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Detection of diagnostic and prognostic
methylation-based signatures in liquid
biopsy specimens from patients with
meningiomas
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Ana Valeria Castro 1,6 & Houtan Noushmehr1,6

Recurrence of meningiomas is unpredictable by current invasive methods
based on surgically removed specimens. Identification of patients likely to
recur using noninvasive approaches could inform treatment strategy, whether
intervention or monitoring. In this study, we analyze the DNA methylation
levels in blood (serum and plasma) and tissue samples from 155 meningioma
patients, compared to other central nervous system tumor and non-tumor
entities. We discover DNA methylation markers unique to meningiomas and
use artificial intelligence to create accurate and universal models for identi-
fying and predicting meningioma recurrence, using either blood or tissue
samples. Here we show that liquid biopsy is a potential noninvasive and reli-
able tool for diagnosing and predicting outcomes in meningioma patients.
This approach can improve personalized management strategies for these
patients.

Meningiomas are the most common primary tumors of the central
nervous system (CNS)1. According to the World Health Organization
(WHO), meningiomas classified as grades 2 and 3 account for 20–30%
of cases. These tumors present an estimated rate of recurrence of
20–75% across grade 2 and an observed universal rate of recurrence

across grade 3, within 10 years of patient follow-up2. Additionally,
some cases have potential for malignization, metastasizing and may
even prove life-threatening1. An immediate challenge following
meningioma identification lies in determining whether temporal sur-
veillance through imaging or a tailored interventional approach, such
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as surgery or radiation, is the most appropriate patient management.
Off-label investigational therapeutics have been attempted in clinical
trials; however, no widely approved systemic therapies for this disease
currently exist3,4.

One of the principal hindrances to meningioma treatment
advancement is the paucity of standardized assessment criteria or
adequate biomarkers to measure success in clinical trials5. In tandem,
detection of genomic and epigenomic biomarkers has become stan-
dard practice in oncology and proven valuable for classification,
prognostication and appropriate management of CNS tumors,
including meningiomas6–14. Specifically, stratification of meningiomas
according to DNA methylation patterns in tumor tissue has proven to
be an independent and reliable outcome predictor across all menin-
gioma subtypes, and has outperformed the WHO grading system
alone, across retrospective and prospective cohorts8,10,11,15–18. Further-
more, integration of DNA methylation-based groups with com-
plementary molecular features (e.g., copy number variations, WHO
grading, specific mutations: NF2, TERT, etc.) exhibited marked
improvements in predicting the recurrence risk in patients with
meningiomas8,10,11,15–18. Currently, these histologic and molecular char-
acterizations are contingent on the profiling of meningioma tissue
obtained through surgery. However, this approach may be infeasible
for surgically inaccessible tumors, for patients with complicative
comorbidities, or delayed, when tumors detected by imaging are
mistakenly considered benignmeningioma based onwhether they are
small, asymptomatic or discovered incidentally through imaging
approaches19–21. Additionally, multiple surgeries are impractical and
pose inherent cumulative risks for serial assessment of these tumors.
Therefore, development of minimally- or noninvasive approaches to
detect established or novel molecular markers which reflect real-time
tumor biology and behavior is warranted. Imaging techniques are the
current noninvasive approach used to guide diagnosis and manage-
ment of meningiomas; however, its associated prognostic value is still
unclear and longitudinal assessmentmayprove costly, unavailable and
cumbersome for some patients2,22. Moreover, consensus standard
radiographic criteria for inclusion and outcome evaluation for use
across interventional trials established by the RANO group in 2018
illustrated that limitations exist in the application of imaging criteria
alone to characterize this heterogenous disease23.

Liquid biopsy (LB) is a non- or minimally invasive approach that
allows for detectionofmaterial shed by tumors (e.g., circulating tumor
cells and cell-free or tumor genomic elements) in biofluids (e.g., blood,
cerebrospinal fluid, stool, urine, saliva and others)24,25. Several studies
have described the feasibility of applying blood-based LB to screen
mutations and DNA methylation abnormalities using serum- or
plasma-cell free (cf) DNA frompatientswith CNS tumors26–29. However,
current methylation-based prognostication models have been repor-
ted solely across surgically obtained tissue, but not LB specimens,
from patients harboring these tumors8,9,11,16,18,30.

Herein, we surveyed and identified DNA methylation-based sig-
natures in serum which allowed for the development of machine
learning classifiers able to accurately distinguish meningioma from
controls and other CNS entities and predict recurrence risk, whichmay
also be applied across tissue specimens. Our findings lay the founda-
tion for the implementation of a presurgical detection of meningioma
and assessment of its recurrence risk prediction (and possibly pro-
gression surveillance) using a noninvasive approach such as a blood
draw, ultimately impacting themanagement and outcomes of patients
harboring these tumors.

Results
Meningioma cohort features
Demographic and clinicopathological features of patients with
meningiomas (MNG) and other CNS entities (non-MNG) treated at
Henry Ford Health (HFH) and the University of Sao Paulo (USP)

included in this study aredetailedwithinTable 1.Meningiomaandnon-
meningioma cohorts retrieved from the literature and employed in
this investigation are detailed within Table 2.

Methylation data features across liquid biopsy specimens
The preprocessing and quality assessment of our methylation
arrays showed that all liquid biopsy samples, excluding one, met
expected quality control standards (Supplementary Fig. S1a–e). No
batch effects related to sample collection or extraction dates were
observed across the liquid biopsy specimens’ methylomes (Supple-
mentary Fig. S1f, g).

Serum circulating cfDNA concentration (ng/μL) from patients
with meningiomas were significantly lower than gliomas (Wilcoxon
rank sum test; p ≤0.001) and pituitary tumors (Wilcoxon rank sum
test; p ≤0.01). No significant differences in cfDNA concentration
(ng/μL) across meningioma WHO grades, or recurrence risk predic-
tionswereobserved (Supplementary Fig. S1j–m). The serumk3 cluster,
identified through an unsupervised approach further described in
Methods, presented the lowest concentration of serum cfDNA com-
pared to other k-means clusters (k2 and k4).

Paired serum- and plasma or tissue presented similar DNA
methylation profiles
The comparison between paired serum and DNA plasma methylomes
(n = 10 pairs) demonstrated that genome-wide DNAmethylation levels
and estimated immune cell profiles were highly correlated (Pearson’s
ρ = 0.89–0.96) (Supplementary Table S1). The diagnostic and prog-
nostic classifications results from both serum and plasma weremostly
concordant (80 and 70%, respectively) (Supplementary Table S1,
Supplementary Data 1). Across the comparison between paired serum
and tissue methylomes (n = 25), there was a significant and positive
correlation in relation to genome-wide DNA methylation levels (Pear-
son’s ρ =0.694–0.907) (Supplementary Data 5). The correlation across
immune proportions between both sources was positive but non-
significant (Pearson’s ρ =0.132–0.695) (Supplementary Data 5).

Serum cfDNA methylation levels distinguish meningioma from
other CNS entities
We observed that genome-wide cfDNA methylation levels in serum
only partly distinguished MNG from non-MNG conditions as depicted
in the Principal Component Analysis (PCA) (Fig. 1a). However, through
supervised methods, we identified 98 meningioma-specific differen-
tially methylated probes (DMPs; 0. 15<diff.mean< −0.175) which sig-
nificantly separated both groups (Wilcoxon rank sum test: p-
valueFDR ≤0.05). Notably, the mean DNA methylation levels in MNGs
serum were significantly lower compared to controls and non-MNG
samples, such as gliomas (Wilcoxon rank sum test; p ≤0.001) and
pituitary tumors (Wilcoxon rank sum test; p ≤0.05) (Fig. 1b; Supple-
mentary Fig. S2a; Supplementary Data 2).

To investigate whether similar supervised methods would allow
for translatability between tumor tissue and liquidbiopsymethylomes,
we compared MNG and non-MNG tissue collections and identified a
subset of meningioma-specific probes (n = 221 DMPs; |diff.mean |
≥0.55; pFDR ≤0.001) from which some signatures were detectable
across the serum methylome and also distinguished MNG and non-
MNG across serum specimens (n = 24 DMPs; Wilcoxon rank sum test:
pFDR ≤ 1e−04) (Fig. 1c, d, Supplementary Data 2).

