducing symptoms of depression compared with 
usual care (SMD −0.226; 95% CI −0.303 to −0.149; I2 = 0%; 
k = 7) [49].

None of the included reviews conducted any quantitative 
analysis on the effectiveness of individual or combinations 
of BCTs within DHIs for cancer patients and survivors. 
However, Ester et al. [45] conducted a weight analysis and 
identified problem solving and action planning to be associ-
ated with physical activity. A meta-analysis in which signifi-
cant pooled effects were detected for physical activity, diet, 
and anxiety [47], the most commonly used BCTs were goal 
setting (behavior), self-monitoring of behavior, information 
about health consequences, problem solving, action plan-
ning, feedback on behavior, instructions on how to perform 
a behavior.

Asthma
Only one low-quality systematic review with meta-analysis 
of RCTs focused on mHealth interventions to improve 
self-management in asthma patients (n = 954) was included 
[50]. mHealth interventions were found to have moderate to 
large effects on medication adherence (Hedges g = 0.63, 95% 
CI 0.31–0.94, p < .001) and quality of life (g = 0.64, 95% CI 
0.19–1.08, p = .01) when compared with standard treatment. 
Findings also suggest improvements in well-controlled asthma 
and a reduction in unscheduled doctor visits. However, for 
other clinical outcome measures such as lung function, no sig-
nificant differences were found between groups.

There was insufficient evidence to determine associations 
between BCTs and asthma medication adherence or clinical 
outcomes. However, there was an indication that the number 
of BCTs used fully explained the variance in quality of life. 
The BCTs used most frequently and in the majority of studies 
were information about health consequences, self-monitoring 
of behavior, prompts/cues, and instruction on how to perform 
a behavior.

Chronic conditions
Three systematic reviews with meta-analysis [51–53] and 
one systematic review [54] exploring effectiveness of DHIs in 
populations with different chronic conditions were included. 
The reviews were of moderate [51], low [54], and critically 
low [52, 53] quality. The most recent meta-analysis of RCTs 
examining the effectiveness of personalized mobile apps and 
fitness trackers on lifestyle behavior outcomes reported a 
moderate positive effect (SMD 0.663, 95% CI 0.228–1.10; 
k = 14) compared with control [51]. Liu et al. [52] exam-
ined evidence from RCTs on the effectiveness of mobile apps 
for self-management of type 2 diabetes and hypertension and 
reported significant effects on HbA1c (SMD −0.44; 95% CI 
−0.59 to −0.29; p < .001; k = 21), systolic blood pressure 
(SMD −0.17; 95% CI −0.31 to −0.03; p = .02; k = 16), dia-
stolic blood pressure (SMD −0.17; 95% CI −0.30 to −0.03; 
p = .02; k = 14), fasting blood glucose (SMD = −0.29; 95% 
CI−0.49 to −0.10; p = .004), and waist circumference (SMD 
−0.23; 95% CI −0.43 to −0.04; p = .02) over control [42]. 
Liu et al. [53] also reported significant reductions in daytime 
systolic blood pressure (SMD −0.27; 95% CI −0.44 to −0.10; 

p = .002) and diastolic blood pressure (SMD −0.17; 95% CI 
−0.33 to −0.01; p = .03) in Internet interventions targeting 
exercise and diet for the modification of blood pressure.

Overall, there was good evidence to suggest goal setting 
(behavior), feedback on behavior, self-monitoring (behavior), 
prompts and cues, and credible source are effective BCTs in 
DHIs for the management of chronic conditions (Table 1). In 
a meta-regression conducted by Tong et al. [51], total number 
of BCTs in personalized features, or the number of personal-
ized features in mobile apps or fitness trackers had no effect 
on lifestyle behavior outcomes. In contrast, Liu et al. con-
ducted subgroup analysis to show that interventions using five 
or more BCTs are more effective in reducing blood pressure 
than those with fewer than five BCTs [53]. Subgroup analyses 
from Liu et al. [52] showed that self-monitoring outcomes  
of behavior (blood pressure and blood glucose), self-
monitoring behavior (medication monitoring), automated 
feedback on behavior and outcomes of behavior (data visual-
ization), personalized goal setting, reminders, educational ma-
terials, and communication with a credible source (healthcare 
provider) were associated with positive outcomes.

