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Background: The purpose of this study was to develop a deep learning approach to automatically
segment the scapular bone on magnetic resonance imaging (MRI) images and to compare the accuracy of
these three-dimensional (3D) models with that of 3D computed tomography (CT).
Methods: Fifty-five patients with high-resolution 3D fat-saturated T2 MRI were retrospectively identi-
fied. The underlying pathology included rotator cuff tendinopathy and tears, shoulder instability, and
impingement. Two experienced musculoskeletal researchers manually segmented the scapular bone.
Five cross-validation training and validation splits were generated to independently train two-
dimensional (2D) and 3D models using a convolutional neural network approach. Model performance
was evaluated using the Dice similarity coefficient (DSC). All models with DSC > 0.70 were ensembled
and used for the test set, which consisted of four patients with matching high-resolution MRI and CT
scans. Clinically relevant glenoid measurements, including glenoid height, width, and retroversion, were
calculated for two of the patients. Paired t-tests and Wilcoxon signed-rank tests were used to compare
the DSC of the models.
Results: The 2D and 3D models achieved a best DSC of 0.86 and 0.82, respectively, with no significant
difference observed. Augmentation of imaging data significantly improved 3D but not 2D model per-
formance. In comparing clinical measurements of 3D MRI and CT, there was a mean difference ranging
from 1.29 mm to 3.46 mm and 0.05� to 7.47�.
Conclusion: We have presented a fully automatic, deep learning-based strategy for extracting scapular
shape from a high-resolution MRI scan. Further developments of this technology have the potential to
allow for surgeons to obtain all clinically relevant information from MRI scans and reduce the need for
multiple imaging studies for patients with shoulder pathology.

© 2023 The Author(s). Published by Elsevier Inc. on behalf of American Shoulder and Elbow Surgeons.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Shoulder bone morphology affects surgical outcomes for mul-
tiple conditions, such as shoulder instability, rotator cuff arthrop-
athy, and osteoarthritis. The current gold standard for evaluation of
shoulder bone morphology is three-dimensional (3D) computed
tomography (CT) reconstructions as it provides accurate quantifi-
cation of glenohumeral spatial relationships, bone loss, and wear
patterns.2 However, CT scans are limited in their ability to evaluate
soft tissue and expose patients to ionizing radiation. Magnetic
resonance imaging (MRI) is frequently ordered in the setting of
shoulder instability and arthropathy and provides superior soft
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tissue detail compared to CT. The utilization of both MRI and CT
scans has been increasing recently as there is improved recognition
regarding the complimentary information of bony and soft tissue
structures.21 Ideally, all necessary information for surgical planning
should be available from a single biomedical image to increase
patient safety and convenience.

3D osseous reconstructions of the shoulder from MRI data may
be an equally effective tool as CT in the evaluation of glenohumeral
bone loss.5 However, these reconstructions often require either
specialized sequences or extensive manual postprocessing steps.
Manual segmentation of MR images can allow for 3D bony
reconstructions, though this process is time-consuming, cumber-
some, and not realistic to apply in clinical care. Prior semi-
automated segmentations20,19,9 have been shown to increase
efficiency by at least 3.5-fold while maintaining high accuracy and
inter-annotator agreement. Despite these advances, the post-
processing time typically takes over 25 minutes. Additionally, prior
ulder and Elbow Surgeons. This is an open access article under the CC BY license
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Table I
Patient demographics.

Age (y) Mean: 51.5, range: 24-75
Sex 20 female, 35 male
Diagnosis Rotator cuff injury (38), instability (9),

impingement (5), tendinosis (3)
Laterality 29 left, 26 right
BMI (kg/m2) Mean: 27.1, range: 18.0-40.5

BMI, body mass index.
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reports have described automatic bony segmentation of the scap-
ula, though these have typically required specific sequences and
postprocessing.12 These requirements of extensive manual pro-
cessing, specific sequences, or a need for a trained technologist
have precluded the routine use of 3D MRI reconstructions in the
clinical setting.

One proposed solution to improve the efficiency of 3DMRI bone
segmentations is with the use of machine learning. Machine
learning aims to recognize data patterns and trends to make
informed decisions.25 Models learn through training, and perfor-
mance is measured, and ideally improved, over time and repetition.
Machine learning can be implemented to solve various tasks, such
as classification, regression, detection, and image segmentation.25

Deep learning (DL), which is a branch of machine learning and
artificial intelligence, has recently emerged as a strong tool for
image analysis in medicine.14 However, because of the limited
availability of suitable biomedical images, augmentation tech-
niques are often used to artificially increase the size of data sets
used to train DL models in radiology.7

The purpose of this study is to formulate a DL approach to
automatically segment the scapular bone from MR images. We aim
to compare the performance of models trained with 1) original
versus augmented data, 2) axial versus coronal versus sagittal
planes (for two-dimensional [2D] only), and 3) 2D versus 3D
models. Additionally, we aim to evaluate our model’s performance
to that of CT reconstructions, which are the current clinical gold
standard. We hypothesize that the augmented data will improve
model performance and that the 3Dmodels will outperform the 2D
models.

