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breast cancer diagnosis system
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In brief

Clinical breast cancer diagnosis can be

time-consuming and laborious. In this

study, we have developed an AI assistant

to automatically segment breast tumors

from DCE-MRI data, trained on a very

large set of data with a specially designed

spatiotemporal transformer.

Experimental results show that our AI

assistant can produce more accurate

results even than clinicians while also

using significantly less time. This

indicates the potential of our AI assistant

in real clinical applications.
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THEBIGGERPICTURE Breast cancer is themost common cancer affectingwomenworldwide. Early detec-
tion and diagnosis are crucial for better treatment outcomes and improved survival rates. However, high
incidence of breast cancer puts a significant burden on clinicians, while training experienced breast imaging
clinicians is time-consuming. This raises the need for developing a robust AI assistant for assisting clini-
cians for breast cancer diagnosis. To this end, we collected a very large set of breast DCE-MRI data
from seven medical centers for developing such a breast AI assistant, which can also be used as a founda-
tional step for building an automated breast cancer diagnosis system to facilitate future smart medicine.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) allows screening, follow up, and diag-
nosis for breast tumor with high sensitivity. Accurate tumor segmentation from DCE-MRI can provide crucial
information of tumor location and shape, which significantly influences the downstream clinical decisions. In
this paper, we aim to develop an artificial intelligence (AI) assistant to automatically segment breast tumors
by capturing dynamic changes in multi-phase DCE-MRI with a spatial-temporal framework. The main advan-
tages of our AI assistant include (1) robustness, i.e., our model can handle MR data with different phase
numbers and imaging intervals, as demonstrated on a large-scale dataset from seven medical centers,
and (2) efficiency, i.e., our AI assistant significantly reduces the time required for manual annotation by a fac-
tor of 20, while maintaining accuracy comparable to that of physicians. More importantly, as the fundamental
step to build an AI-assisted breast cancer diagnosis system, our AI assistant will promote the application of
AI in more clinical diagnostic practices regarding breast cancer.
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INTRODUCTION
 multi-phase information to assist tumor segmentation, the dy-

namics and temporal relationships among different phases are
Cancer is the second-leading cause of death worldwide.1

Among them, breast cancer is the most common malignant

neoplasm appearing in women and is becoming more common

in the younger population.2 Recent studies show that early

detection of malignancy with timely clinical intervention will

greatly reduce the death risk of patients suffering from breast

cancer.3,4 Nowadays, breast X-ray (mammography),5,6 ultra-

sound,7,8 and magnetic resonance imaging (MRI)9–11 are widely

used for screening, localization, and diagnosis of breast cancer.

Among these imaging modalities, dynamic contrast-enhanced

magnetic resonance imaging (DCE-MRI) has the highest sensi-

tivity to breast tumors and is often used for screening purposes

in high-risk populations.12,13 A standard breast DCE-MRI study

collects a respective sequence of T1-weighted MR images at

multiple phases before, during, and after intravenous administra-

tion of the contrast agent.14 The tumor-related leaky vasculature

leads to fast accumulation and washout of the contrast agent in

the tumorous tissue, creating a sharp contrast between soft

tissue and tumors.13 By comparing signal variation across

different image phases, physicians can delineate tumor shape

and analyze tumor characteristics for the subsequent examina-

tion or treatment plan.

With the development of artificial intelligence (AI) in the medi-

cal field, personalized medicine, automated diagnosis, and

treatment have become popular topics in recent years,15–18

including AI-assisted breast cancer diagnosis and treat-

ment.19–23 For example, several works try to extract radiomics

or deep learning features in breast DCE-MRI data to

predict pathological response after neoadjuvant therapies,24,25

and they achievemore than 70%accuracy.25 However, accurate

diagnosis or treatment prediction relies on accurate tumor

annotation, which is tedious and time-consuming even for expe-

rienced radiologists.25–28 Semi-automated annotation can

significantly compromise the benefit of AI in clinical practice.

Hence, building a robust breast tumor segmentation model is a

fundamental and crucial step to promote the development of

intelligent systems for breast cancer diagnosis.

In the early stage, manually crafted filters or thresholds are

used to extract enhanced tissues or contours from DCE-

MRI.29,30 These methods greatly rely on the intensity values

and ignore semantic information, leading to over-segmentation

in background parenchymal enhancement region and under-

segmentation in dense breast. Recently, the performance of

DCE-MRI-based breast tumor segmentation has been signifi-

cantly enhanced by the deep learning models, especially the

well-known U-Net model,31–34 because these models can auto-

matically learn better segmentation criteria from training data.

