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Abstract 

The cerebral oxygen cascade includes three key stages: (a) convective oxygen delivery representing the bulk flow of 
oxygen to the cerebral vascular bed; (b) diffusion of oxygen from the blood into brain tissue; and (c) cellular utilisation 
of oxygen for aerobic metabolism. All three stages may become dysfunctional after resuscitation from cardiac arrest 
and contribute to hypoxic–ischaemic brain injury (HIBI). Improving convective cerebral oxygen delivery by optimis-
ing cerebral blood flow has been widely investigated as a strategy to mitigate HIBI. However, clinical trials aimed at 
optimising convective oxygen delivery have yielded neutral results. Advances in the understanding of HIBI patho-
physiology suggest that impairments in the stages of the oxygen cascade pertaining to oxygen diffusion and cellular 
utilisation of oxygen should also be considered in identifying therapeutic strategies for the clinical management of 
HIBI patients. Culprit mechanisms for these impairments may include a widening of the diffusion barrier due to peri-
vascular oedema and mitochondrial dysfunction. An integrated approach encompassing both intra-parenchymal and 
non-invasive neuromonitoring techniques may aid in detecting pathophysiologic changes in the oxygen cascade and 
enable patient-specific management aimed at reducing the severity of HIBI.

Keywords:  Hypoxic–ischaemic brain injury, Cardiac arrest, Cerebral blood flow, Neuromonitoring, Brain tissue 
oxygenation, Cerebral oxygen delivery, Oxygen cascade

Introduction

In patients resuscitated from cardiac arrest, hypoxic–
ischaemic brain injury (HIBI) is the primary cause of 
mortality [1, 2] and is associated with significant disabil-
ity in survivors [1]. The pathophysiology of HIBI includes 
three phases: (1) global brain ischaemia occurring in the 

interval between circulatory arrest and the start of car-
diopulmonary resuscitation (CPR) (no-flow); (2) global 
brain hypoperfusion occurring during CPR (low-flow); 
and (3) brain reperfusion after the return of spontane-
ous circulation (ROSC) [2]. A significant degree of HIBI 
occurs as a secondary injury after ROSC and part of this 
injury is associated with brain tissue hypoxia [3].

Observational studies have demonstrated a relation-
ship between reductions in cerebral oxygen delivery 
(CDO2) due to arterial hypotension [4], anaemia [5], and 
hypocapnia [6] with adverse neurologic outcome fol-
lowing resuscitation. As such, significant focus has been 
placed on the post-resuscitation optimisation of CDO2 
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[2], although the mechanisms by which brain tissue 
hypoxia may persist after ROSC appear to be more com-
plex [3].

The oxygen cascade encompasses oxygen transport 
from the atmosphere to mitochondria (Fig. 1). It requires 
integrating cardiorespiratory, microcirculatory, and cellu-
lar systems, and involves three key stages: (1) convective 
oxygen delivery, (2) diffusion of oxygen, and (3) cellular 
utilisation of oxygen. The lack of improved neurologic 
outcomes in HIBI trials attempting to optimise post-
resuscitation CDO2 [7–15] (Table 1) may be explained by 

Take‑home message 

The successful treatment of hypoxic–ischaemic brain injury will 
likely require a multi-pronged approach that aims to resolve dys-
function within each step of the oxygen cascade, including con-
vective oxygen delivery, oxygen diffusion, and oxygen utilisation. 
Further, the timing of interventions after resuscitation from cardiac 
arrest and patient-specific pathophysiology must be considered in 
future studies.

Fig. 1  The oxygen cascade and oxygen delivery to the brain. A The oxygen cascade is a multi-step process involving the movement of oxygen 
from the atmosphere to the mitochondria. Oxygen transport depends upon both convective and diffusive oxygen delivery along the oxygen 
cascade and subsequent utilisation by the mitochondria. B Air is drawn into the lungs, where the partial pressure of inspired oxygen (PIO2) 
is ~ 150 mmHg. Subsequent mixing with residual volume renders an alveolar partial pressure of oxygen (PAO2) of ~ 103 mmHg, where at the 
alveolar–capillary junction oxygen then diffuses from the alveoli to the blood whilst carbon dioxide diffuses from the blood to the alveoli. This 
diffusion process is associated with a slight reduction in the partial pressure of arterial oxygen (PaO2) to approximately 98 mmHg. Thereafter, blood 
is pumped to the body by the heart. Importantly, cardiovascular (e.g., MAP), respiratory (e.g., PaO2/PaCO2), humoral (e.g., haemoglobin concentra-
tion, [Hb]), and microcirculatory (e.g., cerebrovascular resistance) factors influence CBF, which is determined by the integration of these physiologic 
factors and more [16]. Panel C depicts the neurovascular unit which is the anatomical and functional integration of cerebral microvasculature, peri-
vascular glial cells and neurons, which ultimately maintains homeostasis in the brain parenchyma. D Convective oxygen delivery, denoted as (1), is 
determined by arterial oxygen content (CaO2) and cerebral blood flow (CBF). (2) Following oxygen delivery to the cerebral capillary network, where 
the partial pressure of capillary oxygen (PCO2) approximates 45 mmHg, oxygen diffusion from the cerebral vasculature to the cerebral parenchyma 
occurs. This diffusion process is determined by factors including the surface area for diffusion (A), the thickness of the diffusion barrier (T), and the 
pressure gradient for diffusion (ΔPO2), and results in a brain tissue partial pressure of oxygen (PbtO2) that is typically greater than 20 mmHg. Oxygen 
must then traverse the cytoplasm to reach the mitochondria, where the partial pressure of mitochondrial oxygen (PMITOO2) is 2–3 mmHg (estima-
tion based upon measures of myoglobin saturation) [17]. (3) Finally, energetic homeostasis requires successfully utilising oxygen through aerobic 
mitochondrial respiration and generating adenosine triphosphate (ATP)
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a disproportionate focus on solely optimising convective 
CDO2 without consideration of abnormalities in oxygen 
diffusion or utilisation. Further, integrating contempo-
rary advances in our understanding of cerebrovascular 
physiology in health may provide improved contextuali-
sation of the abnormalities seen in HIBI pathophysiology 
and help inform future clinical trial design. As such, we 
provide a review with three aims: (1) to review the cer-
ebrovascular pathophysiology in humans with HIBI after 
cardiac arrest placed within the context of each stage 
of the oxygen cascade; (2) to review the utility of neu-
romonitoring techniques which assess the stages of the 
oxygen cascade; and (3) to highlight the clinical impli-
cations of dysfunction of the oxygen cascade for clinical 
management of HIBI patients and future research.

