Skip to main content
. 2023 Aug 30;10:1217037. doi: 10.3389/fmed.2023.1217037

Table 2.

Overview of the models. The models (M1-M7, column 1) are sorted with increasing level of complexity. Input data (D) to each model is specified in the last two columns.

ID Model architecture Model type Input data type Input data
M1 Logistic regression Conventional machine learning Tabular data Clinical data (D1), Radiomics data (D2) or all tabular data (D1 + D2)
M2 Random forest Conventional machine learning Tabular data D1, D2 or D1 + D2
M3 Neural network without interaction Deep learning (FCNN) Tabular data D1, D2 or D1 + D2
M4 Neural network with interaction Deep learning (FCNN) Tabular data D1, D2 or D1 + D2
M5 EfficientNet3D CNN Deep learning (CNN) Image data PET/CT (D3)
M6 EfficientNet3D CNN Deep learning (CNN) Image data PET/CT & GTVp (D3)
M7 EfficientNet3D CNN Deep learning (CNN) Image data PET/CT, GTVp & GTVn (D3)

FCNN, fully connected neural network; CNN, convolutional neural network.