Particularly, to further distinguish the tumor region from other tis-

sue enhancements, some works exploit tumor shape priors35 or

design the tumor-sensitive module36 to boost segmentation per-

formance. However, most methods only use images from two

phases (i.e., one phase without enhancement and the other

phase with the strongest tissue enhancement), ignoring dynamic

changes across different phases, which greatly limits the capa-

bility of the model in capturing the essential characteristics of

tumor (e.g., the fast accumulation and washout of contrast

agent). Although there exist several works37,38 trying to exploit
2 Patterns 4, 100826, September 8, 2023
not well explored.

Our study aims to develop a robust AI assistant for breast

tumor segmentation using DCE-MRI data, by leveraging

spatial-temporal relationships across multiple phases. Specif-

ically, we propose a spatial-temporal framework to capture MR

signal dynamics for superior performance. Moreover, we intro-

duce a whole-breast segmentation model to localize breast re-

gion for ensuring the segmentation model focuses solely on

the breast region. To evaluate both accuracy and robustness

of our approach, we have collected a large dataset of 13,167

MR volumes from 2,197 cases across seven medical centers.

Our extensive studies demonstrate the clinical impact of our AI

assistant, which outperforms experienced physicians in clinical

diagnosis and treatment design. Our AI assistant has the poten-

tial to be a valuable tool for clinical practice, as it significantly

improves segmentation efficiency and accuracy.

RESULTS

Patients and datasets
In this study, we collect a large set of DCE-MRI data from seven

medical centers in China to build a robust and efficient breast AI

assistant for tumor segmentation. Specifically, 13,167 DCE-MRI

volumes from 2,197 cases of 2,190 patients are used in this

study. To our best knowledge, it is the largest breast MRI dataset

used for tumor segmentation study so far. The participant

centers include Guangdong Provincial People’s Hospital (GD-

hospital), Yunnan Cancer Hospital (YN-hospital), Hangzhou First

People’s Hospital (HZ-hospital), Shanghai General Hospital (SH-

hospital), The Second Xiangya Hospital (XY-hospital), Guizhou

Provincial People’s Hospital (GZ-hospital), and Ruijin Hospital

(RJ-hospital). More detailed participant information, imaging

protocols, and breast region characteristics of each center are

listed in Table 1. To be mentioned, most centers collect DCE-

MRI data with six phases (one pre-contrast image + five post-

contrast images) or eight phases (one pre-contrast image +

seven post-contrast images), while some cases such as from

RJ-hospital have only two or four phases due to accidental file

loss, which is obviously not common in clinical applications.

Also, diagnosis information (i.e., BIRADS category or molecular

subtype) is unavailable for some centers or patients due to

unauthorized diagnosis reports and missing key examinations.

The tumors on the DCE-MRI data are manually annotated and

checked by two senior radiologists in each center. Then radiolo-

gists from all centers jointly annotate breast tumors. We also

invite two experienced raters to label the whole breasts in

DCE-MRI from GD-hospital and YN-hospital, which are further

checked by radiologists. The BIRADS category is collected

from the diagnosis report at examination time. Some patients

undergo pathological biopsies to get receptor expression (e.g.,

estrogen receptor, progesterone receptor, and human

epidermal growth factor receptor) and proliferation index (Ki-

67) for accurate categorization of molecular subtypes according

to the internationally recognized criteria.

To build a robust and efficient breast AI assistant system for

tumor segmentation, we use data from two main centers (GD-

and YN-hospital) as the internal set and the rest of the five



Table 1. Description of DCE-MRI from each center

COHORT GD-hospital YN-hospital HZ-hospital SH-hospital XY-hospital GZ-hospital RJ-hospital

Participant information

Patient number 638 473 273 182 171 48 405

DCE-MRI case number 642 475 274 182 171 48 405

DCE-MRI volumes 3,852 3,688 1,644 1,121 1,074 328 1,460

Examination time 2016–2020 2012–2021 2020–2022 2019–2022 2015–2020 2020–2021 2016–2018

Age (years) 50 (21, 79) 47 (24, 77) 48 (22, 85) 53 (24, 87) 51 (29, 79) 45 (27, 86) –

Imaging protocols

Phase interval time 1 min 1–2 min 1 min 1 min 1 min 1 min 45 s

Phase number 6 6, 8 6 6, 7, 8 6, 8 6, 8 2, 4, 5, 6, 8

Inter-slice resolution (mm) 0.44–0.98 0.33–0.70 0.75–1.17 0.66–0.93 0.50–1.10 0.63–1.43 0.70–1.00

Slice thickness (mm) 0.5–1.0 0.8–1.7 1.2 1.6 1.0–1.5 0.9–1.2 1.5

Manufacturer Philips Siemens, GE Siemens Siemens, GE Siemens Siemens Siemens

Breast region characteristics

Breast characteristic

(normal/ single/

with implant)