The diagnostic-Meningioma Epigenetic Liquid Biopsy (d-MeLB)
classifier accurately classifies samples independently of the
specimen source
We identified 256,447 tumor-specific CpG probes, termed
meningioma-specific DMPs, which exhibited significant differential
methylation between MNG tumor tissue (n = 31) and publicly available
nontumor control collections (epileptic brain; n = 21)31 and were
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utilized as input intodiagnostic classifier construction (Supplementary
Fig. S2b, step #1). Within the algorithm, these DMPs were further fil-
tered to those with high DNA methylation level similarities between
paired meningioma serum and tissue specimens collected at the time
of surgery (origin: Henry Ford Health), namely similarly methylated
probes (SMPs: n = 7659; Supplementary Data 2). T-distributed sto-
chastic neighbor embedding (t-SNE) was applied to visualize the

behavior of these signatures across internal and external tissue cohorts
ofmeningiomas and other central nervous system (CNS) entities13,32–36.
Interestingly, we observed that the SMPs clustered meningioma tissue
samples together with serum and plasma specimens, and effectively
distinguished meningiomas from other CNS entities (Fig. 1e). By fil-
tering these SMPs through a serum-based supervised analysis
(untreated MNG vs non-MNG cohorts; Wilcoxon rank-sum test),
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we derived a signature set applicable to liquid biopsy samples
(Supplementary Fig. S2b).

The application of the d-MeLB classifier across the model selec-
tion serumcohort showed that a score threshold≥0.48had thehighest
classification accuracy (AUC:1.00; SupplementaryData 1). Validationof
the diagnostic classifier was conducted across an independent cohort
of MNG and non-MNG including the samples randomized (n = 30;
Supplementary Fig. S2b, step #2) and excluded (n = 63; Supplementary
Fig. S2b, step #9.5) during model construction, namely the indepen-
dent ‘original’ serum cohort (n = 93). Across this cohort, we observed
an 84.9% accuracy in identification of meningioma/non-meningioma,
with satisfactory performance measures. i.e., Matthew correlation
coefficient (MCC: 0.56) and clinical utility index (CUI + : 0.405) (Fig. 1f).
Two rounds of additional MNG collections (validation i & ii) were
profiled and incorporated as validation independent cohorts after the
initialmodel derivation (serum: n = 19; plasma: n = 10) inwhichd-MeLB
displayed classification accuracies of 68.4% and 70.0%, respectively
(Fig. 1g). For comparisons, performance across the entire liquid biopsy
independent cohort (n = 122) was considered (Supplementary Fig. S2b,
step #10).

In effort to investigate whether our diagnostic MeLB signature
presented a spurious immune-related bias due to potential con-
tamination of serum with immune-cell signature released by white
blood cells during the clotting process, we applied our generated
classifier across an independent cohort of fluorescence activated cell
sorting (FACS) purified immune cell and whole blood profiles
(n = 59)37. The d-MeLBhadanoverall accuracy of 93.2% to classify these
samples as non-meningiomas, including neutrophils and whole blood
(Supplementary Fig. S2c).

Of note, formulation of the d-MeLB classifier was not conducted
with tissue classification in mind and did not include tissue specimens
within discovery or independent validation sets; so, it was expected
that tissue application would be limited (ACC: <10%). To address this
limitation, we used d-MeLB signatures as coefficients for a simple
linear-based discriminant algorithm to classify tissue-based collections
composed of meningioma and non-meningioma. Summarily, we
observed an accuracy of 94.3% to classify an independent cohort into
their correct memberships (n = 176; Supplementary Fig. S4a).

Confirmation of the detection of our diagnostic signatures
(d-MeLB: n = 25 CpGs) across 10 cfDNA samples profiled through
whole genome bisulfite sequencing (WGBS) was conducted. Their
methylation levels determined by β-values (EPIC Array), or percentage
values (WGBS) were significantly correlated across these samples
(Pearson’s ρ =0.6, p ≤ 2.2e−16) (Supplementary Fig. S4b, c).

The d-MeLB classifier outperforms other classifier approaches
We compared the performance of the random forest (RF) approach
used to develop the d-MeLB with other classification methods using
our internal methylome cohort data (n = 239), with identical discovery
(n = 117 MNG & Non-MNG; Supplementary Fig. S2b) and validation

(N = 122; randomized=30; excluded=63; additional serum=19; addi-
tional plasma=10) cohorts as those used throughout the d-MeLB.
Compared to the results obtained with the d-MeLB classifier based on
random forest algorithm, other approaches including dimension
reduction RF, linear discriminant analysis (LDA), extreme gradient
boosting [package: XGBoost v1.7.4]38 and logistic regressions (uni-
variate and multivariate analyses of mean methylation values) pre-
sented lower accuracies in classification of independent liquid biopsy
MNG and non-MNG (Supplementary Table S3 and Supplementary
Methods).

Serum cfDNA methylation clusters are associated with distinct
clinicopathological features, outcomes, and immune composi-
tion across meningioma specimens
Unsupervised consensus clustering analysis revealed four main
k-clusters with distinct cfDNAmethylation profiles across MNG serum
specimens (Fig. 2a, Supplementary Data 3).

The annotation of these serum-derived molecular groups with
clinicopathological and molecular features showed that the clustering
occurred independently of sex, age, and race (Supplementary Data 1)
and were enriched with features associated with MNG outcomes and
prognosis. For instance, compared to k1-and k2 clusters, k3- and k4-
clusters presented an enrichment of WHO grades 2 and 3, and con-
firmed recurrence during patient follow-up (Fig. 2a, Supplementary
Fig. S5a).

Through cfDNA methylation-based deconvolution analysis39, we
discovered that the k4 cluster was enriched with neutrophil cell sig-
natures and possessed the highest neutrophil-lymphocyte ratio (NLR)
and depleted of the majority of immune cell types included in the
analysis. In contrast, the k1-cluster was depleted in neutrophils while
enrichedwith almost all immune cell typeproportion estimates (B- and
T-cells, natural killer [NK] and monocytes) compared to other clusters
(Supplementary Fig. S5a).

The prognostic-Meningioma Epigenetic Liquid Biopsy (p-MeLB)
classifier predicts risk of recurrence (RR) of meningiomas using
serum or tissue specimens
The p-MeLB classifier presented an overall 87.7% accuracy and satis-
factory performance measurements (CUI + : 86.4%; MCC=0.577) in
predicting true recurrence in an independent validation tissue- and
liquid biopsy-based cohort, as confirmed during established follow-up
(original cohort: ACC= 82.6%; additional validations: ACC= 90%;
Fig. 2b, c).

The application of the p-MeLB classifier to primary meningioma
tissue collections (n = 69), derived from all three separate profiling’s
(original, validation i & ii), demonstrated significant agreement with
the classifications obtained from a previously published nomogram
(Cohen’s unweighted kappa; κ =0.269, pκ = 0.01)10. Interestingly,
across a subset of primary MNG independent from p-MeLB classifier
derivation, p-MeLB demonstrated higher sensitivity (SE) to predict