Methods

Patient identification

Fifty-five patients (mean age 51 years, range, 24-75) with high-
resolution shoulder MRI scans were identified through the Picture
Archiving and Communication System (PACS) (Table I) (Fig. 1). Di-
agnoses for these patients included rotator cuff tear or tendinop-
athy, shoulder instability, and impingement. Inclusion criteriawas a
shoulder MRI with a high-resolution axial sequence available
(Table II) and performed between September 2018 and October
2020. Exclusion criteria included poor image quality, presence of
metal artifact, fracture, suspected infection, or tumor. All proced-
ures were approved by our institutional review board.

Data preparation

Manual segmentations of the scapula were performed to train
and validate the DL model. Scans were manually segmented using
an in-house program.6 Segmentation was performed by two
experienced researchers. Two scans were manually segmented two
additional times to account for interpersonal and intrapersonal
reliability. Reliability was measured using Dice similarity co-
efficients (DSCs). The intra-rater and inter-rater reliability, respec-
tively, were DSC ¼ 0.91 and 0.85.

To decrease the computation load and allow training of a 3D
model without resizing the image, each volume was cropped to
exclude the first 112 pixels in both columns and rows. The volumes
were sliced by selecting every other slice, starting from the first or
the second slice. This cropping value ensured no loss of bone or
scapula-related details, and the 3D volume size after this procedure
was two volumes of 400 � 400 � 124 (initially one volume of
512 � 512 � 248).

Cropped images were then augmented with random affine,
elastic deforms, Gaussian, and/or noise transformations.24 Each
862
original image had a 30% chance of undergoing any of the listed
augmentations, and each was augmented eight times.

Data splitting

Patients were then divided into five cross-validation sets using
the K-folds cross-validator. This method splits the data set into k
consecutive folds (without shuffling by default). Each fold is then
used once as a validation while the k-1 remaining folds form the
training set.

Network details

To begin training, data were first normalized. In the training set
for 3D models, normalization was done using a random value
within the range of maximum volume value ± 1000. This normal-
ization accounted for potential coil artifacts, which would strongly
alter image intensity values. As a result, data were inherently
further augmented. In the validation set, normalization was done
by dividing by the maximum volume value. Additional division by
the 85th percentile proved helpful to account for potential outlier
values, as shown in previous studies.4,11 In the training set for 2D
models, a similar normalization was done, using instead a value
within the range of maximum volume value ± 500, as this resulted
in a more stable outcome relative to 1000.

To choose a network size for both 2D and 3D, V-Net models of
different width and depth were tested. Models that were too small
were not successful in fitting the training set, whereas models that
were too large quickly overfit the data. Satisfactory training was
obtained with the V-Net characteristics as shown in Table III.

Training details

Cross entropy, Dice loss, and weighted combinations thereof
were tested. Ultimately, the best-performing function was the
negative logarithmic dice loss:

F¼ � log10
2jp,byj
jpj þ jbyj

with p the predicted segmentation probability map and by the
segmentation ground truth mask.

2D and 3D models were trained for a maximum number of
100,000 iterations. However, the model was subject to early stop-
ping if no improvements in the validation set were observed for 30
validation epochs. An epoch refers to one entire passing of data
through the algorithm. A validation epoch was conducted every 90
training steps. Dropout with keep probability of 95% was also
implemented and Adam optimizer was employed with standard
internal parameters.

Ten 3D models were trained: 5 with original data (one for each
cross-validation split) and 5 with data augmentation (one for each
cross-validation split). Multiple 2D models were trained to sepa-
rately perform segmentation on axial, sagittal, and coronal view.
The 3D volumes were acquired axially and sliced accordingly to



Figure 1 Example slices of MRIs used in this study. MRI, magnetic resonance imaging.

Table II
MRI acquisition parameters.