640/2/0 472/2/1 269/4/1 178/3/1 166/3/2 47/1/0 399/6/0

Tumor size (S/M/L) 86/369/187 144/235/96 88/87/99 87/56/39 59/49/63 712/20/16 97/206/102

BIRADS category 2

(3/4/5/6)

3/185/89/112 1/23/446/5 75/105/13/81 13/68/97/4 12/36/84/39 0/3/38/7 –

Molecular subtype 2

(luminal A/ luminal

B/Her2+/TN)

82/219/36/34 65/304/62/44 – 17/50/18/13 – 9/25/5/3 –

Data description includes participant information, imaging protocols, and breast region characteristic. Dash means unavailable information.Not all the

patients have accurate BIRADS category or molecular subtype.
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centers as the external set in our experiments. Thenwe randomly

choose 70% of the data from the internal set to train all the

models and the rest of the data (30%) as the internal testing

set to evaluate the models’ performance. All cases from the

external set are further used to demonstrate the robustness

and generalizability of our AI assistant. The detailed data parti-

tion is shown in Figure 1B.

In these experiments, three typical segmentation metrics are

used to evaluate segmentation performance, including DICE

similarity coefficient (DSC, 0%–100%), Sensitivity (SEN, 0%–

100%), and Hausdorff distance (HD, mm). DSC measures the

similarity between ground truth and the prediction mask. SEN

evaluates the under-segmentation ratio. HD calculates the dis-

tance between two point sets from ground truth and predicted

surfaces. Higher DSC and SEN scores indicate better segmenta-

tion performance, while a lower HD score indicates closer

boundaries with better results.

Whole-breast segmentation performance
In clinical practice, physicians only focus on the breast region to

localize breast tumors. According to the physician’s diagnosis

process, we design a whole-breast segmentation model as the

first step in our breast AI assistant to facilitate the downstream

tumor segmentation and diagnosis in 3-fold. First, the whole-

breast mask can guide accurate patch sampling in the training

stage of the tumor segmentation model. Second, it helps our

AI assistant to automatically distinguish normal and abnormal

breasts. Third, some over-segmentation cases in the non-breast
regions, e.g., enhanced tissues in the heart region, can be

removed effectively. Therefore, whole-breast segmentation is a

crucial first step to significantly improve tumor segmentation

performance.

Compared with tumor segmentation, whole-breast segmenta-

tion is a simple task due to the clear intensity contrast. In this

paper, we adopt the U-Net structure for whole-breast segmenta-

tion, considering its great segmentation accuracy and general-

ization. As expected, the overall breast segmentation perfor-

mance is excellent, i.e., achieving a DSC of 92.6% on the

internal testing set as well as the external sets. Representative

segmentation results are given in Figure 2. For each center, we

show three typical cases, including standard-sized breasts,

small-sized breasts, and abnormal breast(s) (including only one

breast due to surgical removal of the other breast or breast

implant surgery). From Figure 2, it is evident that the quality of

whole-breast segmentation is robust for different breasts from

different centers. A detailed analysis about the benefits of

whole-breast segmentation will be given in the ablation study

section.

Breast tumor segmentation performance
Given the DCE-MRI with multiple phases, we use both the orig-

inal images and the subtraction images (i.e., between the corre-

sponding images with and without contrast agent injection) as

the input to capture dynamic spatial-temporal information via a

spatial-temporal transformer. Equipped with a large amount of

training data and the excellent performance of transformers,39
Patterns 4, 100826, September 8, 2023 3
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Figure 1. Overview of breast cancer diagnosis process and data information

(A) Breast cancer diagnosis process. Multi-phase DCE-MRI data are collected from MRI scanner and then used as inputs to our segmentation models for

delineating the whole breast and tumor, which can be further used to guide diagnosis by physician or AI system.

(B) Data partition in experiments. Seven centers are included, and we randomly divide them into the training set, internal testing set, and external testing set.
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the proposed model could be better generalized to achieve

robust segmentation of images acquired by different imaging

protocols and carrying varied tumor categories.