Fig. 1 | Serum circulating cell-free DNA methylation patterns and signatures
distinguish meningiomas from other CNS entities. a Principal component ana-
lysis (PCA) depicting the genome-wide mean methylation levels of serum cfDNA
derived from patients with meningioma (MNG; n = 63) and non-MNG conditions
(otherCNS entities andnon-neoplastic diseases;n = 141). Note:MNG:meningiomas;
CNS Central Nervous System. b Mean methylation levels of the differentially
methylated CpG probes (DMP, n = 98) across comparisons betweenMNG and non-
MNG (Wilcoxon rank sum test; Kruskal-Wallis; *p <0.05, **p <0.01, ***p <0.001).
Box plots - data are presented asmedian andupper (75%) and lower (25%) quartiles.
Whiskers represent minimum to maximum values, excluding outliers. Exact
p-values:Meningioma vsNon-neoplastic Disease: p =0.018;Meningioma vsGlioma:
p = 4.4e−16; Meningioma vs pituitary neuroendocrine tumors: p =0.017; Glioma vs
Other CNS tumors: p =0.012. Note: DMP: differentially methylated probes.
t-distributed stochastic neighbor embedding (t-SNE) plots displaying clustering of

meningioma-specific DMPs across MNG and non-MNG tissue specimens (c).
A subset of these DMPs is detected in the serum and also distinguish equivalent
groups (d). e t-SNE plot displaying dimension-reduced diagnostic-Meningioma
Epigenetic Liquid Biopsy (d-MeLB) probes (SMP: n = 18k CpGs) across CNS tumor
tissue, liquid biopsy (serum and plasma) and tumor tissue frompatients withMNG.
SMP similarly methylated probes, LB liquid biopsy. Distribution of the d-MeLB
scores across independent cohorts (f: original liquid biopsy serum, n = 93; g:
additional MNG serum, n = 19; h: additional MNG plasma, n = 10) (Dashed line:
MeLB cutoff score). Box plots - data are presented as median and upper (75%) and
lower (25%) quartiles. Whiskers represent minimum tomaximum values, excluding
outliers. Upper left corner: performancemeasures. ACCAccuracy, SE Sensitivity, SP
Specificity, CUI Clinical Utility Index, MCC Matthew’s Correlation Coefficient, IT
initial treated, IU initial untreated, RT recurrent treated, RU recurrence untreated.
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true recurrence confirmed during follow-up, compared to the
nomogram-derived results (<5 yrs: SE = 76.5 vs. 47.1%; ≥5 yrs: SE = 88.9
vs. 55.6%) (Fig. 2d).

Across our total cohorts of MNG-tissue (n = 123) and serum
(n = 80) specimens which possessed attributed person-time (mean: 3.7
and 2.7 years, respectively), the 5-year recurrence-free survival prob-
ability was significantly lower in MNG classified as having a high risk

than those classified as low risk of recurrence (tissue: 20% vs 73%;
serum: 35% vs 75%; log-rank p ≤ 1.0e−4) (Fig. 2e, Supplementary Data 1).

We also confirmed the detection of our prognostic signatures
(p-MeLB: n = 13 CpGs, 70 high-risk related DMPs) across 10 cfDNA
samples profiled through whole genome bisulfite sequencing
(WGBS). Similar to the observed for d-MeLB signatures, the
DNA methylation levels of the p-MeLB signatures as determined by
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β-values (EPIC array) or percentage values (WGBS) were highly corre-
lated across these samples (p-MeLB: Pearson’s ρ = 0.73, p = 3.1e−16;
risk-related DMPs: Pearson’s ρ = 0.68, p = 2.2e−16) (Supplementary
Fig. S4b, c). These findings indicate that our EPIC-based results are
further supported by WGBS, which serves as a secondary benchmark
profiling method.

High and low recurrence risk meningioma groups present dif-
ferential clinicopathological features and estimated immune
landscapes in serum and tissue specimens
To further characterize our predicted risk groups, we estimated dif-
ferences in the distribution of relevant clinical features associatedwith
prognosis between samples classified as high and low risk for recur-
rence (Fig. 3a, b). Summarily, in serum specimens, we observed a sig-
nificantly higher odds ratio (OR) of a confirmed recurrence during
follow-up occurring in high risk compared to low-risk specimens
(OR = 15.45, 95% CI: [1.45, 844.77]; p ≤0.05). No significant differences
were observed in relation to MNG location (skull base/non-skull base),
extent of resection (gross total resection [GTR]/subtotal resection
[STR]), WHO grades (2&3/1), progression in post-surgical MRI reports
(Progressive/non-enhanced and stable disease) or vital status
(deceased/alive), among others (Fig. 3a). Additionally, in high-risk
specimens we observed significant enrichment in the estimated pro-
portions of neutrophils and depletion of B-cells (p = 0.002), NK
(p = 4.00E−04) and CD4-T cells (p =0.07) and high NLR compared to
their low-risk counterparts (Fig. 3b).

In tissue specimens, similar to serum findings, we observed sig-
nificantly higher odds of a confirmed recurrence during follow-up in
high- compared to low-risk specimens; no differences regarding tumor
location or grade (OR = 32.2, 95% CI: [5.71, 351.06]; p ≤0.05) (Supple-
mentary Fig. S5b); estimated NLR (p =0.08), neutrophils (p =0.07),
and NK (p =0.1) proportions (Supplementary Fig. S5c). In contrast to
serum findings, compared to low risk, high risk samples presented
decreased odds of having a gross total resection (OR =0.15, 95% CI:
[0.01, 0.76]; p ≤0.05) and higher odds of progressive disease post-
surgical MRI reports (OR = 11.91, 95% CI: [2.63, 77.84]; p ≤0.05) (Sup-
plementary Fig. S5b).

p-MeLB classifications are validated across external menin-
gioma tissue cohorts
In order to further assess the robustness of our p-MeLB predictor, we
compared the performance of p-MeLB with other tissue methylome-
based prognostic classifiers using a common external meningioma
tissue cohort. The p-MeLB recurrence risk predictions across external
meningioma tissue-methylome cohorts aligned with prognostic and
survival differences reported by other authors16,18. For instance, within
the Choudhury16 hypermitotic group characterized by the poorest
5-year recurrence-free survival probability (~35%), a majority of sam-
ples was classified as high risk for recurrence by p-MeLB; while the
Merlin-intact group with the most favorable 5-year recurrence-free

survival (~85%)was largely classified as low risk (Fig. 3c, Supplementary
Fig. S3c, d). The Bayley18 malignant MenG-C group with the poorest
recurrence-free survival probability compared to their more benign
counterparts (MenG-A and -B groups), was unanimously classified as
high recurrence risk by p-MeLB (Fig. 3c, Supplementary Fig. S3e, f).
Overall, the assessment of p-MeLB’s ability to detect true recurrence
during follow-up across these external cohorts was limited due to the
lack of sufficient longitudinal information16,18.

Tissue-derived differentially methylated probes are detectable
and moderately differentiate recurrence risk groups in serum
specimens
We identified a subset of tissue-derived prognostically-relevant DMPs
from the comparison between confirmed recurrence (CR) and con-
firmed non-recurrence (CNR) specimens (pFDR < 0.001 & |diff.mean |
≥0.55; n = 260 DMPs) which presented congruent DNA methylation
levels with serum and distinguished a majority of high and low risk in
our original (n = 63) and additional (validation i & ii; n = 18) indepen-
dent serum cohorts (pFDR < 0.001 & |diff.mean | ≥ 0.27; n = 39 DMPs),
with minor intermingling of risk-groups (Fig. 4a, b).

Prognostic probes located in gene regulatory elements poten-
tially control the expression of target genes associated with
tumor development and growth—in silico functional analysis
Through the intersection between Choudhury and p-MeLB classifica-
tions, we identified and compared two prognostic groups in tissue
specimens, i.e., high-risk hypermitotic vs low-risk merlin MNG to
identify prognostic-specific DMPs. By performing an integrative ana-
lysis of paired methylome and transcriptome meningioma tissue
data16, we identifiedprognosticDMPs in regulatory regionswhichwere
differentially methylated and targeted genes which were differentially
expressed between these prognostic groups (probe-gene pairs
[PGPs]). For downstream analysis, to identify putative epigenetically
regulated genes, we selected PGPs which possessed a negative corre-
lation between DNA methylation and expression levels (n = 65 PGPs;
Fig. 4c, Supplementary Data 4). Among these PGPs identified in tissue,
12 CpGs presented concordant DNA methylation between serum and
tissue specimens and also differentiated recurrence risk groups across
serum specimens (e.g., hypermethylated in both tissue and serum in
high-risk specimens) (Fig. 4d, Supplementary Data 4).