Multiple lifestyle behaviors
We identified 12 reviews on multiple lifestyle behaviors (n 
> 137,943), of which five were focused on NCD prevention 
[55–59], six were on both prevention and management of 
NCDs [60–65], and one was related to health in general [66]. 
Two reviews were of moderate quality [60, 61], four were low 
quality [55, 57, 62, 63] and six were of critically low quality 
[56, 58, 59, 64–66]. Evidence from a recent meta-analysis of 
RCTs on eHealth lifestyle behavior interventions targeting 
CVD risk reduction in men found eHealth intervention to 
be more effective than control or comparison conditions for 
body mass index, body weight, waist circumference, systolic 
and diastolic blood pressure [57]. Yang et al. [56] reported 
small but significant effects of eHealth interventions on health 
mediating variables (d = 0.29; 95% CI 0.20–0.38; p < .001; 
k = 49), health behaviors (d = 0.28; 95% CI 0.18–0.38; p < 
.001; k = 52), and health outcomes (d = 0.32; 95% CI 0.21–
0.42; p < .001; k = 40) compared with control. Two reviews 
reported small (d = 0.16; 95% CI 0.09–0.23; k = 85) [66] 
to moderate (d = 0.39 ± 0.37) [59] average effect sizes for 
eHealth interventions over comparison conditions. However, 
other systematic reviews reported inconclusive findings with 
respect to DHI effectiveness. While Schoeppe et al. [58] 
found the majority (17/23; 74%) of app-based interventions 
targeting diet, physical activity, and/or sedentary behavior to 
be effective, Milne-Ives et al. [61] found only 24% (12/51) 
to be effective and 31% (16/51) partially effective (i.e., dif-
ferences in some but not all outcomes) in improving health 
or behaviors over control or comparison conditions. Others 
reported few effective studies within their reviews of mHealth 
[62, 64] or e- and mHealth [65] interventions targeting health 
behavior change.

Overall, there was good evidence to suggest that reducing 
negative emotions, human coaching, and tailoring or person-
alization are effective strategies to improve health behaviors 
via DHIs (Table 1). In moderator analyses, Yang et al. [56] 
reported that tailoring or personalization of content based on 
users’ input and access to a mentor or coach were found to in-
crease intervention effectiveness compared with interventions 
without these components, while Newby et al. [55] found 
that the BCT “information about social and environmental 
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consequences” led to a small negative effect on self-efficacy. 
Webb et al. [66] reported significant moderate effects on 
health behaviors for interventions that provided BCTs “re-
duce negative emotions” (stress management) and general 
communication skills training, and small effects for demon-
stration of the behavior, problem solving, social comparison, 
goal setting (behavior), action planning, and feedback on be-
havior. In their review of apps for NCD prevention, Schoeppe 
et al. [58] found those which used goal setting (behavior), 
self-monitoring of behavior, and feedback on behavior were 
particularly effective for diet and physical activity behavior 
change. Dugas et al. [64] reported that prompts and cues, goal 
setting (behavior), action planning, and personalization in 
general, were most commonly used within effective mHealth 
lifestyle behavior interventions.

Weight management
Five systematic reviews [67–71] and five systematic reviews 
with meta-analyses [72–76] were specifically focused on 
weight management for NCD prevention (n > 62,567) largely 
focusing on both physical activity and dietary behaviors. Two 
studies were rated moderate quality [67, 68], three were low 
quality [69, 70, 72], and five were of critically low quality [71, 
73–76]. Evidence from meta-analyses of RCTs suggest that 
DHIs are effective in achieving weight loss in general popu-
lation (−1.99 kg; 95% CI −2.19 to −1.79) [72] and adults 
with overweight or obesity (pooled effect size = 0.43; 95% CI 
0.252 to 0.609; k = 11; p ≤ .01) [75] compared with control. 
In a meta-analysis of RCTs, eHealth interventions were also 
shown to be effective in reducing in waist circumference in 
the general population compared with minimal intervention 
(mean change 2.38 cm, 95% CI 1.51–3.25; k = 24; p < .001) 
[73]. In their review of technology-assisted weight loss inter-
ventions, Levine et al. [67] found 75% of included studies 
achieved weight loss at the end of the study compared with 
controls. However, more recent reviews of DHIs for weight re-
duction in normal weight or overweight adults [68, 71] have 
found significant weight loss in favor of the intervention arms 
in only 50% of the individual studies included. Furthermore, 
Rhodes et al. [76] found that only 27% of studies had a posi-
tive effect on gestational weight gain in pregnant women in 
comparison with control groups.