Imaging parameter Training/Validation set

Labeled data 55
Plane Axial
Magnetic field strength (T) 3
Sequence 3D high-resolution fat-saturated

(FS), T2-weighted
Pixel size (mm) 0.375 � 0.375
Slice thickness (mm) 1
Space between slices (mm) 0.5
Echo time (ms) 47.9
Repetition time (ms) 1352
Resolution 512 � 512
Flip angle (degrees) 90

MRI, magnetic resonance imaging; 3D, three-dimensional.

V. Wong, F. Caliv�a, F. Su et al. JSES International 7 (2023) 861e867
obtain sagittal and coronal views. Subsequently, data were
processed on a per-slice basis. Also, for 2D models, multiple models
were trained using the different cross-validation splits.

Ensemble

After training and validating 40 total models, all models with
DSC above 0.70 were ensembled. The ensemble was run on the test
set to measure the final performance. The ensemble models were
used to calculate glenoid measurements.

Test set

Four patients with matching high-resolution MRI and CT scans
(slice thickness: 1.25 mm) were identified through the PACS system
and comprise the test set (Fig. 2). Two of these patients’MRIs were
the same sequence as the MRIs used in the training set, thus
comprising the in-distribution test set (ages 57 and 71, both male,
cuff tear and arthritis diagnoses, average body mass index 31 kg/
m2). The other two patients had different high-resolution MRI se-
quences to create our out-of-distribution test set (ages 61 and 76,
both male, instability and cuff tear diagnoses, average body mass
index 31 kg/m2).

Important glenoid measurements

In addition to DSC, we obtained glenoidmeasurements from our
automatic models to better assess model performance for clinically
relevant features. These measurements included glenoid height,
width, retroversion, reverse shoulder arthroplasty angle (RSA
863
angle), inclination angle, and critical shoulder angle. Glenoid height
(Fig. 3A) and width (Fig. 3A) are important for assessing bone size
and glenoid bone loss.5 Glenoid retroversion (Fig. 3B) is the angle
between the line from the anterior to the posterior glenoid edge
and the line from the glenoid center to the medial edge of the
scapula.22 RSA angle (Fig. 3C) is the angle between the line con-
necting the inferior glenoid and lateral supraspinatus fossa and the
perpendicular of a tangential line through the floor of the supra-
spinatus fossa.3 Glenoid inclination angle (Fig. 3D) is defined as the
angle from the most inferior aspect of the glenoid to the most su-
perior aspect of the glenoid and a line tangential to the floor of the
supraspinatus fossa.10,13 Critical shoulder angle (Fig. 3D) is defined
as the angle between the line between the inferior and superior
glenoid and the line from the inferior glenoid to lateral acromion.18



Figure 2 Manual segmentation overlayed on MRI and corresponding CT scans for in-distribution and out-of-distribution patients in our test set. MRI, magnetic resonance imaging;
CT, computed tomography.

Table III
V-Net characteristics used for satisfactory training of 2D and 3D models.

2D 3D

Architecture - Number of channels: 16 - Number of channels: 12
- Number of levels: 2 - Number of levels: 4
- Number of convolutions: [4, 4] - Number of convolutions: [1, 3, 4, 3]
- Bottom convolutions: 2 - Bottom convolutions: 4

Learning rate 0.0005 0.00001

2D, two-dimensional; 3D, three-dimensional.
A convolution is when two sets of information are merged to form a new function.
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Statistical analysis

Manual segmentations were used to evaluate the performance
of the 2D and 3D MRI models through DSC. Statistical tests were
utilized to determine: (1) if models with original or augmented
data performed better; (2) which 2D plane (axial, coronal, or
sagittal) performed the best; and (3) if 2D or 3D models performed
better.

Shapiro-Wilk tests were first used to determine if the DSC of
model performances were normally distributed. Paired Student
t-tests were used for normally distributed data andWilcoxon signed-
rank tests were used for nonparametric tests. 3D MRI and CT model
measurements were compared by calculating the mean difference.
Significance was defined as P < .05. All statistical analyses were
performed using Stata 16.1 (StataCorp, College Station, TX, USA).

Results

We trained and validated a total of 40 different models to
automatically segment the scapular bone from MRI. Mean values
and standard deviations are reported in Table IV.
864
Results from statistical analysis are reported in Table V, VI, VII.
The 3D model trained with augmented data outperformed the 3D
model trained with original data (P ¼ .043). There were no signif-
icant differences in the performances of the 2Dmodels trainedwith
augmented versus original data for all three views (axial, coronal, or
sagittal) (P ¼ .657, .345, .594). There were no significant differences
in model performance for imaging plane (axial, coronal, or sagittal)
(P ¼ .700). There was also no significant difference in the perfor-
mance of 2D and 3D augmented models (P ¼ .893).