Stage 1: convective oxygen delivery
Convective CDO2 encompasses the circulatory system’s 
delivery of oxygen from the pulmonary vasculature to the 
brain (Fig. 1). Convective CDO2 is the product of cerebral 
blood flow (CBF) and arterial oxygen content (CaO2), 
with the latter determined by arterial oxygen saturation 
(SaO2), haemoglobin (Hb) concentration, and, to a lesser 
extent, the partial pressure of arterial oxygen (PaO2) 
(Fig. 2). The physiologic components of convective CDO2 
are summarised by Eq. 1

(1)
CDO2 = CBF · [(1.34 · SaO2 · [Hb])+ 0.003 · PaO2].

CBF is inversely proportional to cerebrovascular resist-
ance (CVR) and proportional to cerebral perfusion pres-
sure (CPP), which is the difference between the mean 
arterial pressure (MAP) and intracranial pressure (ICP).

Cerebral blood flow
Cerebrovascular resistance is increased following HIBI, 
which may be due to mechanisms encompassing cerebral 
endothelial dysfunction [18], pericyte constriction and 
death [19], oxidative stress, microvascular thrombosis in 
the setting of disseminated intravascular coagulopathy 
[20], and/or peri-vascular oedema resulting in microvas-
cular collapse [21]. Worsening neurologic outcome with 
arterial hypotension [4] or sustained hypocapnia [6] sug-
gests that reduced CBF during this period is injurious. 
Multiple physiologic mechanisms regulate CBF during 
physiologic perturbations [16, 22]. For the purposes of 
this review, clinically relevant CBF regulatory mecha-
nisms include cerebral autoregulation [23] and cerebro-
vascular carbon dioxide reactivity [22, 24] (Fig. 2A).

Cerebral autoregulation refers to intrinsic cerebral vas-
omotor responses that ‘buffer’ the influence of changes 
in MAP on CBF [23]. Pial arteriolar constriction and 
dilation in response to increases and decreases in MAP, 
respectively, were described as early as the 1930s [25, 26]. 
Thereafter, the notion that CBF is maintained constant 
between an MAP of 50–150 mmHg (i.e., Lassen’s curve) 
became very popular [27]. However, recent evidence 
[28–31] supports early critiques of Lassen’s curve [32] 
and it has been re-established that autoregulation only 

Fig. 2  Regulation of cerebral blood flow and convective oxygen delivery. Panel A depicts the relationship between cerebral blood flow (CBF) 
and mean arterial blood pressure (MAP), the partial pressure of arterial carbon dioxide (PaCO2), and the partial pressure of oxygen (PaO2). During 
changes in blood pressure, the brain is more effective at combating increases as opposed to decreases in MAP. CBF changes linearly and propor-
tionally to changes in PaCO2 until extreme levels of hypocapnia or hypercapnia. Decreases in PaO2 lead to a curvilinear increase in CBF in conjunc-
tion with the curvilinear nature of the oxyhaemoglobin dissociation curve. Panel B depicts the influence of PaO2 and haemoglobin concentration 
[Hb] on arterial oxygen content (CaO2). Separate lines for [Hb] concentrations are depicted for a haemoglobin concentration of 15 g/dL as well 
as two Hb thresholds that have been studied as transfusion thresholds in other patient groups in the intensive care unit. The minimal increase in 
CaO2 that results from supplemental oxygen leading to a PaO2 of up to 300 mmHg is also depicted. Panel C depicts a graphical overview of how 
increases and decreases in each of the factors depicted in panels A and B influence the overall convective cerebral delivery of oxygen (CDO2)
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preserves CBF over a narrow plateau in health, which is 
not uniformly flat but often has a gradual upward slope 
[16, 30]. The magnitude by which MAP may be altered 
without a concomitant change in CBF ranges from 
approximately 10 to 20 mmHg (Fig. 2A) [30] and largely 
depends upon the rapidity of the change in MAP [33]. 
Importantly, the cerebral vasculature is more proficient 
at buffering increases rather than decreases in MAP in 
health, thereby rendering the brain vulnerable to ischae-
mia during hypotension [29, 33]. In health, the lower 
limit of autoregulation approximates 70  mmHg [16, 33, 
34] and is highly variable; however, this limit is higher 
in HIBI patients [34–37], indicating a greater vulner-
ability for cerebral hypoperfusion. Using invasive neu-
romonitoring, the average lower limit of autoregulation 
has been observed to approximate 85  mmHg in HIBI 
patients, with significant inter-individual variability 
(range 60–100 mmHg) [38]. Clinically, this suggests that 
HIBI patients may experience cerebral hypoperfusion at 
standard MAP targets (i.e., > 65 mmHg) [39].

Authors have previously suggested that MAP aug-
mentation may be an effective treatment strategy in the 
post-resuscitation setting [38, 40]. However, the neutral 
results of randomised control trials investigating MAP 
augmentation [7–9, 14], and lack of influence of MAP 
augmentation on neurologic outcome demonstrated 
in a recent meta-analysis [41], have led investigators to 
call into question the effectiveness of such an approach. 
Such discordance between the perceived importance of 
augmenting MAP and the lack of benefit for neurologic 
outcome demonstrated in clinical trials may be explained 
by dysfunction in the latter stages of the oxygen cascade 
(see Stage 2: oxygen diffusion & Stage 3: oxygen utilisa-
tion) and by individualised perfusion thresholds that may 
reflect patient-specific cerebrovascular physiology [42]. 
In addition to the potential influence of MAP augmenta-
tion on CDO2, MAP augmentation has been associated 
with improved renal function [8] and reduced myocar-
dial injury [43]. Nevertheless, an ongoing multicenter 
international randomised control trial (STEPCARE: 
NCT05564754) will provide further insights into the 
impact of higher MAP targets on neurologic recovery in 
HIBI patients.