Additionally, across serum specimens, we identified 70 risk rela-
ted DMPs through the supervised analysis between high and low
recurrence risk meningioma (Supplementary Fig. S5g, Supplementary
Data 3). Mapping these serum derived DMPs to tissue sample methy-
lomes and to their putative target genes in the Choudhury dataset, we
selected PGPs which exhibited negative correlation between gene
expression and CpG probe DNA methylation levels across risk
group comparisons (n = 25 PGPs). CpG probes with concordant DNA
methylation levels between tissue-serum PGP are highlighted (Fig. 4e,
Supplementary Data 4).

Fig. 2 | Serum circulating cell-free DNA methylation patterns and signatures
differentiate meningiomas with different behaviors. a Methylation heatmap
displaying the 1000 most variable methylated probes (β-values) across serum
meningioma unsupervised k-clusters (n = 63). Samples are sorted intomethylation-
based clusters and annotated with clinicopathological/molecular features. Vertical
tracks (right) genomic annotations. LI Labeling Index, EOR Extent of Resection, NI
non-informed, MRI magnetic resonance imaging b/c. Distribution of the
prognostic-Meningioma Epigenetic Liquid Biopsy (p-MeLB) scores across (b) the
original independent cohort (n = 23) and (c) additional validations (n = 50) from
patients with meningiomas presenting different outcomes (confirmed recurrence
or no recurrence; dashed lines: p-MeLB score cutoff). Box plots - data are presented
asmedian and upper (75%) and lower (25%) quartiles.Whiskers representminimum
to maximum values, excluding outliers. Upper left corner: performance measures.
ACC Accuracy, SE Sensitivity, SP Specificity, CUI Clinical Utility Index, MCC

Matthew’s Correlation Coefficient. d Scatterplot displaying the relationship
between p-MeLB and the nomogram recurrence risk prediction across the primary
meningioma tissue subset. Linear relationship is depicted with 95% confidence
interval (lower and upper limits). Measurements of concordance are displayed
(Cohen’s unweighted kappa/Spearman’s ρ, p <0.05). Table comparing the accura-
cies of p-MeLB and the nomogram-based classifier across an independent subset of
primarymeningioma tissue (n = 69).ACCaccuracy, CRConfirmedRecurrence, CNR
Confirmed No Recurrence. e Kaplan-Meier survival curves displaying meningioma
tumor tissue samples stratified by their predicted recurrence risk (n = 127, vertical
ticks: censorship). Survival curves are depicted with 95% confidence intervals
(lower and upper limits) for point estimates; comparisons of median survival time
in both recurrence risk groups were conducted using log-rank tests (p <0.0001).
MNG meningioma, RR recurrence risk.
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Finally, we explored the potential biological functions and diseases
associated with these PGPs through gene set enrichment analyses. We
identified that tissue- or serum-derived prognostically relevant PGPs
were related to tumorigenesis processes (n = 38 genes), specifically
related to meningioma (n = 5 genes), cell growth/proliferation/move-
ment (n = 26 genes), cell cycle (n = 7 genes), and immune response
(n = 21 genes), amongst others (Table 3, Supplementary Data 4).

Identified prognostic DMPs exhibited overall DNA hypermethy-
lation inCRor high-risk samples compared toNCRor low-risk samples.
We also observed, particularly in the regulatory regions of gene pro-
moters associated with Polycomb repressive complexes (PRC), strong
DNA hypermethylation. This DNA hypermethylation was detected
across liquid biopsy specimens (serum and plasma), as well as tumor
tissue specimens (Supplementary Fig. S5d–f).
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Discussion
Genome-wide DNA methylation assessment provides an objective,
robust and unbiased approach to define discrete molecular groups of
CNS tumors. This approach overcomes the limitations and subjective
biases associated with histopathological and grading classification
approaches8,10,11,15–18. Detection of distinct DNA methylome patterns is
reproducible and stable within and across diseases and allows for the
fine-tuning of molecular subtyping associated with distinct recurrence
and growth-prone behaviors in many tumors7–11,16,18,26,28,40. Capitalizing
on this knowledge, several reports have shown that specific DNA
methylation signatures identified in tumor tissue specimens are
amenable to the development of machine learning classifiers able to
accurately diagnose and prognosticate several tumor types and sub-
types, including meningiomas8,11,25,28,41,42. However, we observed that
these previous classifiers were not able to classify our liquid biopsy
samples into their diagnostic or prognostic memberships, possibly
due to their formulation being solely based on tissue-derived
methylomes8–10,16,18. To circumvent this limitation, herein, we devel-
oped machine learning classifiers using meningioma-specific DNA
methylation markers suitable to diagnose and prognosticate these
tumors using either liquid biopsy or tissue specimens (Figs. 1f–h
and 2b, c).

Confirming their tumor-of-origin specificity, these detected mar-
kers clustered together liquid biopsy (serum and plasma) and tissue
specimens from patients with meningioma, while simultaneously dis-
tinguishing these tumors from other CNS entities, when applied to
external and independent tumor tissue cohorts13,32–36 (Fig. 1e). The
d-MeLB signatures generated during our diagnostic model develop-
ment presented an overall accuracy of ~85% to classify serum samples
according to meningioma or non-meningioma memberships (Fig. 1f).
These signatures were also able to correctly classify tissue samples
with ~94% accuracy using additional linear machine-learning methods
(Supplementary Fig. S4a). Altogether, the current findings corroborate
our previous reports showing the viability to use LB-oriented classifiers
for diagnosing CNS tumors26,29. Notably, this classifier allowed for the
accurate identification of recurrent meningioma using serum samples
(Fig. 1f–h), which could prove useful as an standalone or com-
plementary noninvasive tool along with imaging to monitor these
tumors43.

Through p-MeLB classifier development, we identified risk-
specific DNA methylation markers in serum useful for the stratifica-
tion of serum or tissue specimens according to their recurrence
risk, with an observed total accuracy of 87.7% across independent
cohorts (Fig. 2b, c). In addition to the noninvasive application of
p-MeLB, its accuracy is comparable to or even surpasses other indivi-
dual benchmark methods evaluated in surgical specimens, such as Ki-
67/MIB1 immunoexpression (AUC: 87.7%)44, transcriptome-base mar-
kers (AUC: 0.81)45,46 or composite scores involvingmultiple risk factors
(AUC: 0.849)47 with or without consideration for imaging features
(AUC: 0.75-0.78)48.

The observed agreement between the prognostic classification
using p-MeLB or existing classifiers, further reinforced the validity and
robustness of p-MeLB in assessing the likelihood of recurrence10,16,18.
However, compared to the Nassiri nomogram10, the p-MeLB model
excelled in predicting the risk to recur in an independent meningioma
tissue cohort (i.e., p-MeLB vs nomogram accuracies - within 5 years:
76.5 vs. 48%; after 5 years: 88.9 vs. 56.6%) (Fig. 2c, Fig. 3c, Supple-
mentary Fig. S3c–f). Additionally, external samples predicted as high
risk through p-MeLB classification exhibited significantly poorer
overall survival, with an approximate 20% probability without a tumor
recurrence after 5 years’ time. These observed survival trends are
concordant with recurrence-free survival rates reported for subtypes
with higher propensities for progression by other authors (e.g., Bay-
ley’s MNG-C: ~45%; Choudhury’s Hypermitotic:~35% and Nassiri high
risk/grade 3~25%)10,16,18 (Fig. 2d).

Additionally, considering the differing sensitivities of Choudh-
ury’s Hypermitotic and Merlin-intact subtypes to cytotoxic agents in
preclinical studies (with decreased and increased vulnerabilities,
respectively)16, and the consistent alignment of p-MeLB classifications
with high and low risk for recurrence in these subtypes, we suggest
that p-MeLB has the potential to guide experimental therapeutic
decisions.

Notably, the p-MeLB classifier presents some unique advantages
compared to these existing models: (1) In contrast to the cross-
sectional information utilized as input in existing models16,18, our
p-MeLB signatures were derived from longitudinal data. This was
accomplished by comparing cases with confirmed recurrence or no
recurrence over a minimum 5-year period of clinical and radiographic
surveillance follow-up; (2) p-MeLB requires solely DNA methylation
data as input, in contrast to other tissue-based meningioma classifiers
which rely on the integration of methylomic data with clin-
icopathological features prone to subjectivity (e.g., extent of resec-
tion) ormultiomic profiling, whichmay be financially detrimental for a
potential clinical application; and (3) it is able to accurately predict
outcomes when applied across different specimen sources (tissue,
serum, and potentially plasma).