We have evaluated our tumor segmentation model on multi-

center testing sets quantitatively and qualitatively. Note these

multi-center data are acquired with quite different imaging set-

tings (e.g., with different phase numbers and intervals, voxel

sizes, and manufacturers). Quantitative results are provided

in Figure 3, and segmentation results are shown in Figure 4, indi-

cating good agreement between the automated segmentations

by our model and themanual annotations by radiologists. Partic-

ularly, Figure 3A shows the pie chart describing data distribution

among different centers (top) along the two bar charts (middle

and bottom) describing the DSC and HD for each center. It can

be seen that the best performance is achieved on YN-hospital

(the internal testing set), with 82.7% and 3.1 mm for DSC and

HD, respectively. In contrast, the segmentation results from

XY-hospital (external set) are the worst with a DSC of 68.3%

and HD of 12.1 mm, respectively. In addition, the segmentation

results of all evaluation sets are summarized in Table 2, i.e.,

with a DSC of 77.7% on the internal testing set and 70.5% on

the external testing set and 72.4% on all testing sets. In this ta-

ble, the performance of our method is also compared with five
4 Patterns 4, 100826, September 8, 2023
other methods, while ours achieves the best performance in

terms of all metrics. It is noteworthy that although segmentation

accuracy decreases on the external set, the DSC of 70.5% is still

clinically acceptable for downstream diagnosis and treatment,

as confirmed by clinicians.

We also analyze the robustness of segmentation performance

with respect to different tumor sizes. As shown in Figure 3B, we

use 1mm 3 as the interval to divide tumors into 11 categories ac-

cording to the sizes of the manually labeled tumors by radiolo-

gists. The segmentation performance of our AI system is robust

for the medium-to-large tumors with 3– 10 mm 3, as well as the

large tumors above 10 mm 3, achieving an average DSC of

74.1% and HD of 4.4 mm. For the small-sized tumors, especially

those extremely tiny ones (i.e., below 1 mm 3), the overall DSC

decreases slightly to 63.9%, and the overall HD increases to

9.20 mm. Note that a tiny segmentation error in small-sized tu-

mors, even with under- or over-segmentation of several voxels,

can significantly affect the evaluation metrics. Overall, reason-

able segmentation results can be achieved for tumors of various

sizes.

We further evaluate the robustness of our AI assistant in

handling DCE-MRI data with varied phase numbers. As

described above, our AI assistant exploits temporal information



Figure 2. Visualization of whole-breast segmentation results from seven centers

Each center (column) is with three typical cases such as standard-sized breasts (top), small-sized breasts (middle), and abnormal breast(s) (bottom).
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across different phases for improved segmentation perfor-

mance. It is noted that not all cases have six phases available

in our dataset (e.g., some cases in the RJ-hospital dataset),

due to factors such as image corruption caused by the motions,

although these missing-phase cases occur rarely. Fortunately,

benefiting from the attention mechanism of the transformer,

our framework can flexibly deal with an arbitrary number of

image phases by ignoring the attention weights of missing image

phases. We summarize the segmentation performance on

patients with different phase numbers from RJ-hospital in Fig-

ure 3C. Consistent with our expectation, the segmentation per-

formance gets better when more phases are involved. For

example, when the phase number increases from two to six,

the DSC accuracy is improved from 65.9% to 72.9%, and the

HD error decreases from 6.38 to 2.61 mm. These results demon-

strate the advantages of our segmentation model in that it (1) is

robust to different numbers of image phases, (2) can efficiently

exploit temporal relationships across different image phases to

improve segmentation performance, and (3) will benefit from

more image phases.

To demonstrate the superiority of our model, we also compare

our model with other well-established deep-learning-based

breast tumor segmentation methods on both the internal testing

set and the external testing set, including U-Net,40 MHL,34 Tu-

mor-sen,36 ALMN,41 and TSGAN.38 Note that the U-Net, MHL,

Tumor-sen, and ALMN are 3D tumor segmentation networks

that only consider one or two enhancement image(s), ignoring

temporal information across different phases. Although TSCAN

has attempted to exploit temporal information by designing a

graph attention module, the signal dynamics across different

phases are still not well explored. Furthermore, it only takes 2D

slices as the inputs, so the segmentation consistency across

different slices cannot be guaranteed. The quantitative metrics

of segmentation results are summarized in Table 2 for each

method. It can be seen that our AI assistant achieves the best

performance, significantly outperforming other methods, with p

values (by pair t tests) lower than 0.05 for all metrics. The perfor-

mance gain is mainly from our specifically designed spatial-tem-
poral framework to capture dynamic changes across different

phases. Furthermore, by leveraging the whole-breast segmenta-

tion network, many artifacts (e.g., over-segmentation on non-

breast regions) can be avoided, thus contributing to lower HD

errors. Overall, our model is robust and generalizable on both in-

ternal and external testing sets.

Ablation study
To segment breast tumors accurately, our AI assistant system

contains several key modules, including the whole-breast seg-

mentation model, the spatial transformer, and the temporal

transformer. In order to evaluate the contribution of each mod-

ule, we design an ablation study on all testing sets (Table 3).

When adding the whole-breast segmentation model, a signifi-

cant improvement in DSC and HD metrics is achieved by

removing false-positive predictions, especially in non-breast re-

gions. Hence, it is crucial to first localize tumor regions automat-

ically before tumor segmentation. Besides, considering that

CNN kernel is a local operation and cannot model long-range re-

lations spatially, we design a spatial transformer in bottleneck to

explore long-range spatial dependency within each phase.