Another key regulator of CBF is PaCO2 [24]. In 
health, changes in PaCO2 cause directionally concord-
ant changes in CBF. For every 1-mmHg change in 
PaCO2 above or below normal values, CBF increases 
by ~ 4–8% or decreases by ~ 1–4%, respectively (Fig. 2A) 
[44, 45]. Cerebrovascular CO2 reactivity regulates CBF 
throughout the cerebral vasculature [44, 46, 47], with 
the grey matter having a two- to three-fold higher cer-
ebrovascular CO2 reactivity than the white matter [24, 
48–50]. In healthy humans, normal cerebrovascular 

PaCO2 reactivity, as measured with transcranial Doppler 
ultrasound [i.e., Δ middle cerebral artery blood veloc-
ity (cm/s)/ΔPaCO2 (mmHg)], has been demonstrated 
to range from approximately 2.5–3.6  cm/s/mmHg [44, 
51, 52]. However, in patients resuscitated from car-
diac arrest, studies by Buunk et  al. and [53] Bisschops 
et al. [54] reported values of 1.85 and 1.34 cm/s/mmHg 
PaCO2, respectively. These data suggest that cerebro-
vascular CO2 reactivity may be impaired in HIBI. Clini-
cally, impaired CO2 reactivity may limit the ability of 
hypercapnia to improve convective CDO2. This may 
help explain why initial small clinical trials [10, 11] and 
the recently published TAME trial [55] did not demon-
strate differences in neurologic outcome in HIBI patients 
with mild hypercapnia versus normocapnia. TAME ran-
domised 1700 out-of-hospital cardiac arrest patients to 
mild hypercapnia (PaCO2 50–55 mmHg) vs normocapnia 
(PaCO2 35–45 mmHg) for 24 h post-ROSC. The primary 
outcome was favourable neurological outcome, defined 
as a Glasgow Outcome Scale-Extended ≥ 5. The trial did 
not demonstrate a difference in the favourable outcome 
rate of patients undergoing mild hypercapnia versus nor-
mocapnia (43.5% vs 44.6%, relative risk (RR) 0.98; 95% 
confidence interval (CI) 0.87–1.11; P = 0.76).

Arterial oxygen content
Maintenance and augmentation of arterial oxygen con-
tent have been extensively studied in critically ill patients 
in general, but only recently in HIBI [11–13, 56, 57]. 
Reductions in CaO2, secondary to anaemia or hypoxae-
mia (PaO2 < 60  mmHg) [22, 58] (Fig.  2B), increase CBF 
in health [22]. Specifically, a 1% reduction in CaO2 leads 
to a 2% increase in CBF [22]. The magnitude of this CBF 
response is sufficient to maintain convective CDO2 in 
health [22]. Whether HIBI alters this relationship is 
unknown. Hypoxaemia is associated with higher mortal-
ity in HIBI patients [59, 60]. However, the recent BOX 
trial comparing normal (e.g., PaO2 = 98–105  mmHg) 
versus restrictive arterial oxygen tension (e.g., 
PaO2 = 68–75  mmHg) did not demonstrate a difference 
in neurologic outcome [12], which may indicate that 
CDO2 is maintained in HIBI during modest reductions in 
PaO2 that remain above 60 mmHg.

Observational evidence suggests that severe hyperox-
aemia (e.g., PaO2 > 300 mmHg) [59–63] is associated with 
worse outcomes after cardiac arrest, although specific 
harmful PaO2 thresholds are not well established [64]. 
A recent post hoc analysis of the TTM2 trial found that 
the best cut-off point associated with 6-month mortal-
ity for hyperoxaemia was 195 mmHg (RR 1.006, 95% CI 
0.95–1.06) [60]. It has been suggested that hyperoxaemia 
may increase the production of reactive oxygen species 
worsening HIBI [65]. However, a post hoc analysis of 
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COMACARE showed no difference in markers of cere-
bral lipid peroxidation between HIBI patients with a tar-
geted PaO2 of 75–112 mmHg and 150–187 mmHg [66]. 
Further research is needed to elucidate the influence of 
moderate levels of oxygen supplementation on CDO2 in 
HIBI, and if individualised PaO2 goals are needed.

In addition to the influence of hyperoxaemia in the 
intensive care unit (ICU) setting, the influence of blood 
oxygen levels in the acute post-ROSC setting on convec-
tive CDO2 must be considered. The recent EXACT trial 
demonstrated that a modest reduction in blood oxygen 
levels (SpO2 97%) versus standard of care (SpO2 99%) did 
not significantly influence survival to hospital discharge 
(odds ratio [OR] 0.68 [95% CI 0.46–1.00]; P = 0.05) [13]. 
Further, there were no apparent differences in 12-month 
neurologic outcome in the patients that survived to hos-
pital discharge or 12-month survival in all patients [13]. 
An important consideration is the extent to which PaO2 
can improve the partial pressure of brain tissue oxygen 
(PbtO2) (see “Parenchymal brain tissue oxygenation”). 
Nonetheless, the findings of the EXACT trial do not sup-
port the use of lower oxygen targets in the pre-hospital 
phase following ROSC.

Whilst the CBF response during PaO2-dependent 
reductions in CaO2 (i.e., hypoxaemia) is sufficient—to a 
certain extent—to maintain CDO2, the CBF response to 
acute anaemia (e.g., decreased CaO2 from acute haem-
orrhage) is insufficient to maintain CDO2 (Fig. 2C) [67]. 
Therefore, acute anaemia may contribute to brain tissue 
hypoxia in HIBI patients [5] and worsen neurologic out-
come after cardiac arrest [5, 68–70]. In an observational 
study on 118 patients with HIBI, higher mean haemoglo-
bin concentration in the first 48  h and 7  days following 
cardiac arrest was associated with lower adjusted odds of 
unfavourable neurologic outcome at hospital discharge 
(OR 0.69/10 unit decrease in Hb, 95% CI 0.54–0.88, 
P < 0.01) [68].

Clinical interventions aimed at optimising convective 
CDO2 continue to be a focus of active research in HIBI 
(Fig.  3). Conceptually, studies on the potential utility 
of MAP augmentation, mild hypercapnia, hyperoxae-
mia, and red blood cell transfusion are logical (Fig. 3A). 
However, their clinical efficacy has not been established 
(Table 1), suggesting that HIBI pathophysiology is more 
complex than dysregulation of only convective CDO2. 
Importantly, consideration of intracranial pressure and 
compliance in individual patients may be crucial in 
selecting the correct clinical interventions to augment 
convective CDO2. For example, in HIBI patients with 
elevated ICP, mild hypercapnia may lead to cerebral 
vasodilation, increased cerebrovascular blood volume 
[71], and intracranial hypertension [72, 73]. Similarly, 
such patients may also experience dangerous elevations 

in ICP with compensatory vasodilatory responses in 
the setting of severe hypoxaemia or reduced CPP. Thus, 
assessment of ICP (see “Neuromonitoring: intracranial 
pressure” below) is a key physiologic variable which must 
be accounted for in optimising convective CDO2 strate-
gies after ROSC.