Overall, there was good evidence that human coaching 
is effective in promoting weight loss in DHIs. One meta-
regression of BCTs within Internet-based interventions iden-
tified social support as a technique associated with greater 
decreases in waist circumference, while self-monitoring of 
outcomes of behavior, goal setting (behavior), or outcomes of 
behavior, motivational interviewing, or the number of BCTs 
had no effect [73]. In another subgroup analysis, no associ-
ations were found between weight loss and any specific type 
or number of mobile app features, however combining a mo-
bile app, with an activity tracker, and behavioral interven-
tion, or intensive behavior coaching or feedback by a human 
coach, showed a statistically significant weight loss [72]. 
Another meta-analysis of RCTs reported greater weight loss 
for Internet-delivered interventions providing personalized 
feedback compared with control groups receiving no person-
alized feedback [74].

Physical activity and sedentary behavior
Eight systematic reviews [77–84] and nine systematic re-
views with meta-analyses [85–93] focusing on only physical 

activity and/or sedentary behavior (n = 154,654) were in-
cluded. The quality of the reviews was moderate [77–79, 
85–88], low [80–82, 89–91], or critically low [83, 84, 92, 93]. 
Several meta-analyses of RCTs or NRCTs have shown that 
DHIs have a significant small to moderate effect on increasing 
physical activity [85–89, 93] and reducing sedentary behavior 
[90, 91]. mHealth interventions were found to increase daily 
step count by, on average, 926–1,850 steps per day [85, 87]. 
However, findings from other reviews are inconclusive. For 
example, Tong and Laranjo [92] reported a nonsignificant ef-
fect of mHealth interventions on physical activity outcomes, 
while Xu et al. [81], Buckingham et al. [78], and Davis et 
al. [77] found that only 50%, 56%, and 62.5% of mHealth 
interventions targeting physical activity were effective com-
pared with control groups, respectively. The meta-analysis of 
RCTs by Direito et al. [90] failed to find any significant effects 
of mHealth interventions for total physical activity, MVPA, 
or walking.

Overall, there was good evidence to suggest that human 
coaching and tailoring or personalization strategies in DHIs 
are effective in increasing physical activity, however evidence 
for the effectiveness of other BCTs in physical activity inter-
ventions is largely mixed. In their meta-analysis of eHealth 
interventions, Davies et al. [89] reported that educational 
components were the only significant moderators of physical 
activity change. However, subgroup analyses from Laranjo 
et al. [85] linked four BCTs or BCT clusters to intervention 
effectiveness; text messaging, personalization, graded tasks, 
and goals and planning. The authors also found that auto-
mated monitoring and feedback did not reduce effectiveness. 
In a subgroup analysis by de Leeuwerk [86] theory-based 
interventions with activity trackers and coaching by a health 
professional were more effective than interventions without 
these features. Furthermore, interventions with seven BCTs 
or more were more effective than those with fewer than seven 
BCTs. By contrast, in a meta-regression by Western et al. 
[88], no associations were found for the number or type of 
BCTs. Hardeman et al. [83] reported that goal setting, action 
planning, discrepancy between current behavior and goal, 
feedback on behavior, prompts and cues, social reward, and 
instruction on how to perform a behavior were present in 
effective just-in-time adaptive interventions targeting phys-
ical activity. Triantafyllidis et al. [84] found that personalized 
behavioral goals and motivational coaching characterize ef-
fective eHealth interventions for physical activity promotion 
in healthy adults.