Moreover, a temporal transformer is also proposed to capture

dynamic changes across different phases. Hence, the best per-

formance is achieved by integrating these two transformers to

comprehensively exploit spatial-temporal information, leading

to 5.1% and 2.7% improvement for DSC and SEN metrics,

respectively.

Clinical impact
(1) Tumor segmentation comparedwith experienced radiolo-

gists. The proposed AI assistant for breast tumor seg-

mentation aims to relieve physicians from tedious and

cumbersome annotation processes. To demonstrate the

segmentation efficiency of our AI assistant, we randomly

choose 100 cases from GD-hospital and invite two radiol-

ogists (Expert-1 and Expert-2), who do not participate in

the ground truth labeling process, to annotate breast

and tumor regions from scratch and to help refine
Patterns 4, 100826, September 8, 2023 5
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Figure 3. Tumor segmentation performance on the testing sets

(A) Segmentation performance on seven different centers.

(B) Segmentation performance on different sized tumors.

(C) Segmentation performance with respect to different phase number. The pie charts in the first row show the data distribution, and the bar charts in the second

and third rows show DSC (%) and HD (mm), respectively. The error bars indicate the 95% confidence interval.
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automatic segmentations by our model, respectively. The

segmentation accuracy and efficiency are summarized in

Table 4. From this table, first, we can see that our pro-

posed AI assistant can achieve comparable segmenta-

tion accuracy to experienced radiologists, but it is more

than 20 times faster. This gives radiologists more time

to focus on downstream diagnosis and treatment plans.

On the other hand, we find significant annotation differ-

ences across different radiologists at different times,

while our AI assistant can generate more robust segmen-

tations. Meanwhile, manual refinement of automatic

annotations from our AI assistant can produce more ac-

curate results (e.g., 5% of DSC improvement from what

is achieved by the radiologists or the AI assistant alone)

and also significant efficiency improvement over manual

annotations from scratch (i.e., seven to 10 times faster).

This indicates the advantages of our AI assistant in help-

ing radiologists with fast tumor annotation.

(2) Necessity of accurate tumor segmentation for better

diagnosis. In clinical practice, physicians usually analyze

tumor shapes and positions based on MR images and

segmentation masks. For example, the T-stage is an

important pathological index to indicate malignancy and
Patterns 4, 100826, September 8, 2023
prognosis of breast tumors, which is derived from tumor

size and position information. Specifically, T-stage has

four categories, including (1) T1, i.e., the widest part of

the tumor is less than 20 mm; (2) T2, i.e., the widest part

of the tumor is more than 20 mm but less than 50 mm;

(3) T3, i.e., the widest part of the tumor is more than

50 mm; and (4) T4, i.e., the tumor has spread to the chest

wall or skin. During diagnosis, physicians often only check

three cross-sectional views to select the widest axis to

classify the T-stage. However, this process is inaccurate,

since the widest axis does not correspond to the widest

part of the actual tumor located in the 3D space. To

demonstrate the clinical usefulness of our tumor segmen-

tation mask, we compute the accuracy of T-stage classi-

fication on the 100 cases from the radiologists’ classifica-

tion (1) without segmentation masks, (2) based on the

manually annotated segmentation masks, and (3) based

on the segmentation masks produced by our AI assistant.

Without segmentation masks, the classification accu-

racies are 81% and 78% by the two radiologists, respec-

tively, which is not unsatisfactory for precise diagnosis.

But the accuracy is significantly improved when the tumor

masks are involved in T-stage classification. For example,



Figure 4. Typical examples of breast tumor segmentation on the testing set

Cases 1–8 are from the internal testing set, and cases 9–16 are from the external testing set. For each testing case, we show two images with and without

annotations for better comparison. Blue delineation denotes ground truth annotations, while red delineation indicates automated segmentations by our model.
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using manually annotated masks, the classification accu-

racy can be 94% and 93% from the two radiologists, with

a comparable accuracy of 94%using the automatic anno-

tations by our AI assistant, indicating the effectiveness of

our AI assistant for clinical diagnosis.

(3) AI-basedbreast cancer diagnosis system.One important

research topic in breast cancer is to predict the response

after breast cancer neoadjuvant therapy using MRI-

based radiomics features, which greatly relies on the tu-

mor annotation from professional radiologists, due to

lacking robust segmentation algorithms in the past. To

demonstrate the clinical impact of our AI system in

reducing the workload of radiologists, we extract radio-

mics features from manually annotated tumors by expe-

rienced radiologists and also automatically annotated

tumors by our AI assistant, respectively, to train a classi-

fier to predict neoadjuvant therapy response after stan-

dard radiotherapy process.24 Specifically, we randomly

choose 100 cases from the testing set in YN-hospital,

with 34 cases of pathologic complete response (pCR)

and 66 cases of non-pCR (npCR). The feature extraction

model (https://pyradiomics.readthedocs.io) extracts ra-

diomics features (e.g., shape, histogram, and texture)

fromDCE-MRI and segmentationmasks.42 The classifier

(i.e., SVM) predicts whether the case is pCR or npCR.