Stage 2: oxygen diffusion
In a normal resting state, approximately 25% of oxygen 
carried to the brain diffuses into brain tissue. Conse-
quently, normal cerebral venous haemoglobin oxygen 
saturation approximates 70–75% [74]. This relationship 
can be altered by reductions in CBF [45], when additional 
oxygen must be extracted from haemoglobin to maintain 
a constant cerebral metabolism. The diffusion of oxygen 
from the cerebral vasculature into brain tissue is gov-
erned by the biophysical principles of Fick’s law of diffu-
sion, outlined in Eq. (2)

Specifically, the diffusion of oxygen is proportional to 
the surface area for diffusion (A), the diffusion coefficient 
(D), and the pressure gradient from the vasculature to tis-
sue (ΔPO2). Most important to consider in the context of 
HIBI is that oxygen diffusion into the brain is inversely 
proportional to the thickness (T) of the diffusion barrier. 
However, it may be more appropriate to conceptualise 
this as the length of the diffusional path oxygen must take 
to successfully enter brain tissue. This barrier includes 
the cerebrovascular endothelium, vessel wall, and inter-
stitial tissue, and the path length for diffusion may 
increase due to a multitude of factors including cerebral 
oedema. Further, regional microvascular shutdown due 
to microthrombosis or endothelial oedema may make 
areas of the brain dependent on oxygen that has to dif-
fuse from distant capillaries that remain patent, with sub-
stantial increases in the path length for oxygen diffusion.

The concept of impaired oxygen diffusion from the 
blood into brain tissue (i.e., a diffusion limitation) as a 
pathophysiologic component of brain tissue hypoxia in 
acute brain injuries was first demonstrated by Menon 
et  al. [21] in humans with traumatic brain injury. This 
study showed that the difference between the cerebral 
venous partial pressure of oxygen (PvO2) and brain tis-
sue oxygen tension (PbtO2), termed the PvO2–PbtO2 gra-
dient, was greater in patients with brain tissue hypoxia 
[21]. By acutely reducing CBF with a brief period of 
hypocapnia, the authors observed smaller increases in 
the cerebral oxygen extraction fraction in patients with 
brain tissue hypoxia compared to those with brain tis-
sue normoxia, indicating the presence of impaired oxy-
gen diffusion (7 ± 5% vs 16 ± 6%; P < 0.05) [21]. Similar 

(2)Diffusion ∝
A

T
· D ·�PO2.
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observations have been made in humans with HIBI. 
Specifically, patients with post-resuscitation brain tissue 
hypoxia exhibit larger cerebral PvO2–PbtO2 gradients 
than those with brain tissue normoxia (39 mmHg [SD 11] 
vs 16 mmHg [SD 6]; P < 0.001) [75]. Moreover, increasing 
CPP was associated with a decrease in the PvO2–PbtO2 
gradient in patients with brain tissue normoxia, whereby 
each 1 mmHg increase in CPP led to a 0.36 mmHg (95% 
CI 0.18–0.54, P < 0.001) decrease in the PvO2–PbtO2 
gradient, indicating intact oxygen diffusion. Conversely, 
no relationship was observed between varying CPP and 

the PvO2–PbtO2 gradient in patients with brain tis-
sue hypoxia (coefficient −  0.29, 95% CI −  0.17 to 0.11; 
P = 0.73), indicating a diffusion limitation [75].

There may be differential pathophysiologic pheno-
types of HIBI, whereby some patients exhibit “perfusion-
dependent” physiology (i.e., PbtO2 increases in response 
to augmented perfusion) [76]. In contrast, other patients 
exhibit “diffusion-limited” physiology (i.e., PbtO2 is unre-
sponsive to augmented perfusion due to impaired oxy-
gen diffusion) [76]. Clinically, HIBI patients exhibiting 
diffusion limitation would not exhibit increased brain 

Fig. 3  Therapies for hypoxic–ischemic brain injury in the context of the oxygen cascade. This figure illustrates the dysfunction of the oxygen 
cascade in hypoxic–ischaemic brain injury and the targeted therapies aimed at improving oxygen transport to the brain, brain oxygenation, and/
or oxygen utilisation (mitochondrial function). A To therapeutically target convection oxygen delivery, MAP augmentation and hypercapnia aim 
to increase cerebral perfusion by increasing the hydraulic pressure head for flow and lower cerebral vascular resistance through CO2-mediated 
cerebral vasodilation, respectively. Conversely, hyperoxia and transfusion aim to increase oxygen content by increasing the pressure of dissolved 
O2 and haemoglobin concentration, respectively. B To therapeutically target diffusion limitations, hypertonic saline has been shown to reduce 
cerebral oedema as well as the oxygen gradient between cerebral venous blood and parenchyma, indicating improved oxygen diffusion. C Oxygen 
utilisation and mitochondrial dysfunction impairments have been well documented in HIBI and global ischemic brain disease models. Complex 1 
generates excess ROS that leads to the dysfunction of key enzymes and metabolic processes within the TCA cycle. Further, increased calcium leads 
to mitochondrial efflux of cytochrome C and pro-apoptotic signalling. Experimental models have used dimethylmalonate to block excessive post-
ischaemia oxidation of succinate, whilst MitoSNO and Rotenone have been used to selectively block the downstream ROS production by complex 
1 following reverse electron transport. Cyclosporin A has been administered to inhibit the mitochondrial permeability transition pore and reduce 
cytochrome C’s efflux and consequent apoptotic signalling. Finally, the co-factors thiamine and co-enzyme Q10 (Co-Q10) have been administered 
to restore metabolic function following ischaemia–reperfusion injury
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tissue oxygenation with treatment approaches that aim 
to optimise convective CDO2 (e.g., MAP augmenta-
tion), rendering such interventions ineffective. Con-
versely, patients with intact diffusion of oxygen would 
likely exhibit improved brain tissue oxygen tension with 
convective CDO2 augmentation. Identifying these phe-
notypes in real time for bedside clinicians is a clear next 
step to facilitate individualised management paradigms 
in the post-resuscitation setting.