Nutrition and dietary behaviors
Two systematic reviews [94, 95] and three systematic reviews 
with meta-analysis [96–98] on nutrition and/or dietary be-
haviors (n > 70,601) were included. One review was of high 
quality [98], one was of moderate quality [94], and three were 
of low [96] or critically low quality [95, 97]. In the recent 
meta-analysis of RCTs and quasi-experimental studies from 
Villinger et al. [96], app-based mobile interventions were 
found to have a small to moderate overall pooled effect (g = 
0.33; CI 0.21–0.44; p < .001) on nutritional outcomes. Effects 
were small for behavioral outcomes (g = 0.19; CI 0.06–0.32; 
p = .004; k = 21), and when separating behavioral outcomes 
into calorie and fruit and vegetable intake, only the effect for 
fruit and vegetable intake reached statistical significance (g 
= 0.32; CI 0.15–0.50; p < .001). The authors also reported a 
small to moderate effect (g = 0.23; CI 0.11–0.36; p < .001; k = 
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34) on nutrition-related health outcomes, such as obesity in-
dices, blood pressure, blood lipids, and blood glucose. In a re-
view of RCTs, Harris et al. [98] found interactive and tailored 
computer-based interventions had a positive effect on daily 
fruit and vegetable intake (weighted mean difference = +0.24; 
95% CI 0.04–0.44; k = 12) and total daily energy consumed 
from fat (weighted mean difference = −1.4%; 95% CI −2.5 to 
−0.3; k = 10).

Despite reporting significant effects for app-based inter-
ventions on nutritional outcomes, in a subgroup analysis, 
Villinger et al. [96] failed to find any significant effect of spe-
cific BCTs within the reviewed apps. Rodriguez Rocha and 
Kim [97] also reported no association between specific BCTs 
within web- and SMS-based interventions and effectiveness 
on fruit and vegetable intake; however, they found higher effi-
cacy in interventions with seven or more BCTs and in tailored 
programs.

Medication adherence
One systematic review with meta-analysis [99] and four system-
atic reviews [100–103] on medication adherence were included 
(n = 122,874). Reviews were of high [100], moderate [99, 101], 
low [102], and critical low [103] quality. A Cochrane review 
of four RCTs with at least 12-month follow-up reported low 
quality and uncertain evidence relating to the effects of mobile 
phone-delivered interventions to increase adherence to medi-
cation prescribed for the primary prevention of CVD [100]. 
However, in a more recent review of RCTs, Armitage et al. [99] 
found that patients with a range of conditions, including CVD, 
depression, Parkinson’s, psoriasis, and multimorbidity, who 
participated in medication adherence interventions delivered 
by mobile apps were more likely to adhere to prescribed medi-
cations (odds ratio [OR] 2.120; 95% CI 1.635–2.747; k = 9) 
than those who did not use such interventions. In two other 
systematic reviews of RCTs [101, 102], the majority of primary 
studies (29/38; 76%) reported improvements in medication ad-
herence in DHI groups compared with control or usual care 
with Cohen’s d effect sizes ranging from very small (0.06) to 
large (0.8).

In a meta-regression of BCTs coded in more than three, 
but less than six of the nine reviewed studies, Armitage et al. 
[99] found no significant associations between the BCTs used 
and intervention effectiveness. Pouls et al. [101] noted strong 
evidence for a positive effect of strategies to teach skills (e.g., 
instructions on how to perform a behavior), to facilitate com-
munication or decision-making, and to improve healthcare 
quality. Donovan et al. [103] reported improved medication 
adherence in 90% of studies using BCTs to target obtaining 
medication, 88% of studies including problem solving, and 
60% of studies including social reward.

Alcohol
One high-quality Cochrane review of RCTs (n = 34,390) by 
Kaner et al. [27] found that participants receiving a DHI con-
sumed 22.8 g (95% CI 15.4–30.3) less alcohol per week than 
control group participants at the longest reported follow-up. 
The authors provide moderate-quality evidence to support 
the use of DHIs in reducing the frequency and intensity of 
drinking per week, as well as the number of binges per week 
and the risk of being a binge drinker at longest follow-up.