From the prediction results with 5-fold cross-validation,

we achieve an accuracy of 66.8% with AI annotations,

comparable to that of 67.1% with manual annotations.

Similar results can be found using the receiver operating

characteristic curve (AUC), with 0.79 (AI) versus 0.80 (hu-

man), respectively. Hence, we believe our proposed AI
assistant can be easily applied to facilitating downstream

diagnosis tasks (e.g., molecular subtype prediction43–45

and Ki-67 expression level prediction46,47) to promote

the building of an automated all-purposeAI-basedbreast

cancer diagnosis system.
DISCUSSION

Breast tumor segmentation allows comprehensively character-

izing tumor properties (e.g., shape, size, single lesion or multiple

lesions) that are crucial for accurate diagnosis and treatment

plan. Currently, due to the lack of robust and automatic tumor

segmentation tools, most AI-assisted breast cancer diagnosis

models (e.g., for predicting breast tumor molecular subtype

and response to breast cancer neoadjuvant therapy) still rely

heavily on manual intervention of experienced radiologists,25–28

which is time-consuming and tedious.

Though several works have exploited AI-assisted breast tumor

segmentation on DCE-MRI data, their clinical availability and

robustness are still unproven in 3-fold aspects. First, none of these

works release their data, codes, or well-trained segmentation

models, hindering their direct application to clinical practice. Sec-

ond, the segmentationperformanceof theexistingmethods isonly

evaluated on their respective small internal dataset from a single

center (e.g., 64 cases for TSGAN, 272 cases for MHL, and 422

cases for ALMN and Tumor-sen). Their robustness and generaliz-

abilityonamulti-centerdatasetareunclear.Forexample, theymay

encounter over-fitting problems caused by training only on a sin-

gle-site dataset. Third, most methods only pay attention to the

contrast-enhanced tissues in two imagephases, ignoringdynamic
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Figure 5. Overview of proposed tumor segmentation models
It tasks both original images and subtraction images from all phases as inputs. The weights from encoders in breast tumor segmentation model are shared. The

detailed structures of encoder layer, transformer layer, and decoder layer are also illustrated in the figure.
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changes across different phases, although these dynamic

changes are crucial to detect some small tumors and distinguish

them from other enhanced tissues (e.g., vessels).

Based on these observations, we propose a robust AI assis-

tant for breast tumor segmentation by exploiting signal dynamics

across different phases of DCE-MRI data. Specifically, our

spatial-temporal framework can well capture both inter-phase

and intra-phase long-range dynamic information. Moreover,

we also design the whole-breast segmentation model to remove

over-segmentations in non-breast regions to boost segmenta-

tion performance. Another essential contribution of this work is

that we evaluate our AI assistant for breast tumor segmentation

on a very large dataset (13,167 MR scans from 2,197 cases)

collected from seven medical centers. We would like to empha-

size that the data used in this study is pretty large, with various

data distributions compared to most existing works. Although

the authors in the paper48 used a large-scale dataset, they

collected data only from a single center without external evalua-

tion. Hence, the advantage of multi-center evaluation in our

paper makes our study more reliable. As shown in Table 2 and

Figure 3, we have demonstrated impressive robustness of our

method in addressing varied imaging protocols (especially

different phase numbers) and tumor sizes. For all experiments

conducted on this large dataset, our AI assistant achieves the

best performance among all competitive segmentation

methods. Most importantly, the generalizability of our AI assis-

tant can be validated by its stable performance on the external

testing dataset. In addition, we also achieve better or similar re-

sults (i.e., with DSC of 77.7%) on the internal testing set, when

comparing with the reported performance of the competitive

methods, such as 51.6% by random forest,49 63.5% by

TSGAN,38 68.8% by SegNet,50 71.7% by MHL,34 75.88% by

ST3D-net,51 77.0% by GOCS-DLP,35 78.0% by ALMN,41 and

78.7% by Tumor-sen.36 The code and the trained models of
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our AI assistant will be released to promote breast cancer-

related research or non-commercial clinical applications. Users

can directly test their own data with our trained models or train

the model from scratch.