Overall, these findings suggest that the application of d-MeLB
and/or p-MeLB classifiers could be a valuable noninvasive approach for
diagnosing and distinguishing meningiomas from other mimicking
diseases in preoperative assessments and possible monitoring tumor
progression and treatment response through a blood draw (Fig. 3d).
Additionally, they may complement traditional and advanced imaging
approaches, such as radiomics49, to provide a more comprehensive
and accurate evaluation of meningioma status.

Through the integration of paired methylome and transcriptome
data derived frommeningioma tissue generated by Choudhury et al.16,
we identified genes whose expressions are possibly regulated by epi-
genetic control (Fig. 4c). Interestingly, many of the probes associated
with these genes in meningioma tissue were also detected in serum
specimens (Fig. 4d). Among these gene sets, we found enrichments for

Fig. 3 | Clinicopathological and molecular characterization of serum from
patients with meningioma predicted to present distinct recurrence risk out-
comes through p-MeLB. aClinicopathological feature proportions and associated
odds ratios (p-values: two-sided Fisher’s Exact test; error bars: 95% confidence
interval estimates) derived from the comparison between meningioma serum
samples predicted to present high or low recurrence risks. Reference column
depicts themeanproportionof each featureacross thewholecohort. SBSkull-base,
NSB Non-Skull Base, Y Yes, N No, GTR Gross Total Resection, STR Subtotal Resec-
tion, PD Progressive Disease, SD Stable Disease, NED Non-Enhancing Disease, CR
Confirmed Recurrence, CNR Confirmed No Recurrence; Bolded features are those
with observed statistical significance. b Immune cell proportions and associated
mean differences derived from the comparison between meningioma serum
samples predicted to present high or low recurrence risks (error bars: mean

difference 95% confidence interval; p-values: two-sided t-test). Reference column
depicts themeanproportion across thewhole cohort. NLRNeutrophil-Lymphocyte
Ratio. Bolded features are those with observed statistical significance. c Schematic
summarization of observed clinicopathological and molecular features across
samples (LB-serum and/or tissue) from patients with meningiomas predicted to
present high or low risk of recurrence through p-MeLB. LB liquid biopsy, RFS
Recurrence Free Survival, RR Recurrence Risk,MNGCBayleyMeningiomaC group,
CNV copy number variation, RR recurrence risk, PRC Polycomb Repressive Com-
plex. d Schematic representation—clinical application of liquid biopsy DNA
methylation-based diagnostic and prognostic classifiers in patients suspected to
present meningioma. MeLBMeningioma epigenetic Liquid Biopsy, cfDNA cell-free
DNA, d-MeLB and p-MeLB diagnostic- and prognostic- Meningioma Epigenetic
Liquid Biopsy, respectively, MRI magnetic resonance imaging.
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biologically relevant terms such as CNS tumor development,
cellular growth/proliferation and movement, and prognosis (Table 3,
Supplementary Data 4). We also detected distinct hypermethylation
within regulatory regions of gene promoters associated with PRC
across high-risk samples. DNA hypermethylation in promoter regions
of this complex, as observed across multiple sample sources (serum,
plasma and tissue), has been previously linked to malignancy in

meningiomas33,50. Altogether these results indicate that the identified
signatures could be mechanistically involved in the recurrence risk of
these tumors and could be used as prognostic markers detectable in
serum specimens.

Most reported LB-oriented studies have used plasma instead of
serum as a source of cfDNA to perform omics analysis. Herein, we
mainly profiled serum, the sole blood component available in our
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tumor bank at the period of our data freeze. Although certain mole-
cular results (e.g., detection of somatic mutations)51,52 could be
impacted by the use of serum profiling due to potential dilution or
contamination with genomic DNA derived from blood and other cells
during the coagulation process, it does not seem to interfere with the
detection of cell-specific cfDNA methylation markers as shown in this
and other studies26,29,41,53,54. Additionally, even after considering
potential dilution of tumor derived cfDNA in serum specimens, DNA
methylation array platform (EPIC) or whole-genome sequencing are
sensitive approaches to detect abnormalities in minute amounts of
intact or fragmented cfDNA in liquid biopsy specimens (e.g., <1 ng)55–57.
Notably, among our detected risk-specific probes, derived through
serum- or tissue-based analyses, some of their targeted genes are
implicated in immune response pathways. In serum this enrichment
could arguably reflect contamination with cfDNA from lysed white

blood cells potentially introducing an immune bias into our signatures
(Table 3). However, we gathered several lines of evidence to support
the hypothesis that the immune-related findings we observed are
genuine and associated with the presence of meningiomas. To for-
mally address concerns about genomic DNA contamination in serum,
we profiled and compared the methylomes of paired serum and
plasma samples from an additional meningioma cohort. We found a
high correlation in the genome-wide DNA methylation levels, esti-
mated immune cell proportions, and diagnostic and prognostic clas-
sifications between the two blood elements in most samples
(Supplementary Table S1). Additionally, meningioma-specific probes
detected in plasma clustered together with their matching serum and
tissue counterparts, confirming the specificity of these CpG probes
regardless of the specimen source (Fig. 1e). Furthermore, we observed
a significant difference in several estimated proportions of immune
cells in comparison of whole blood andmeningioma liquid biopsy (LB)
serum samples (Supplementary Fig. S4d–l). Additionally, our d-MeLB
model accurately classified whole blood and purified immune cells
samples as non-meningiomas, indicating that our d-MeLB signatures
are not biased towards spurious immune enrichment (Supplementary
Fig. S2c, Supplementary Table S3). We observed that samples pre-
dicted to have a high risk of recurrence exhibited higher neutrophil-to-
lymphocyte ratios (NLR), increased neutrophil levels, and reduced
proportions of B-cells andnatural killer cells (Fig. 3b). These alterations
have been associated with poor prognosis in other tumors45,58,59. We
also found that the immune compositions between serum and
matching tissue were not significantly correlated, suggesting that the
systemic immune or inflammatory response to the presence of
meningiomas is distinct from the local immune response in the tumor
microenvironment, consistent with findings from other studies60–62.

Altogether, these immune-related findings in serum specimens
appear to be authentic markers of a systemic inflammatory response
to the presence of meningiomas with varying recurrence risk, rather
than a spillover of the local immune response or contamination with
DNA from white blood cells (Fig. 3b, Supplementary Fig. S5c, Supple-
mentary Data 5). While confirmation with a gold standard approach
such as flow cytometry is needed, our results suggest that this DNA
methylation-based deconvolution approach could offer additional
insight into our proposed prognostic classifications. It has the poten-
tial to stratify patients with meningiomas based on their immune
landscape and guide future immunotherapy strategies26,29,63–67.

Currently we are developing a user-friendly platform containing
the diagnostic and prognostic classifiers, similar to the available tissue-
basedweb tool detailed byCapper et al.32. We aim to have this webtool
fully operational for research purposes in the near future. As we
aggregate more serum and tissue methylome data along with clin-
icopathological information, we hope to refine ourmodels before they
are made available for potential clinical application.