Evidence from the adjusted meta-regression model 
(including only BCTs with regression coefficients >23) in-
dicated that behavior substitution, problem solving, and 

credible source are associated with reduced alcohol consump-
tion. In an unadjusted model, goal setting, and information 
about antecedents were also significantly associated with 
reduced alcohol consumption. There was no association be-
tween the number of BCTs used and effectiveness.

Tobacco
One moderate-quality [104] and one low-quality [105] sys-
tematic review with meta-analyses on smoking cessation 
(total n = 68,706) was included. McCrabb et al. [105] con-
ducted a meta-analysis of 45 RCTs of Internet-based smoking 
cessation interventions and demonstrated significant short-
term (overall OR = 1.29; 95% CI 1.12–1.50; p = .001) and 
long-term (overall OR = 1.19; 95% CI = 1.06–1.35; p = 
.004) effects on smoking abstinence compared with control. 
Interventions were also found to be effective for “prolonged 
abstinence” (OR = 1.43; 95% CI 1.09–1.87; p = .009) and 
“30-day point prevalence abstinence” (OR = 1.75; 95% CI 
1.13–2.72; p = .013). Griffiths et al. [104] also found DHIs 
significantly increased the odds of quitting smoking during 
pregnancy compared with control groups (OR = 1.44; 95% 
CI 1.04–2.00; p = .03).

Using meta-regression, McCrabb et al. [105] found that 
goal setting (behavior) increased short-term effectiveness of 
Internet smoking cessation programs, while problem solving, 
action planning, social support, information on health con-
sequences, pros and cons, and pharmacological support are 
associated with both short- and long-term treatment ef-
fectiveness. Similarly, in a subgroup analysis, Griffiths et al. 
[104] found information about antecedents, action planning, 
problem solving, goal setting (behavior), review behavior 
goals, social support, and pros and cons to be significantly 
associated with DHI effectiveness for smoking cessation in 
pregnancy.

Substance use: drugs, alcohol, and/or tobacco
Five systematic reviews and one meta-analysis on addictive 
behaviors (total n > 49,710) including mostly drug, tobacco, 
and/or alcohol use [106–110] but also alcohol use, gambling, 
and eating disorders [111] were included. Reviews were rated 
moderate [106, 111], low [108], and critically low [107, 109, 
110] quality. Evidence from a meta-analysis of RCTs and 
quasi-experimental studies [107] on mobile-delivered con-
tingency management interventions promoting abstinence 
from drugs, alcohol, and tobacco suggests interventions are 
effective for percentage of negative samples (d = 0.94; 95% 
CI 0.63–1.25), quit rate (d = 0.46; 95% CI 0.27–0.66), and 
longest duration abstinent (d = 1.08; 95% CI 0.69–1.46). 
Howlett et al. [106] found 34% of studies had very prom-
ising evidence (a statistically significant improvement in the 
primary outcome compared with control) and 42% quite 
promising evidence (either a statistically significant improve-
ment within the experimental group or the between-subjects 
difference was significantly greater than the control group) 
of DHI effectiveness in reducing alcohol or substance misuse. 
Other evidence was largely mixed. In the review by Staiger 
et al. [108] only 30% of mobile app interventions reported 
significant reductions (with small to moderate effect sizes) in 
substance use after treatment or at follow-up, compared with 
a comparison condition.

There was no quantitative evidence available on the associ-
ations between BCTs and substance use outcomes. However, 
Howlett et al. [106] conducted sensitivity analysis of promise 
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ratios and found self-monitoring of behavior, avoidance/ redu-
cing exposure to cues for behavior, pros and cons, behavior 
practice/rehearsal, and credible source to be the most promising 
BCTs for alcohol misuse interventions, while problem solving 
and self-monitoring of behavior were the most promising 
for substance misuse interventions. Monetary incentives and 
escalating reinforcement were present in mHealth interventions 
included in the meta-analysis by Getty et al. [107], which re-
ported large to moderate pooled effect sizes. Humphreys et al. 
[111] also reported that feedback on behavior, self-monitoring 
of behavior or outcomes of behavior, instruction on how to 
perform the behavior and social comparison were present in 
the effective high-quality studies they reviewed.