Besides,ourproposed tumorsegmentationmodel isalso robust

to variations in DCE-MRI imaging intervals, i.e., 1 min for most

centers and 45 s for RJ-hospital, by capturing dynamic signal

changes across different phases with temporal information. In

addition, we also demonstrate the model’s robustness when

some image phases are unavailable or missing (see Figure 3C

for details). The specially designed temporal transformer can

deal with an arbitrary number of inputs by ignoring the attention

weights of missing phases, benefiting from the flexibility of the

attentionmechanism originated fromnatural language processing

and widely adopted in computer vision fields.52 It is noteworthy

that motion during breast DCE-MRI imaging is often relatively

small. Thus, registering all phase images brings little accuracy

gain but takes much longer computational time, which is thus

not adopted in our framework. This somewhat also indicates the

robustness of our model to motions during the scanning process.

Finally, we would like to emphasize again that our proposed

robust and efficient AI assistant is also beneficial for clinical

applications. First, our accurate tumor segmentation mask can

help physicians obtain more morphological information about

tumors, such as tumor size, location, and malignancy, without

tedious manual annotations. Second, automated segmentation

is the primary step to build a smart AI diagnosis system for breast

cancer. Lacking open-source breast tumor segmentation soft-

ware makes existing breast tumor diagnosis research rely on

manual annotations from radiologists. Our framework aims to

relieve radiologists from this manual annotation step and allow

their efforts to be devoted to subsequent diagnostic tasks. For

example, predicting the response after breast cancer neoadju-

vant therapy based on radiomics features extracted from our



Table 2. Comparison of different methods in breast tumor segmentation on internal and the external testing sets

Internal testing set External testing set All testing sets

Method DSC SEN HD DSC SEN HD DSC SEN HD

U-Net40 72.4 ± 2.6 70.3 ± 2.7 6.1 ± 1.6 59.0 ± 1.7 75.1 ± 1.7 17.2 ± 1.4 62.5 ± 1.4 73.8 ± 1.1 14.3 ± 1.2

MHL34 66.5 ± 2.8 62.2 ± 3.0 8.4 ± 2.2 66.5 ± 1.6 67.5 ± 1.9 8.8 ± 1.3 66.1 ± 1.4 66.1 ± 1.6 8.7 ± 1.1

Tumor-sen36 70.9 ± 2.7 67.0 ± 2.8 4.8 ± 1.4 59.8 ± 1.7 68.9 ± 1.8 16.0 ± 1.5 62.7 ± 1.4 68.4 ± 1.6 13.1 ± 1.2

ALMN41 74.6 ± 2.4 72.5 ± 3.0 6.7 ± 1.2 56.4 ± 1.6 75.0 ± 1.6 19.2 ± 1.3 61.1 ± 1.4 73.7 ± 1.3 15.9 ± 1.1

TSGAN38 68.5 ± 1.6 69.4 ± 2.6 8.5 ± 1.5 63.3 ± 1.9 68.4 ± 1.6 19.8 ± 1.0 62.7 ± 1.9 68.7 ± 1.4 12.4 ± 1.2

Ours 77.7 ± 2.4 75.1 ± 2.5 3.7 ± 1.1 70.5 ± 1.3 76.5 ± 1.5 7.6 ± 0.9 72.4 ± 1.1 76.2 ± 1.3 6.6 ± 0.7

The evaluation metrics include DSC (%) [ , SEN (%) [; and HD (mm) Y.

ll
OPEN ACCESSArticle
tumor segmentation masks can achieve comparable perfor-

mance with that using manual annotations (see more details in

the clinical impact section). And we believe this robust segmen-

tation model can be further applied to other tasks, such as

predicting molecular subtypes of breast tumors.

In the section evaluating clinical impact, we compared tumor

segmentation accuracy with experienced radiologists. We also

evaluated two related works34,48 with reportedly similar perfor-

mance as radiologists. It is worth mentioning the difference be-

tween the segmentation evaluation methods used in our work

and the two mentioned works. Specifically, two mentioned

works re-used annotations from each individual radiologist as

partial ground truth to train the network. While, in our work, we

invited two new radiologists (who did not participate in the anno-

tation process) to label images from scratch; thus our evaluation

is more strict.

In conclusion, the proposed AI assistant allows robust and

efficient breast tumor segmentation. We believe this model can

promote more research and serve as a crucial part of the AI-as-

sisted breast cancer diagnosis system.

Limitations of study
In this study, our AI assistant was trained on data from Asian

populations, which typically have denser breasts with more

fibroglandular tissue. In the future, we plan to add more diverse

data from other populations to evaluate segmentation perfor-

mance. Additionally, this study focused solely on segmentation

from DCE-MRI, neglecting the important role of other MRI se-

quences (such as T2 weighted images and diffusion-weighted

images) that provide tumor region characteristics from other per-

spectives. To further improve accuracy, a multi-parametric MRI

tumor segmentation system is needed, and we are currently

working on its design.