In summary, we showed that blood-based specimens, specifically
serum, are amenable for the detection of tumor-specific DNA methy-
lation signatures. The identified signatures not only enabled differ-
entiation betweenmeningiomasandother intracranial entities but also
showed accuracy in identifying meningiomas with distinct recurrence
risks. Potentially, these signatures may serve as a valuable surveillance
tool for detecting meningioma recurrence during follow-up. The suc-
cessful clinical implementation of these DNA methylation-based

Fig. 4 | Characterization and functional analysis (in silico) of recurrent-risk
differentially methylated probes. Principal component analysis depicting the
tissue-derived recurrence risk group DMPs (High vs Low) and respective outcomes
(Confirmed Recurrence vs. Confirmed No Recurrence) across (a) the tumor tissue
cohort, (b) the original liquid biopsy serum cohort and an additional serum cohort
of samples frompatientswithmeningiomas. cHeatmapdisplayingmethylationand
expression levels of differentially methylated probes and differentially expressed
target genes that are negatively correlated across high and low recurrence risk

groups identified in an external molecular meningioma tissue dataset (Choudhury
et al., 2022). *PGPPromoter-linkedprobe-gene pair.dPrincipal component analysis
of liquid biopsy serum samples using the identified and concordantly methylated
probe-gene pairs as input. PGP probe-target gene pair. e Scatter plot depicting
serum-derived risk-specific probes that are also detected inmeningioma tissue and
respective target genes expression changes between high and low risk sample
cohorts. PGP probe-target gene pair, Diff mean differential mean.

Table 3 | Gene set enrichment analysis results using Ingenuity
Pathway Analysis (IPA)

Term Geneset # Of genes p-value(s): UL, LL
Diseases & Disorders

CNS tumor related Tissue 38 4.6e−05, 0.006

Serum 26 0.0028, 0.0155

Cancer Serum 36 0.0012, 0.0175

Tumor development Tissue 36 7.6e−05, 0.0012

Meningioma-related Serum 5 1.47e−04, 0.011

MN-1 related Tissue 1 0.0135

Molecular and cellular functions

Immune Response Serum 21 4.85e−04, 0.0178

Tissue 1 0.00678

Cell growth/proliferation Tissue 19 2.32e−04, 0.0284

Serum 9 5.47e−04, 0.0145

Cellular movement Tissue 17 5.31e−04, 0.0269

Serum 14 0.0047, 0.0179

Cell assembly Tissue 15 1.74e−04, 0.0282

Serum 5 0.0011, 0.0163

Cell death Tissue 15 0.0034, 0.0227

Serum 12 0.0011, 0.0145

Embryonic development Tissue 13 0.0022, 0.0132

Cell cycle Serum 13 0.0018, 0.0163

Tissue 7 1.26e−04, 0.0285

CNS development Serum 11 0.0017, 0.0018

Cell-to-cell signaling Tissue 10 0.0017, 0.0269

Serum 10 4.56e−04, 0.0163

Cell function Serum 6 0.0018, 0.0181

Cell-mediated immune
response

Tissue 3 0.0034, 0.0285

Cell development Serum 3 0.0012, 0.0018

Most relevant disease and biofunctions predicted by Ingenuity Pathway Analysis (IPA) to be
regulatedbymRNAexpressionprofiles of high-risk hypermitoticmeningiomasamples (p-values:
right-tailed Fisher’s Exact Test).
MN-1menin-1, mRNA messenger RNA, IPA Ingenuity Pathway Analysis, UL Upper Limit, LL
Lower Limit.
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classifiers will refine meningioma recurrence risk stratification at the
time of diagnosis and possibly during follow-up, ultimately impacting
management and outcomes of these patients. Our machine learning
classification approach, based on methylome analysis, has the poten-
tial to be extended for the diagnosis and prognostication of a broader
spectrum of tumors using liquid biopsy-derived specimens.

Methods
Our research complies with all ethical regulations within our Institu-
tion. This project was approved by the Institutional Review Boards
(IRB) andpatients consented tohave their specimens used for research
purposes (Henry Ford Health (HFH): IRB#12490; University of Sao
Paulo (USP): IRB#1572/2016).

We collected archival serum from 204 patients who underwent
resection of meningiomas (MNG group) and other CNS entities and
controls (non-neoplastic diseases) at the Neurological Surgery
Department at Henry Ford Health from 06/2011 through 08/2019,
namely ‘original’ cohort. We also retrieved and analyzed meningioma
tissue methylomes generated internally at Henry Ford Health (n = 31),
and provided by the Department of Neurosurgery of the University
of Sao Paulo (n = 72), or from publicly available repositories
(n = 900)16,18,32,33,50,68. Longitudinal follow-up information was available
for 50 tissue (Henry Ford Health and University of Sao Paulo) and 25
liquid biopsy serum collections (Henry FordHealth). Serum specimens
collected at recurrence were available for 19 meningioma collections
(two paired with serum collected at first/initial surgery).

Besides these cohorts, we collected an “additional” MNG cohort
(namely, validation i & ii) consisting of 69 archival tissue and blood-
derived liquid biopsy collections obtained between 12/1999 and 07/
2021 at Henry Ford Health: 8 paired tumor tissue and liquid biopsy
(serum and plasma) pairs, 9 pairs of tissue and serum, 2 paired serum
and plasma, and 23 individual tissue collections. Longitudinal follow-
up data attributed to this cohort was available for a subset of samples
(tissue, n = 27; liquid biopsy serum, n = 8; liquid biopsy plasma, n = 4).
Simultaneous collections of tissue and serum samples were available
for 25 MNG patients.

Additional collections of non-neoplastic diseases (n = 6) were also
profiled for expansion of the control arm of this study. Information
characterizing internal and external cohorts are displayed in Tables 1
and 2.

Congruent to definitions reported by others10, meningioma
recurrence was defined as tumor growth/progression or additional
surgery following gross or subtotal resection through review of the
immediate postoperative imaging and/or information found in medi-
cal records during follow-up (person-time), across initial or recurrent
collections (namely Confirmed Recurrence (CR) group, Henry Ford
Health and University of Sao Paulo tissue and liquid biopsy serum
cohorts; n = 84; Table 1). Non-recurrent MNG was defined as the
absence of growth/progression in any post-surgical MRI or medical
reports or absence of further tumor resection across a minimum
attributed follow-up of 5-years (namely Confirmed No Recurrence
[CNR]; Henry Ford Health and University of Sao Paulo tissue: n = 17;
Henry Ford Health liquid biopsy: n = 9; Table 1). In order to ensure
precise categorization, serum samples or publicly available tissue
sampleswithout available follow-up informationwere labeled as either
high risk or low risk for recurrence through the prognostic classifier
(p-MeLB). We also retrieved publicly available methylomes, some
paired with transcriptome data (RNA-sequencing or microarray) from
meningiomas (Table 2)16,18. To perform correlative analyses between
our prognostic (p-MeLB) classifier with others, we excluded samples
from the Bayley cohort18 which were not correctly classified by their
algorithm (n = 15), at the request from the authors. Updated clinical
and follow-up information was kindly provided by the Bayley group18.
Within the Choudhury cohort16, we excluded samples which were not
fully annotated across provided clinical data (n = 60). Prognostic

classification of our internally generated samples through Nassiri
et al.10 nomogram was kindly performed by the Nassiri group.

DNA isolation, quantification, quality control, DNA methylome
data generation and preparation
Extracted DNA from meningioma-derived specimens (serum, plasma
and tissue) were bisulfite converted using the Zymo EZ DNA methy-
lation kit as specified by themanufacturer (Zymo Research, Irvine, CA,
USA) and profiled using an Illumina Human EPIC array (EPIC) at the
USC Norris Molecular Genomics Core Facility26. Prior to profiling, the
isolated DNAwas restored using a restoration kit provided by Illumina.
This allowed us to restore fragmented DNA and concentrate the low
yield26. Bisulfite converted DNA samples were recovered in a 10ul
volume, and 1ul was used to evaluate bisulfite conversion complete-
ness and recovery26. DNA methylation was profiled using the Illumina
Human 850k (EPIC) and a matching subset using whole genome
bisulfite sequencing (WGBS). Publicly available tissue methylome was
profiled using 450k (HM450k; tissue)13,32–36,69 or 850k (EPIC)16,18,31,70

arrays (Table 2). Data quality of themethylome data was assessed with
the R-based graphical user interface shinyMethyl v3.16 (details in Sup-
plementary Methods)71.