The best 2D model performance was by the augmented sagittal
model validated on cross-validation set 1 (DSC ¼ 0.86) (Table IV).
The best 3D model performance was by the augmented model
validated on cross-validation set 0 (DSC ¼ 0.82) (Table IV). There
was no significant difference between the best 2D and the best 3D
models (P ¼ .500) (Table V, VI, VII).

After ensembling all models with validation DSC greater than
0.70, 4 models were excluded (3D original data on cross-
validation set 3, 3D original data on cross-validation set 4, 2D
sagittal original data on cross-validation set 0, and 2D sagittal
augmented data on cross-validation set 4). Ensemble performance
was determined for the test set (Table VIII). In-distribution



Figure 3 Clinically important shoulder measurements shown on 3D scapula reconstructions from MRI. (A) Glenoid height and width. (B) Glenoid version. (C) Reverse shoulder
arthroplasty angle. (D) Glenoid inclination angle and critical shoulder angle. MRI, magnetic resonance imaging; 3D, three-dimensional.

Table IV
Model performance results.

Model Mean dice Standard deviation

3D original data 0.66 0.230
3D augmented data 0.80 0.028
2D axialdoriginal data 0.79 0.045
2D axialdaugmented data 0.80 0.025
2D coronaldoriginal data 0.80 0.035
2D coronaldaugmented data 0.81 0.033
2D sagittaldoriginal data 0.78 0.069
2D augmented data 0.80 0.074

2D, two-dimensional; 3D, three-dimensional.

Table V
Statistical analysis of original versus augmented data.

Model Null hypothesis P value Results

3D No difference .043 (Wilcoxon) Augmented > original
2D axial No difference .657 No significance
2D coronal No difference .346 (Wilcoxon) No significance
2D sagittal No difference .594 No significance

2D, two-dimensional; 3D, three-dimensional.

Table VI
Analysis of variance (ANOVA) analysis of 2D planes.

Model F value P value Results

Axial vs coronal vs sagittal 0.37 .700 No significance

2D, two-dimensional.
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subjects performed substantially better than out-of-distribution
subjects.

After constructing scapula models of our in-distribution test set
using the ensemble, clinically important measurements from the
model were compared to that of CT (Fig. 4) (Table IX). Mean dif-
ferences for distances were between 1.29 mm and 3.46 mm, while
mean differences for angular measurements were between 0.05�

and 7.47�.

Discussion

A DL strategy can allow for automatic scapular bone shape
extraction from high-resolution MRI. We achieved Dice score co-
efficients as high as 0.86. Model performance was similar between
2D and 3D models, which was contrary to our hypothesis that 3D
models would perform better. Augmentation of the imaging data
did not improve model performance for the 2D models, but this
approach was advantageous for 3D models. In comparing surface
measurements between the MRI-based and CT-based re-
constructions, we observed mean differences of MRI and CT mea-
surements ranging from 0.05 to 7.47 degrees and 1.29 to 3.46 mm.

We trained both 2D and 3D convolutional neural networks
(CNNs). 2D CNNs predict segmentation maps of single slices,
whereas 3D CNNs utilize a volume to make predictions. Thus, the
main difference between these approaches is that 3D models
consider information from adjacent slices while 2D models do not.
3D models may often lead to better performance but require much
more computational power. 2D models, while needing less
computation resources, takemore time to infer a 3Dmodel from 2D
slices.17

We had anticipated that models trained with augmented data
would outperform those trained with only the original data set,
865
though we found this to be only true for 3D approaches and not 2D
approaches. In our experiment, data were augmented eight times
to overcome the problem of limited data. Doing so increased the
size, quality, and generalizability of our training set, thus obtaining
more information from the same data. Our sample size was small,
due to the time-consuming nature of manually segmentation and
limited number of clinically available scans. Quality and general-
izability of data are important to prevent overfitting of the model
for the specific data it was trained on and ensure it is applicable to
new data. Other approaches to data augmentation have been
studied. Most augmentation steps, including ours, deploy trans-
formations to rotate, reflect, or deform images.23,8,16 Eaton-Rosen
et al suggest a mix-up technique that utilizes linear combination
of two training data to create images that are quite different from
training images. They found that it can improve performances of
machine learning tasks.7 One possible explanation for the differ-
ence in augmentation performance for 3D vs 2D models may be
that our augmentation process was not enough to offer extra noise
to the training model. In future experiments, we may increase the
chances and degree of random augmentation.