Discussion
This umbrella review summarizes the evidence for the effective-
ness of DHIs targeting the prevention and management of NCDs 
and systematically identifies which BCTs within these interven-
tions are effective in improving health outcomes in adults. Using 
evidence from 85 reviews, spanning 12 health domains, with pri-
mary research published over a 37-year period and comprising 
over 865,000 individual participants, our findings suggest that 
DHIs are effective in improving outcomes for patients with CVD, 
cancer, type 2 diabetes, and asthma when compared with con-
trol or usual care conditions. Furthermore, DHIs are effective in 
improving health-related behaviors, including physical activity, 
sedentary behavior, diet, weight management, medication ad-
herence, and abstinence from substance use in both general and 
clinical populations. There was strong evidence from more than 
one health domain that DHIs incorporating a credible source 
(such as communication with a professional or counselor), so-
cial support, graded tasks, prompts, and cues (in the form of 
messaging and reminders), and self-regulatory BCTs including 
goal setting, action planning, self-monitoring behavior, and feed-
back on outcomes of behavior are associated with greater effect-
iveness. Additionally, having access to a human coach, tailored 
or personalized content and more BCTs rather than fewer BCTs 
enhanced effectiveness.

Optimizing behavior change interventions is necessary to 
disentangle effective components from ineffective compo-
nents to improve overall effectiveness. Therefore, it is crucial 
to identify which components, under which conditions, lead 
to convincing and repeatable positive impacts on behavior. 
Here, we provide, for the first time, a comprehensive overview 
of the BCTs that can be linked to effectiveness and therefore 
should be present in future interventions.

We found strong evidence for the incorporation of tailored 
reminders and professional human support (e.g., from a 
treating physician) in interventions that largely targeted the 
modification of multiple lifestyle behaviors, such as physical 
activity and diet. The need for professional support alongside 
digital tools echoes previous research highlighting the import-
ance of human coaching [112] or lifestyle behavior support in 
a face-to-face setting [113]. Indeed, many commercially avail-
able health behavior interventions offer human support or 
coaching as a key feature [114]. However, reliance on human 
support within DHIs vastly reduces their scalability and 
cost-effectiveness potential. Given that personalized support 
appears to be crucial for effective behavior change, alternative 
delivery strategies, such as using conversational agents [114, 
115, 116, 117], should be explored as a matter of priority to 
develop scalable and effective DHI solutions.

We also found strong evidence for the inclusion of 
self-regulatory BCTs in interventions targeting people with 
chronic conditions, including CVD and diabetes. Specifically, 
a combination of BCTs including goal setting, self-monitoring, 
and feedback seems to be consistently aligned with enhanced 
effectiveness. These techniques, which derive from control 
theory, have previously been found to increase the effect-
iveness of physical activity and healthy eating interventions 
delivered within community, primary care, and workplace 
settings [118, 119]. Therefore, our review extends the current 
evidence and confirms the effectiveness of these BCTs within 
digital formats. In line with previous reviews, we also found 
clear evidence that DHIs should be tailored and personalized 
to individuals [51] to improve health outcomes and should 
include more rather than fewer BCTs [120].

Similarly, there was strong evidence to support the inclu-
sion of self-regulatory BCTs, such as goal setting, problem 
solving, and planning, in interventions targeting alcohol re-
duction and smoking cessation. Behavioral substitution and 
credible source were also identified as effective for alcohol 
consumption while reviewing behavioral goals, information 
about health consequences, pros and cons, social support, 
and feedback and monitoring were effective for tobacco ces-
sation. These BCTs align closely with those seen in other life-
style behavior interventions highlighting their effectiveness 
for discouraging as well as encouraging a target behavior.

Currently, there is either no or inadequate evidence to 
permit analysis of effective BCTs in DHIs targeting cancer 
and asthma self-management. Evidence from reviews of nu-
tritional and medication adherence interventions was unable 
to establish any association between specific BCTs and inter-
vention effectiveness. This highlights a need for more rigorous 
research on the effectiveness of individual or combinations of 
BCTs in these domains.