DNA methylation preprocessing
DNA methylation array (EPIC) data were preprocessed (e.g. removal
of masked probes and SNP) using the minfi package, as detailed
in Supplementary Methods72,73. Before downstream analysis, liquid
biopsy methylome data was examined for potential batch effects
regarding plate number and extraction dates using commonplace
methodologies (ComBat v3.20.0- sva). Tissue-based MNG methylome
data was corrected for batch effect by institution prior to t-distributed
stochastic neighbor embedding (t-SNE) visualizations. For prognostic
classifier derivation, only probes common between 450K and
850K arrays were selected to maintain retrospective cohort applic-
ability (n = ~339k CpGs). For technical validation, we profiled the
methylation levels of a subset of meningioma LB samples using whole-
genome bisulfite sequence (WGBS) as detailed in Supplementary
Methods.

DNA methylation exploratory analysis
Unsupervised and supervised analyses. We explored methylome
patterns across all serum samples (CNS tumor types and non-
neoplastic controls) using standard unsupervised approaches and
visualizations, described in detail in Supplementary Methods. To
identify MNG molecular groups, we applied hierarchical consensus
k-means clustering to the most variant methylated probes (n = 1000)
across MNG serum specimens and selected the optimal number of
clusters based on statistical parameters such as the Cumulative Dis-
tribution Function (CDF) and the Calinski-Harabasz curve74.

Supervised analyses. In order to identify Methylation Epigenetic
Liquid Biopsy (MeLB) probes (serum-derived) or tissue-derived MNG-
specific differentially methylated probes (DMPs), we performed
supervised comparisons between MNG- and non-MNG group methy-
lomes (serum: 44 primary and 19 recurrentMNG, 141 non-MNG; tissue:
326 MNG; 367 non-MNG). To identify prognostically relevant probes,
we conducted comparison between predicted high and low risk for
recurrence groups (31 high risk and 32 low risk MNG) in the serum or
confirmed recurrence (CR: n = 35) and non-recurrence (CNR: n = 15)
groups in the tissue.

To reduce the potential for capturing background noise, we used
volcano plot visualization techniques to guide selection of the DMPs
which presented significant FDR adjusted p-values and mean methy-
lation differences across comparisons within a variable range reported
in the literature (differential mean DNA methylation ≥10–15%;
Wilcoxon rank sum tests; p-valueFDR ≤0.05)75–78.
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Each DMP was mapped to their CpG genomic location previously
defined as CpG islands (CGI), shores, shelves, and open sea regions64

and to their putative target gene using EPICmanifest (hg38). Enhancer
elements were defined using the GeneHancer database (hg38) pro-
vided by the UCSC Genome Browser79. Promoter elements were
defined using GENCODE v.31 annotations, with consideration of CpGs
located 200 bp up/downstream from the target gene80.

Methylome-based predictions—Random Forest machine learning
approach. To investigate the potential diagnostic and prognostic
applications of MeLB, we used the random forest machine-learning
(ML) approach to generate a binary classifier to differentiate MNG vs
non-MNG specimens and low vs high recurrence risk groups using
serum cfDNA- and/or tissue-derived DNA methylation-based sig-
natures. Specific feature selection processes are detailed in Supple-
mentary Methods.

Cohortswere randomized throughmachine-drivenprocesses into
sets encompassing representative and proportional samples of each
comparison group: 1) the discovery set used to construct the classifier,
further subdivided into 1a) a training set for the identification of rele-
vant signature sets and algorithm training and 1b) a model selection
set, used to evaluate the resulting classifier’s performance, or 2) an
Independent validation set, not involved in any of the previous
development steps, used to validate the finalized classifier. Following
the completion of classifier formulation and independent validation,
we included an additional set of MNG & Non-MNG samples to further
validate the generalization of our diagnostic classifier (Additional
validation set).

Supervised feature extraction processes were automated within
machine learning construction and specialized for each classification
task, as detailed below, in efforts to isolate diagnostic orprognostically
relevant signatures, and reduce the potential for the training classifiers
using noisy signals.

The performances of both diagnostic and prognostic prediction
models were assessed using Matthew’s correlation coefficient (MCC),
whichmeasures the quality of a binary classification by the agreement
betweenpredicted and actual (observed) values (ranging from+1 to−1,
i.e. perfect agreement [perfect prediction] to total disagreement [poor
prediction]81 and the Clinical Utility Index (CUI), interpreted as excel-
lent, good, satisfactory or poor when values are ≥0.81, ≥0.64, ≥0.49
or <0.49, respectively. This index is primarily used to express the
relative benefit of using our classifiers, compared to use of an
optimal test, when making clinical decisions (CUI positive [+], and CUI
negative [−])82,83.

Meningioma diagnostic classification—Diagnostic MeLB (d-MeLB).
In diagnostic classifier construction, following exclusionary measures
(recurrent gliomas, inflammatory non-neoplastic diseases), serum
samples were randomly assigned to discovery (n = 117) or independent
validation cohort sets (n = 30), both encompassing analogous pro-
portions of meningioma (initial and recurrent) and non-meningioma
serum specimens. The discovery cohort was further randomly parti-
tioned into training (80%) and model selection sets (20%). To instill
inherent MNG-specificity to the identified signature, we performed
dimensionality reduction of the entire genome through two distinct
methods: 1) conducting genome-wide supervised analysis between
internally-profiled MNG tissue specimens (n = 31) and publicly avail-
able nontumor control specimens (n = 21)31, selecting CpG probes
which exhibit differential methylation between the two groups
according to a randomly selected significancemeasure, namely tumor-
specific DMPs (n= ~256 k; Wilcoxon rank sum test p-value range:
1e−4–0.05); and 2) among the tumor-specific DMPs, selecting those
CpG probes which possessed the greatest DNA methylation level

similarities between matching training set serum and tissue samples,
namely similarly methylated probes (SMPs, n = 7659 CpGs; range:
mean difference ≤ 0.1–0.2%). To explore the efficacy of our reduction
technique and further solidify theMNG-specificity built into our SMPs,
we employed unsupervised t-distributed stochastic neighbor embed-
ding (t-SNE) across a wide array of tumor types, some not included
within our liquid biopsy cohort. The entire cohort included within the
t-SNEwasderived fromboth external (n = 2038, details inTable 2)13,32–36

and internal (n = 229) collections.
Further specialization of the DNA methylation signature was

completed through comparison of untreated MNG (i.e., no pre-
surgical radiation; n = 27) and non-MNG specimens (excluding glio-
blastomas, which were appreciably distinct across genome-wide
visualizations; n = 32) across the aforementioned SMPs, to identify
meningioma-specific DMPs with no potential for treatment-related
epigenetic modifications. This final set of signatures was named
diagnostic-Meningioma Epigenetic Liquid Biopsy (d-MeLB, range
number: 20–30 CpGs; Wilcoxon rank sum test, p-valueFDR). Notably,
we introduced variability across the machine-generated classifiers
through randomization of parameters across iterations, including
tissue-based nontumor differential significance, matching serum/tis-
sue similarity score, sampling of non-MNG groups and final signature
set size.

Using d-MeLB, we generated a classifier using the function ‘train’
(caret, v6.0.94) with 1000 decision trees and 10-fold cross validation
conducted across the training set. To guide selection of the classifier,
we applied the classifier to the model selection set and selected the
score cutoff which optimized the relationship between true positive
and false negative rates, defined through inspection of associated
receiver-operating characteristic (ROC) curves, namely diagnostic or
d-MeLB score. The selected classifier was validated using our original
independent validation set (n = 93), including the excluded recurrent
gliomas and inflammatory non-neoplastic diseases (n = 63). Further
validations of the classifier were conducted across additional menin-
gioma liquid biopsy-based validations, including both serum (n = 19)
and plasma (n = 10) collections. Finally, we compared our diagnostic
random forest-based classifier with other machine learning methods,
as detailed in Supplementary Methods.