Research on interventions aimed at optimising oxy-
gen diffusion is still in its preliminary phase. Diffusion 
limitation is associated with peri-vascular oedema on 
electron microscopy in humans [21, 77], which may be 
responsive to osmotherapy [78, 79]. Hypertonic saline 
reduces the PvO2–PbtO2 gradient and improves PbtO2 
in HIBI patients with brain tissue hypoxia without sig-
nificant changes in the other key physiologic variables, 
such as ICP, CPP, and MAP [3] (Fig. 3B). The decrease in 
the PvO2–PbtO2 gradient and concurrent improvement 
in PbtO2 provides preliminary evidence that osmoth-
erapy may enhance oxygen diffusion into brain tissue by 
reducing the thickness of the diffusional barrier (Eq. 2). 
Although promising, considerable work remains to char-
acterise this physiology further and evaluate its potential 
clinical efficacy.

Stage 3: oxygen utilisation
At the cellular level, oxygen utilisation relies upon intact 
mitochondrial function and metabolic pathways. The 
main substrate used by the brain is glucose; however, 
alternative metabolic substrates such as lactate and 
ketones may be preferentially metabolised by the injured 
brain [80]. Clinical trial evidence has shown that inten-
sive glycaemic control (4–6  mmol/L) in critically ill 
patients is associated with increased mortality [81], and 
can cause metabolic crisis in patients with acute brain 
injury [82]. As such, it is imperative to avoid hypoglycae-
mia (< 4 mmol/L) which may expose the injured brain to 
neuroglycopenia, and there is arguably a case for main-
taining high normal blood sugar levels to optimise glu-
cose delivery to the brain. The cerebral metabolic rate of 
oxygen (CMRO2) of the grey matter is higher than that of 
the white matter [83]. Neurons and glia are heavily dis-
tributed in grey matter and require adequate adenosine 
triphosphate to support the generation of action poten-
tials, post-synaptic ion fluxes, and maintenance of resting 
potentials [84]. Conversely, the sub-cortical white mat-
ter, comprised largely of myelinated axons, requires less 
oxygen for basal metabolic consumption [85]. This het-
erogeneity in metabolism leads to regional differences in 
the requirements for sufficient CDO2 and vulnerability to 
ischaemia [86]. CMRO2 can be calculated as per the Fick 
principle (Eq. 3) [74]

Alterations to cerebral metabolic function occur fol-
lowing cerebral ischaemia [87] (Fig.  3C). A historical 
study demonstrated that CMRO2 decreased to approxi-
mately 50% of normal in humans resuscitated from car-
diac arrest [88]. Interestingly, measures of the ratio of 
the cerebral venous-to-arterial differences of oxygen and 
carbon dioxide (i.e., Cv-aCO2/Cv-aO2), a global estimate 
of the balance between aerobic and anaerobic metabo-
lism, indicate that low CBF may not necessarily lead to 
anaerobic metabolism in HIBI [89]. It remains unclear 
whether reductions in CMRO2 with HIBI are a regulated 
and adaptive response to maintain cerebral flow-metab-
olism coupling during the hypoperfusion that ensures 
following cardiac arrest However, the evidence to date 
indicates that a higher CMRO2 is associated with survival 
[90]. Important considerations for the interpretation 
of reduced cerebral metabolism include that: (1) global 
CMRO2 may not reflect regional physiologic differences 
of susceptible anatomic foci that are injured in HIBI, (2) 
reductions in metabolism could be the result of a down 
regulation of metabolism or irreversible cell death, and 
(3) sedative administration in the ICU setting will influ-
ence CMRO2 independent from HIBI-related pathophys-
iologic processes.

Mechanistic explanations for cerebral metabolic dys-
function finding in HIBI include an impairment in gly-
colysis [87] stemming from essential co-factor (e.g., 
thiamine) depletion and dysfunction of key enzymes 
(e.g., pyruvate dehydrogenase) [91, 92]. Further, animal 
models have demonstrated an accumulation of suc-
cinate during ischaemia followed by rapid oxidation of 
succinate and reactive oxygen species generation conse-
quent to reverse electron transport at complex 1 [93]. 
Interestingly, plasma succinate levels are higher in HIBI 
that do not survive than in HIBI survivors [94]. This 
reactive oxygen species generation further exacerbates 
mitochondrial dysfunction whereby intracellular cal-
cium accumulation induces cytochrome C release from 
mitochondria [95] and initiates apoptotic signalling fol-
lowing global ischaemia [96]. Importantly, reductions in 
antioxidant defences [97] and increased oxidative stress 
[66, 98] are associated with mitochondrial dysfunction 
in HIBI. The influence of anaesthetic administration on 
CMRO2 during intensive care management must also be 
considered [99]. For example, whilst propofol [100] and 
midazolam [101] reduce both CBF and CMRO2, and 
thus maintain coupling between blood flow and metab-
olism, other anaesthetic agents, such as volatile anaes-
thetics, may lead to uncoupling of CBF and CMRO2 
[99].

(3)CMRO2 = CBF(CaO2− CvO2).
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To improve the balance between CDO2 and O2 utilisa-
tion, moderate therapeutic hypothermia has been ubiq-
uitously employed in post-resuscitation care [102, 103]. 
Yet, supporting evidence has been conflicting and the 
most recent and comprehensive TTM2 trial showed no 
benefit of hypothermia in HIBI [104]. Although thera-
peutic hypothermia has demonstrated some poten-
tial benefit in patients presenting with non-shockable 
rhythms [105], the precise patient population who may 
benefit from therapeutic hypothermia has not been yet 
identified [106]. Given the considerable systemic side 
effects of sustained hypothermia, alternate treatments to 
optimise O2 utilisation and mitochondrial function are 
being investigated.

The administration of metabolic co-factors, antioxi-
dants, and other treatments targeting mitochondrial 
function has gained interest as potential therapeutic 
strategies. For example, high-dose thiamine adminis-
tration in a pre-clinical HIBI model reduced neurologic 
injury [92]; however, two recent phase-2 randomised 
control trials investigating the efficacy of high-dose thia-
mine administration (NCT03450707 and NCT02974257) 
were terminated early for futility. Administration of 
co-enzyme Q10, an essential co-factor in the electron 
transport chain, has demonstrated a potential benefit in 
patients undergoing therapeutic hypothermia (35  °C for 
24  h) [107]. However, another recent randomised con-
trol trial showed no difference in cerebral metabolism, 
neurological biomarkers, or clinical outcomes compared 
to placebo despite increased plasma co-enzyme Q10 lev-
els in the treatment group [108]. Regarding antioxidants, 
pre-clinical studies indicate that vitamin C reduces reac-
tive oxygen species following cardiac arrest [18] and 
improves outcomes [18, 109]. A phase-2 randomised 
control trial (NCT03509662) investigating the efficacy of 
Vitamin C administration in HIBI patients is underway. 
Finally, cyclosporine [110–112], an inhibitor of the mito-
chondrial permeability transition pore, did not confer 
improved survival to hospital discharge when given at the 
onset of advanced cardiovascular life support [113].