Several steps need to be taken to advance the current state 
of evidence on BCT effectiveness within DHIs. Firstly, more 
primary experimental studies with consistently reported out-
comes and appropriate statistical power are needed to (a) 
understand the comparative effectiveness of individual BCTs 
or combinations of BCTs (e.g., factorial trials), (b) optimize the 
timing of BCT delivery depending on participant responsive-
ness to a DHI (e.g., sequential multiple assignment random-
ized trials), and (c) to understand the proximal effectiveness 
of BCTs on rapidly changing and dynamic behaviors (e.g., 
micro-randomized trials). Secondly, future research should 
explore contextual factors such as intervention mode of inter-
vention delivery, setting, population, and design features, 
including user interface and experience (UI/UX), gamification 
elements, or use of persuasive design, and how these interact 
with BCTs and impact user engagement and effectiveness 
of DHIs. Particular attention should be given to optimizing 
human support given the effectiveness of this component but 
the current resource implications that preclude large-scale im-
plementation. Thirdly, studies should consider demographic 
and geographic factors, cultural differences, digital literacy, 
and accessibility issues, since these factors can significantly 
influence the effectiveness of DHIs. Fourth, more longitudinal 
studies are needed to understand the long-term effectiveness 
of DHIs in sustaining behavior change and what role adap-
tive interventions might play over time. Finally, future re-
search should focus on how artificial intelligence and machine 
learning can be integrated into DHIs to provide personalized 
and adaptive interventions [121]. These technologies can also 
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be used for real-time analysis of collected data to identify 
trends and patterns, predict outcomes, and provide feedback 
to the users or clinicians.

Strengths and Limitations
The strengths of the present review include a rigorous and 
systematic methodology that was prospectively registered, 
the comprehensive examination of DHIs targeting the most 
common NCDs and related risk factors, the use of AMSTAR 
2 to assess review quality, coding of BCTs using the BCTTv1, 
and adherence to the PRISMA guidelines. However, there are 
also several limitations to consider. We were not able to review 
all health conditions related to a specific domain due to the 
vast number of research articles, therefore we were limited to 
the most common NCDs. We did not describe or cite all pri-
mary studies from included reviews due to the large number 
of trials represented (k = 2,164). Because the included reviews 
were not mutually exclusive in their eligibility criteria, there 
may be individual trials that are represented in more than one 
review, particularly for trials related to behavioral interven-
tions. However, given that our review provides only a narra-
tive summary of effect sizes for each health domain, we do not 
expect this to alter our conclusions. Another limitation of the 
review includes the omission of grey literature or studies pub-
lished in languages other than English. We were also limited 
to the information reported by the authors in the original re-
views, which employed a variety of methodologies for data 
synthesis, presentation, and quality assessment. Furthermore, 
we were unable to identify the sociodemographic status of 
the populations studied within the included reviews, there-
fore our findings may not be representative of all segments of 
the adult population. Finally, our findings should be regarded 
with some caution due to the relatively low quality of the 
included reviews and the high heterogeneity found in meta-
analyses of effects. It is also possible that primary studies 
within included reviews were subject to high methodological 
heterogeneity whereby study designs, intervention designs, 
behavior change components, and outcomes were highly vari-
able between trials and thus could explain why DHI effective-
ness for certain health domains is not yet conclusive.

Conclusions
This is the first umbrella review to provide systematic evi-
dence on the effectiveness of BCTs within DHIs across several 
health domains linked to the management and prevention of 
NCDs. This knowledge is critical for the future development 
and upscaling of DHIs and will help to establish best practice 
guidelines. Given the additional benefits of DHIs in terms of 
cost-effectiveness and scalability compared with face-to-face 
interventions, there is convincing evidence to support the pro-
motion of DHIs for the prevention and management of NCDs. 
However, further research is needed to identify the effective-
ness of DHIs across all population segments. Furthermore, 
higher-quality evidence from rigorous experimental trials is 
needed to understand which BCTs work for which health do-
mains and in which contexts.
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