While the DSC observed here are high, they are lower than those
reported in other bone shape models. A similar study that
segmented bone from 3D knee MRIs achieved a DSC of 0.97.1 The
scapula bone presents several challenges to automatic segmenta-
tion due to its complex shape. The main culprit of our lower DSC
may be the thinness of the scapular spine, which presented chal-
lenges in both manual segmentation and model training. Fortu-
nately, the scapular spine is of less clinical significance than the



Table VII
Statistical analysis comparing our 3D augmented model and 2D axial model.

Model Null hypothesis P value Results

3D augmented vs 2D axial augmented No difference .893 (Wilcoxon) No significance
3D augmented vs 2D axial original No difference .500 (Wilcoxon) No significance

2D, two-dimensional; 3D, three-dimensional.

Table VIII
Performance of test set, separated by in- and out-of-distribution subjects.

In-distribution Out-of-distribution

Patient number 056 057 058 059
DSC 0.89 0.81 0.24 0.58

DSC, dice similarity coefficient.

Figure 4 3D models of model vs manual performance with surface distance map to measure differences. DL, deep learning; MRI, magnetic resonance imaging; 3D,
three-dimensional; CT, computed tomography.

Table IX
Comparison of important glenoid measurements of our models and CT scans.

MRI 056 CT 056 Mean difference MRI 057 CT 057 Mean difference

Trial 1 Trial 2 Trial 1 Trial 2 Trial 1 Trial 2 Trial 1 Trial 2

Width (mm) 27.52 26.88 28.37 28.60 1.29 31.15 31.23 33.06 32.97 1.83
Height (mm) 43.05 40.94 39.12 37.96 3.46 48.89 46.47 46.70 45.78 1.44
Inclination angle (�) 97.48 99.32 95.73 97.53 1.77 69.89 69.25 66.03 66.49 3.31
Retroversion (�) 0.74 �0.50 4.69 2.08 3.27 32.10 35.50 29.39 31.45 3.38
Critical shoulder angle (�) 30.45 31.63 27.43 29.21 2.72 27.11 26.65 27.20 26.66 0.05
RSA angle (�) 7.87 11.30 10.74 12.93 2.28 14.18 15.65 16.33 17.30 1.90

CT, computed tomography; MRI, magnetic resonance imaging; RSA, reverse shoulder arthroplasty.
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glenoid. The clinically relevant measurements support this inter-
pretation as there are minimal differences in these regions. The
comparisons between MRI and CT models also show differences
through the glenoid face, which would be most important for
clinical use.
866
There have been other approaches to constructing bone models
from MRIs, such as the use of specific MRI sequences to enhance
bone contrast and allow for 3D models to be rendered. One
example of a specific sequence is 3D Zero Echo Time (ZTE) MRI.15

This approach proved to accurately measure glenoid bone loss in
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both cadavers and patients, demonstrating potential clinical ap-
plications. Another MRI sequence that allowed for similar results is
Dixon fat-water separation sequence.12 Both are comparable to CT
scans and allow for preoperative planning to be conducted with
only one biomedical image. These approaches, however, are limited
in a few senses. First, the sequence must be known and requested
before image acquisition as conventional MRIs cannot be converted
later. Thus, patients who are evaluated with pre-existing MRIs may
have to acquire a new image. Additionally, these sequences need
specialized imaging equipment that may not be easily accessible to
all patient populations while the postprocessing described here
could be appliedmorewidely. Our DL approachwas able to produce
a 3D bone from high-resolution MRIs, needing only 2-3 seconds of
processing time. This method is not only fast enough for clinical
application but also overcomes the limitation of needing a specific
sequence prior to image acquisition as DL can be applied to pre-
existing scans with minimal postprocessing.

The findings of this study should be interpreted with an un-
derstanding of its limitations. First, the sample size of patients for
testing is small due to the availability of matching CT and MRI with
a high-resolution sequence. Furthermore, most patients included in
this study had a diagnosis of rotator cuff injury and instability.
Measurements of bone shape may vary more for patients with
severe arthritis, fracture, postsurgical changes, or other artifacts
that may limit the ability of automatic model development. Future
studies would need to include patients with severe osteoarthritis,
bone loss, and deformity to expand its clinical applications. We also
utilized a high-resolution MRI sequence. Future efforts will work to
translate this approach to more standard MRI sequences.
Conclusion

We have presented a fully automatic, DL-based strategy for
extracting scapular shape from a high-resolution MRI scan. Future
work will expand this methodology to patients with a broader
range of pathology. This image processing technology has the po-
tential to greatly improve the diagnostic and preoperative planning
process for patients with shoulder pathology.
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