Pre-clinical studies have illuminated additional intrigu-
ing therapeutic targets [114], but human studies have yet 
to show significant clinical benefits from mitochondrial-
targeted therapies. For example, increasing S-nitros-
ylation of mitochondrial complexes/enzymes improves 
outcome following cardiac arrest [98], presumably by 
reducing reverse electron transport-mediated genera-
tion of reactive oxygen species by complex 1 [93, 115] 
and/or protecting mitochondrial enzymes from irrevers-
ible oxidation during ischaemia–reperfusion [116]. Fur-
ther, the administration of antioxidants reduces cerebral 
lipid peroxidation [97] and may provide a modest benefit 
to cerebral perfusion and metabolism [117]. However, 

the applicability of these therapies in human patients 
remains to be determined. Given the complexity of the 
cellular pathophysiology in HIBI, the concept of rational 
polytherapy has emerged as a therapeutic strategy [114]. 
In this instance, simultaneous administration of multiple 
agents to reverse pathophysiologic processes at the cel-
lular level has been advocated [114]. However, consider-
able work remains for translation of this approach into 
humans with HIBI.

Assessing the O2 cascade 
through neuromonitoring
Key considerations for the interpretation of neuromoni-
toring techniques with relevance to the oxygen cascade 
are presented below (Fig.  4). Currently, most published 
literature on HIBI patients includes neuromonitoring 
techniques focussing on convective CDO2 or oxygen dif-
fusion. However, studies including techniques assessing 
oxygen utilisation are underway. A prospective inter-
ventional study examining surrogates of mitochondrial 
function (cerebral lactate/pyruvate ratio) using intra-
parenchymal microdialysis (NCT05390060) may shed 
light on the utilisation stage of the oxygen cascade in 
HIBI.

Intracranial pressure
Coupled with measuring arterial blood pressure, ICP 
monitoring enables the continuous quantification of CPP, 
a key determinant of CBF and convective CDO2. Moni-
toring of ICP has traditionally been employed in trau-
matic brain injury management, but investigators have 
also started monitoring ICP in HIBI patients [3, 38, 75, 
118]. There appears to be considerable patient heteroge-
neity regarding the burden of intracranial hypertension 
in HIBI, with the spectrum of disease severity encom-
passing normal ICP to fulminant cerebral oedema and 
brain death [119]. A recent prospective interventional 
study on a consecutive sample of HIBI patients demon-
strated a mean ICP of 14  mmHg (SD 11) [119]. In this 
cohort, the percentage of time with ICP > 20 mmHg was 
22% (range 0–100) during the monitoring period [119]. 
Importantly, these HIBI patients also exhibited limited 
compliance of the intracranial compartment presumably 
due to mild cerebral oedema. Therefore, HIBI patients 
with ‘normal’ ICP may remain at risk of developing 
intracranial hypertension if not managed with ICP lower-
ing interventions [120]. Indeed, pre-clinical studies have 
shown that the administration of osmotherapy can atten-
uate cerebral oedema in HIBI [78, 79] and decrease brain 
injury biomarker release [121]. Monitoring ICP allows 
measurement of autoregulation indices, specifically the 
pressure reactivity index [38, 118] which may be used 
to estimate individualised optimal perfusion pressures. 
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However, the clinical utility of these indices for patient 
management has yet to be determined [122]. Although 
ICP monitoring is an intriguing modality for use in 
HIBI, its invasive nature limits widespread implementa-
tion to guide HIBI management. An important limita-
tion of the available literature describing ICP monitoring 
in HIBI is that it has largely been conducted in patients 
who present from non-cardiac causes of arrest (e.g., 
non-shockable rhythms) [118, 120]. In patients present-
ing with shockable rhythms, whose arrest is most often 
due to acute coronary occlusion, the consequent need for 
anti-platelet or anticoagulant therapy may preclude the 
implementation of invasive neuromonitoring. Consider-
able work remains to clarify the role of ICP monitoring in 
patients with HIBI and its indications and efficacy as part 
of critical care management after the return of spontane-
ous circulation.

Jugular venous bulb oximetry
Jugular venous bulb oximetry (SjvO2) measures the 
oxygen saturation of haemoglobin distal to the sigmoid 
sinus via an intravascular catheter placed retrograde in 
the dominant jugular vein. In a state of normal oxygen 

diffusion, SjvO2 can represent global cerebral haemody-
namics by reflecting the overall balance between con-
vective CDO2 and oxygen utilisation. However, when 
oxygen diffusion is abnormal in HIBI, increased SjvO2 
may indicate underlying pathophysiologic processes, 
such as fulminant cerebral oedema, mitochondrial dys-
function [123], or widespread brain tissue death.

Increased SjvO2 is correlated to adverse neurologic 
outcome [124] and increased serum levels of neuron-
specific enolase (NSE) [125], a biomarker of neuron cell 
body injury [126]. Richter et al. conducted a retrospec-
tive study of 40 out-of-hospital-cardiac-arrest patients 
in whom SjvO2 was intermittently sampled over 72  h 
after hospital admission [125]. They divided the partici-
pants into three study groups stratified by mean SjvO2 
(Group 1: low SjvO2 < 55%; Group 2: SjvO2 55–75%; 
Group 3: SjvO2 > 75%). The authors found that 27/40 
(68%) patients had mean SjvO2 > 75%, with the remain-
ing exhibiting SjvO2 between 55 and 75% and none 
below 55% [125]. Further, they found that HIBI patients 
exhibiting SjvO2 55–75% had lower NSE levels com-
pared to those with SjvO2 > 75% at 72 h (9 [interquartile 
range (IQR) 7–13] vs 46 [IQR 14–65] ng/mL; P < 0.01) 

Fig. 4  Measurement of cerebral oxygen delivery and oxygenation. Techniques employed to measure (or estimate) cerebral blood flow and oxy-
genation in HIBI patients are depicted, along with their pros and cons. The specific measurement principles of each technique should be consid-
ered when interpreting the influence of treatments aiming to improve cerebral oxygen delivery and/or cerebral oxygenation
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[125]. Other studies integrating SjvO2 monitoring as 
part of a comprehensive neuromonitoring platform 
have found worse neurologic outcome in patients with 
elevated SjvO2 post-ROSC [75, 124].