To investigate whether our d-MeLB signature was suitable for the
diagnosis of tumor tissue samples (profiled through EPIC array), we
constructed a simplified linear discriminant analysis (LDA)
based machine learning classifier using MNG (n = 138; Henry Ford
Health & University of Sao Paulo), intracranial mesenchymal
tumors (n = 20; GSE164994)70, and non-neoplastic collections (n = 21;
GSE111165)31. These samples were randomized into discovery (80%)
and independent validation (20%) sets, with discovery samples used to
train and construct the LDA classifier, and the validation set further
expanded with external collections of gliomas (n = 16; GSE147391),
MNG (n = 110; GSE189521)18, and internally profiled pituitary tumors
(n = 14). Clustering of the total tumor tissue independent validation set
(n = 176) across the d-MeLB signature was visualized using principal
component analysis, and performance measures were calculated, as
described.

Meningiomaprognostic prediction—PrognosticMeLB (p-MeLB). To
investigate the application of MeLB as a prognostic tool (p-MeLB), we
compiled MNG tissue methylome data from confirmed recurrent (CR,
n = 35) and confirmed non-recurrent (CNR, n = 15) collections, as
defined in the Patients section. Machine-driven randomization
assigned the total tissue cohort into training (CR, n = 24; CNR, n = 10)
and independent validation sets (CR, n = 11; CNR, n = 5). Then, a series
of machine-driven and sequential supervised analyses comparing
methylomes across specificmeningioma tissue prognostic groups (CR
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and CNR) and/or serum k-clusters (k1, k2, k3 and k4) were imple-
mented to define serum-applicable prognosticmethylation signatures.
The defined signatures were utilized as input to a machine learning
random forest algorithm, generated through use of the function ‘train’
(caret, v6.0.94)with 1000 trees and 10-fold cross validation conducted
across the training set. Signature set derivations and subsequent
generation of the random forest algorithms were repeated across
1000 iterations, with each concluding in storage of the signature,
training set classifications, and associated out-of-bag (OOB) error.
Following 1000 iterations, we selected a p-MeLB classifier with an
optimal score cutoff based on the smallest OOB error. Finally, the
chosen classifier was validated, using the independent validation
cohort (n = 16) and an additional set of internal and external samples
meeting our criteria for definition of CR (Henry Ford Health: 29 tissue,
8 serum; Bayley et al.: 20 tissue)18. The classifier was then applied
across the liquid biopsy sample cohort for stratification by
recurrence risk.

Comparison betweenpublished prognostic and p-MeLB classifiers.
We evaluated the agreement of p-MeLB predictions with prognostic
groups involving the analysis ofmethylomes combinedwith additional
molecular and/or clinicopathological features defined by previously
reported tissue-based classifiers formulated in Nassiri et al.10,
Choudhuryet al.16 andBayley et al.18. Through theprovisionofourDNA
methylation data, the extent of resection andWHOGrade, our internal
primarymeningioma tissue cohort (n = 69) was classified according to
a 5-year recurrence risk prediction nomogram developed by Nassiri
et al.10 and compared resulting classifications with p-MeLB’s conclu-
sions. We also applied the p-MeLB classifier across publicly available
methylome data provided in Choudhury et al.16 and Bayley et al.18,
following appropriate exclusions (see Patients and Methods), and
explored the relationship between p-MeLB predictions and purported
DNA methylation prognostic groups (Choudhury et al.: hypermitotic,
Immune-enriched, Merlin-intact16 and Bayley et al.: MenG A, MenG B
and MenG C18). To circumvent the general lack of attributed person
time for each sample in the publicly available cohorts, we generated
local freedom from recurrence (LFFR) Kaplan-Meier curves across
Choudhury methylation-based groups16 and correlated the resulting
p-MeLB risk scores with their reported outcome data (Cohen’s
unweighted kappa coefficient [κ] and Spearman’s correlation
coefficient [ρ]).

Identification of biologically relevant and equivalent DNA methy-
lation markers between tissue and serum. To identify biologically
relevant and equivalent DNA methylation markers between tissue and
serum, we used an in silico functional analysis approach, capitalizing
on the availability of tissue-derived and paired methylome and tran-
scriptome analysis of meningioma provided by Choudhury et al.16

(n = 185), as detailed in Supplementary methods.

Methylation-based Deconvolution. We applied previously described
and validated DNA methylation-based methodologies to deconvolute
the relative contribution of immune cell types to a given liquid biopsy
and tissue specimen (package: MethylCIBERSORT v0.2) (details
in Supplementary Methods)39.

Clinicopathological and molecular features across MNG sub-
groups. We analyzed the distribution of clinicopathological and
molecular features (categorical and continuous) across serum- and
tissue-derived MNG specimens according to k-clusters and high and
low recurrence risk groups, as detailed in Supplementary Methods.

Comparison between serum and plasma specimen-derived DNA
methylation profiles. To compare results obtained through serum-
and plasma-derived specimens, we correlated genome-wide DNA

methylation levels (EPIC Array) and the estimated immune and non-
immune cell proportions across a paired serum and plasma samples
set (n = 10 pairs).

Statistical analysis
All data processing and statistical analyses were completed using R
(3.6.1). Non-parametric two-sided Kruskal-Wallis and Wilcoxon rank-
sum tests and multiple testing adjustments (e.g., FDR) were used to
identify significant DMPs and discrete variable differences across
binary group comparisons. Machine-learning classifiers were for-
mulated using a random forest (RF) algorithm. Receiver operating
characteristic (ROC) curves were utilized to estimate the predictive
power for each iteration of the diagnostic RF classifier (false positive
rate (1-specificity [SP]), true positive rate (sensitivity [Se]). Con-
cordance across classifiers was estimated using Cohen’s unweighted
kappa coefficient (κ); correlative relationships were quantified using
Pearson’s correlation coefficient (ρ). Statistical significance related to
differences in survival probability for estimated risk groups were
established through p-values (log-rank test; p ≤0.05). K-nearest
neighbor imputation machine learning was used in the event of miss-
ing DNA methylation β-values found within tumor tissue methylomes
across downstream analyses (t-SNE).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw cfDNA methylation intensity data files (EPIC Array;.idat), as
well as generated classifiers, have been deposited to Mendeley Data
under accession https://doi.org/10.17632/zrc982rvjm.2 [https://data.
mendeley.com/datasets/zrc982rvjm/2]84. The Whole genome bisulfite
sequencing (WGBS) files generated in this study have been deposited
to the Sequence Read Archive at the NCBI under accession code
PRJNA932734. Additional tumor tissue molecular data analyzed in this
study was obtained from Gene Expression Omnibus (GEO) under
accession codes GSE42882, GSE109381, GSE85135, GSE189521 GSE18
3656, GSE115783, GSE54415, GSE164994, GSE147391 and GSE111165.
Other sources of tissue molecular data employed in this study also
include Mendeley Data under accession https://doi.org/10.17632/
5pzd2rg5ys.2 [https://data.mendeley.com/datasets/zrc982rvjm/2]85

and The Cancer Genome Atlas’s GDC data portal [https://portal.gdc.
cancer.gov/], as detailed in Table 2. Sourceof our data is providedwith
this paper. Public data repositories employed throughout this paper
include GENCODE (GRCh38.p12) https://www.gencodegenes.org/
human/release_31.html, Infinium Annotation Manifests (hg38) https://
zwdzwd.github.io/InfiniumAnnotation, Ensembl (hg38) http://useast.
ensembl.org/index.html, and GeneHancer (hg38) https://www.
genecards.org/. Gene-ontology and gene-set enrichment was per-
formed using Ingenuity Pathway Analysis (IPA) https://digitalinsights.
qiagen.com/products-overview/discovery-insights-portfolio/analysis-
and-visualization/qiagen-ipa/. Source data are provided with
this paper.

Code availability
Source codes necessary for production of the diagnostic- and
prognostic-Meningioma epigenetic Liquid Biopsy (dMeLB, pMeLB)
classifiers are available at GitHub [https://github.com/gherrgo/eLB-
Random-Forests.git]. Complementary *.idat files from tumor tissue
and liquid biopsy specimens required to construct, validate, and apply
our random forest classifiers are available under the Mendeley Data
Accession https://doi.org/10.17632/zrc982rvjm.2 [https://data.
mendeley.com/datasets/zrc982rvjm/2], as well as within the supple-
mentary data (Supplementary Data S1 - Clinical Information;
Source Data).
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