Table 2.
Overview of the models. The models (M1-M7, column 1) are sorted with increasing level of complexity. Input data (D) to each model is specified in the last two columns.
ID | Model architecture | Model type | Input data type | Input data |
---|---|---|---|---|
M1 | Logistic regression | Conventional machine learning | Tabular data | Clinical data (D1), Radiomics data (D2) or all tabular data (D1 + D2) |
M2 | Random forest | Conventional machine learning | Tabular data | D1, D2 or D1 + D2 |
M3 | Neural network without interaction | Deep learning (FCNN) | Tabular data | D1, D2 or D1 + D2 |
M4 | Neural network with interaction | Deep learning (FCNN) | Tabular data | D1, D2 or D1 + D2 |
M5 | EfficientNet3D CNN | Deep learning (CNN) | Image data | PET/CT (D3) |
M6 | EfficientNet3D CNN | Deep learning (CNN) | Image data | PET/CT & GTVp (D3) |
M7 | EfficientNet3D CNN | Deep learning (CNN) | Image data | PET/CT, GTVp & GTVn (D3) |
FCNN, fully connected neural network; CNN, convolutional neural network.