Currently, the clinical utility of routine SjvO2 monitor-
ing is unclear in HIBI. SjvO2 may provide insights into 
in  vivo pathophysiology and help distinguish between 
HIBI patients with intact (low-normal SjvO2) or abnor-
mal oxygen diffusion (high SjvO2). Whether or not 
increased SjvO2 in HIBI represents a sign of disease 
severity or could be a therapeutic goal remains to be seen 
and requires further study.

Parenchymal brain tissue oxygenation
The placement of a parenchymal brain tissue oxygen 
probe enables continuous assessment of brain tissue oxy-
gen tension (i.e., PbtO2) within the sub-cortical white 
matter of the frontal lobe. A recent study by Sekhon et al. 
aimed to quantify the burden of brain tissue hypoxia in 
HIBI [38]. This prospective interventional study of inva-
sive neuromonitoring found that patients spent ~ 40% 
(range 6–100%) of monitoring duration with a PbtO2 that 
is indicative of brain tissue hypoxia (less than 20 mmHg) 
[38]. Balu et al. demonstrated that a PbtO2 < 18 mmHg is 
associated with poor neurologic outcome in HIBI [118]. 
In a matched cohort study, Fergusson et al. stratified HIBI 
patients based on those who underwent management 
guided by PbtO2 (n = 21) versus standard of care (no 
PbtO2, n = 44) [119]. They observed that patients under-
going PbtO2 monitoring had a higher rate of favourable 
neurological outcome (cerebral performance category 1 
or 2) than those without (44% vs 18%, P = 0.03). However, 
the small sample size and the post hoc design limit the 
strengths of this study [119].

Physiologically, PbtO2 reflects the balance between 
both convective CDO2 and O2 diffusion into the brain 
tissue and cerebral metabolism. A prospective study 
on HIBI patients undergoing PbtO2 monitoring dem-
onstrated an association between increasing MAP and 
increased PbtO2 (R2 = 0.71, P < 0.001) [38]. However, 
the slope of the relationship between MAP and PbtO2 
for each patient was heterogeneous [38]. This suggested 
diverse pathophysiologic HIBI phenotypes regarding 
coupling or uncoupling of convective CDO2 and O2 dif-
fusion into the brain [75, 76] (see also the section “Stage 
2: oxygen diffusion”). Therefore, the relationship between 
PbtO2 and other physiologic variables (e.g., MAP) pro-
vides insight into the functionality of oxygen diffusion 
into the brain.

Identifying patient-specific phenotypes with PbtO2 is 
clinically important, since patients exhibiting an uncou-
pling between convective CDO2 and PbtO2 would 
not likely benefit from MAP augmentation or other 

convective CDO2 focussed interventions [76]. Con-
versely, patients with intact O2 diffusion likely would 
benefit. As such, patient identification and selection 
stratified by physiologic phenotyping are key consid-
erations for research using PbtO2 monitoring in HIBI. 
Future work in this area is needed to better understand 
the impact of post-resuscitation brain tissue hypoxia on 
neurologic outcome in HIBI, aid in determining meth-
ods to identify brain tissue hypoxia non-invasively and 
determine whether interventions that resolve brain tissue 
hypoxia are clinically efficacious.

An important limitation of PbtO2 monitoring that 
must be considered is the potential for confounding of 
the PbtO2 recording by dissolved oxygen within the cer-
ebral vasculature. Whilst the catheter is thought to solely 
reflect tissue oxygen tension, it is likely unable to dis-
criminate between the dissolved tension of oxygen within 
the brain parenchyma and within the microvasculature. 
Rosenthal et  al. administered normobaric hyperoxia in 
humans undergoing multi-modal neuromonitoring fol-
lowing traumatic brain injury. The PaO2 increased from 
127 (103–150) to 441 mmHg (363–518) and PbtO2 
increased from 22.9 (17.2–28.6) to 77 mmHg (58.1–96). 
This increase in PbtO2 occurred despite a reduction 
in CBF from 23.9 (16.5–31.2) to 18.5 mL/100  g/min 
(12.2–24.8) [127]. That PbtO2 increased with normobaric 
hyperoxia despite a reduction in CBF and CDO2 likely 
indicates an independent effect of PaO2 on the recorded 
value of PbtO2. This notion has been supported by addi-
tional research [128].

Transcranial Doppler ultrasound
Transcranial Doppler ultrasound (TCD) may have a dual 
role in HIBI management and research: (1) measuring 
middle cerebral blood velocity to estimate CBF and (2) 
non-invasively estimating ICP. Thus, TCD provides esti-
mates of physiologic variables that determine convec-
tive CDO2 (CBF and ICP). A linear relationship exists 
between CBF and flow velocities within the blood vessels 
insonated with TCD (e.g., middle cerebral artery), pro-
vided that the diameter of the vessel remains constant 
[129]. As such, TCD has been used as an indirect and 
non-invasive surrogate of CBF in HIBI [89, 90, 130–133]. 
Hoedemaekers et  al. conducted a prospective observa-
tional study in 20 HIBI patients using TCD to estimate 
cerebral perfusion. The authors observed that the middle 
cerebral artery blood velocity of patients with HIBI (66 
[59.5–73] years of age) was lower than healthy controls 
(28 ± 4.5  years of age) at 24  h (26 [18.6–40.4] vs. 59.1 
cm/s [52.8–69], P < 0.001) but increased significantly at 
72 h (63.9 cm/s [48.3–73.1]). Notwithstanding the poten-
tial influence of age on the lower CBF [134] observed in 
this study [89], these data suggest a dynamic nature of 
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cerebral haemodynamics over time in HIBI. An ongoing 
clinical trial (NCT04000334) is assessing the feasibility 
of using TCD for goal-directed haemodynamic manage-
ment in HIBI.

The second key role of TCD for neuromonitoring in 
HIBI is the non-invasive estimation of ICP [135]. An 
important TCD-derived variable for this is the pulsa-
tility index (PI). The PI is calculated as the difference 
between the peak systolic and diastolic flow velocities, 
divided by the mean flow velocity and a PI above 1.2 sug-
gests intracranial hypertension. A recent multicentre 
study in neurocritically ill patients evaluating the accu-
racy of ICP prediction based on diastolic flow velocity 
and mean arterial pressure demonstrated a good nega-
tive predictive value in ruling out intracranial hyperten-
sion [136]. A high PI and low diastolic blood velocity in 
patients with HIBI are associated with poor neurological 
outcome [133]. Cardim et  al. conducted an agreement 
study between invasively monitored ICP and non-inva-
sive surrogates, including TCD in HIBI patients [135]. 
The authors found a linear relationship between ICP 
measured with intra-parenchymal monitoring and non-
invasive ICP (R = 0.3, P = 0.01) measured with TCD. The 
area under the receiver-operating characteristic (ROC) 
curve of TCD for predicting intracranial hypertension 
(ICP > 20 mmHg) was 0.91 (95% CI 0.83–1.00). Although 
useful and risk-free, the need for technical expertise, 
potential inter-observer error, and difficulties acquiring 
high-fidelity continuous recordings may limit the wide-
spread use of TCD to guide management in HIBI. Fur-
ther studies are needed to better establish the utility of 
TCD in HIBI patient management [130].

Near‑infrared spectroscopy
Near-infrared spectroscopy (NIRS) monitors the regional 
saturation of oxygen (rSO2). Simply requiring the bilat-
eral application of adhesive oximetry pads to a patient’s 
forehead, NIRS is non-invasive and does not require 
high technical expertise to use. The NIRS-dependent 
rSO2 value represents an estimate of the oxygen satura-
tion of haemoglobin within the cerebrovascular com-
partment and assumes a 25:75 or 30:70 ratio of cerebral 
arteriole to venule blood volume in the interrogated 
region [137]. In other words, rSO2 should approximate 
the sum of 0.25*SaO2 and 0.75*SjvO2. The advantages 
of NIRS include its non-invasive application and its 
low-risk profile. NIRS can be implemented quickly in 
the post-ROSC setting compared to other neuromoni-
toring devices. However, technical and methodological 
limitations hinder the widespread use of NIRS for clini-
cal decision-making. Specifically, contamination of the 
rSO2 signal by cutaneous blood, non-adherence of the 
monitoring pads to skin, and ambient light interference 

present challenges to the accuracy of NIRS [138]. Further, 
pathophysiologic considerations in HIBI, such as diffu-
sion limitation, may also limit the accuracy of NIRS. In 
this instance, the uncoupling between CDO2 and brain 
tissue oxygenation precludes the normal assumption of 
NIRS that haemoglobin saturation within the cerebro-
vascular compartment is reflective of brain tissue oxygen 
tension [139]. For example, in patients with HIBI, NIRS 
does not change concordantly with PbtO2 during MAP 
augmentation [38], nor does it change concordantly with 
CBF in health and in patients with HIBI [140]. Further, 
poor agreement has been shown between NIRS-derived 
cerebral autoregulation indices compared to established 
indices generated with parenchymal neuromonitoring 
[140].

Clinical implications
The restoration of adequate CDO2 in HIBI has intuitive 
importance; however, key clinical considerations remain 
regarding the implementation of CDO2-based patient 
management strategies for therapeutic benefit. At pre-
sent, clinical interventions that only target a single stage 
of the oxygen cascade are unlikely to provide therapeu-
tic efficacy (Table  1). Therefore, combined approaches 
are likely required to simultaneously assess convective 
CDO2, diffusion of oxygen, and oxygen utilisation, to 
ensure these critical stages of the oxygen cascade func-
tion optimally. In this regard, a stepwise approach to 
patient management that applies multiple interventions 
for the purpose of targeting each stage of the oxygen cas-
cade represents a promising path forward (Fig.  5). For 
example, optimising convective CDO2 (stage 1) with CBF 
augmenting interventions should be sought prior to or 
in parallel with improving oxygen diffusion (stage 2) and 
cellular oxygen utilisation (stage 3). Potential candidate 
interventions for each stage of the oxygen cascade are 
described in Fig. 5. Such an approach would necessitate 
multi-modal neuromonitoring to assess the function of 
each stage of the oxygen cascade and their response (or 
lack thereof ) to intervention.

The above approach may lay the foundation for ‘per-
sonalised’ post-resuscitative care but requires recognis-
ing differing pathophysiologic patient phenotypes to 
apply the appropriate interventions [76]. Unfortunately, 
no widely implementable technique is presently avail-
able to identify these phenotypes at the bedside to pro-
vide clinicians with immediately actionable real-time 
data. The development of non-invasive techniques to 
identify patient-specific pathophysiology is an essen-
tial avenue for future research. An impairment of oxy-
gen diffusion may explain why not all HIBI patients 
benefit from augmented convective CDO2 [7, 8, 14, 55, 
76]. Studies to date have only targeted convective CDO2 
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or implemented singular interventions [7–14, 56]. It is 
becoming increasingly clear that no single treatment can 
resolve HIBI, and bundle-based management interven-
tions are likely needed [114]. Translational studies should 
focus on establishing the biological plausibility of oxygen 
cascade-based therapeutic strategies. Clinical trial design 
will likely require platform-based adaptive or factorial 
design methodologies to assess the clinical efficacy of 
combined interventions.

Finally, the timing of the restoration of oxygen deliv-
ery to the injured brain is likely key. The longer the delay 
between resuscitation and the implementation of inter-
ventions aimed at restoring CDO2, the less likely it is that 
the restoration of CDO2 will confer a clinical benefit. 
This is analogous to the stroke literature’s well-defined 
“time is brain” concept. The specific timing of when and 
by what magnitude the efficacy of CDO2 restoration is 
diminished after the return of spontaneous circulation 
in HIBI is unknown but is clearly an important variable 
when designing future clinical trials.

Conclusions
The successful treatment of HIBI will likely require a 
multi-pronged approach. A greater understanding of 
the factors that lead to dysfunction within the oxygen 

cascade in HIBI is needed to develop strategies to opti-
mise adequate CDO2 and cellular utilisation. Given 
the complexity of HIBI pathophysiology, it is likely that 
optimisation of cerebral oxygen cascade will need to be 
paired with other neuroprotective strategies to confer 
clinical efficacy for patients. Key variables such as the 
timing of implementation for clinical interventions after 
resuscitation from cardiac arrest and patient-specific 
pathophysiology must be considered in future studies 
to effectively determine the efficacy of CDO2 restoring 
interventions as part of HIBI resuscitation in the inten-
sive care setting.
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