METHODOLOGY

Data pre-processing
This study was approved by the Research Ethics Committee

from all centers. A detailed description of the dataset has been

provided in Table 1. Considering large variations of spatial reso-

lutions across different centers and also intensity distributions

across different manufacturers, we, respectively, apply spatial

normalization and intensity normalization in the data pre-pro-

cessing step. Specifically, we interpolate all data to the same

resolution with a voxel size of 1:031:031:0 mm3. For intensity
normalization, we clip the outliers (top 1% of the maximum

values) of all images at different phases and perform min-max

normalization on phase 2, which typically exhibit the strongest

enhancement. The maximum and minimum values from the

phase 2 images are then used to normalize the images at other

phases, which makes all intensity values range from 0 to 1 whi-

le preserving the intensity change information across time

sequences. Limited by the GPUmemory, we extract many over-

lapped 3D patches to train the segmentation model. For the

whole-breast segmentation model, we randomly crop patches

with the size of 1283 1283 48. For the breast tumor segmenta-

tion model, we crop patches with the size of 963 963 48.

Besides, since the number of background voxels significantly

exceeds the foreground voxels, we require each cropped patch

to contain foreground areas according to the training manual tu-

mor annotations for efficient training of the segmentation model.

Whole-breast segmentation model

Compared with tumor segmentation, whole-breast segmentation

is straightforward. We adopt the U-Net structure for breast seg-

mentation. Patches of pre-contrast DCE-MRI data are fed into

the U-Net to get the final breast mask. The detailed structure is

the same as the work40 with four downsampling layers and up-

sampling layers, and theskipconnectionsof corresponding layers

can exploit latent semantic information with more details. We

adopt the DICE loss function53 to supervise the model training.

Tumor segmentation model

In this paper, we propose to combine both the spatial informa-

tion within each phase and the temporal information across

different phases in DCE-MRI data. An overview of our network

is shown in Figure 5. Briefly, we first use a convolution-based

encoder E to get global spatial features in each phase, and we

further design a spatial-temporal transformer to combine the

features across different phases to capture the spatial-temporal

information. The combined spatial-temporal features are then

sent through a convolution-based decoder D to predict the

tumor segmentation mask.

Specifically, we use fxigNi = 0 ˛RðN+1Þ3L3W3H to denote multi-

phase DCE-MRI data, where x0 is the pre-contrast

image and the others are the N post-contrast images. The sym-

bols L, W, and H correspond to the length, width, and height

of an input patch, respectively. We use y˛R13L3W3H to denote

corresponding manual annotation mask. Considering the impor-

tance of subtraction images of DCE-MRI in manual

tumor annotation, we also use the subtraction images at

each phase as additional inputs, which can be calculated by
Patterns 4, 100826, September 8, 2023 9



Table 3. Evaluation of our specially designed modules in tumor segmentation on all testing sets

Module All testing sets

Model whole-breast

segmentation model

spatial

transformer

temporal

transformer

DSC SEN HD

Baseline 63.1 ± 1.4 72.1 ± 1.2 15.9 ± 1.1

Baseline + breast mask U 67.3 ± 1.2 73.5 ± 1.3 7.6 ± 0.8

Baseline + breast mask +

S-trans

U U 69.9 ± 1.2 74.2 ± 1.3 6.9 ± 0.9

Baseline + breast mask +

T-trans

U U 70.6 ± 1.6 74.2 ± 1.5 7.3 ± 0.8

Baseline + breast mask +

ST-trans

U U U 72.4 ± 1.1 76.2 ± 1.3 6.6 ± 0.7

The evaluation metrics include DSC (%) [ , SEN (%) [, and HD (mm) Y. The modules include whole-breast segmentation model, spatial transformer,

and temporal transformer.
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fsi = xi � x0gNi = 0 ˛RðN+1Þ3L3W3H. We input both original DCE-

MRI and the subtraction images into the encoder E to

get feature maps for each phase and denote them as

ff i = Eðxi; siÞgNi = 0 ˛RðN+1Þ3C3L03W 03H0
. Note that, C;L0;W 0;H0

are the channel number, length, width, and height of feature

maps, respectively. The feature maps at different phases are

then tokenized to form the spatial tokens zspatial ˛RðN+1Þ3K3C

and the temporal tokens ztemporal ˛RK3ðN+1Þ3C, where K =

L0 3 W 0 3 H0. For the spatial token zspatial, we treat the

first dimension ðN + 1Þ as the size of the mini-batch, the

second dimension K as the number of tokens, and the last

dimension C as the length of each token. In this way, we

could well represent spatial information. Differently, the tem-

poral token ztemporal is composed of K batches, with each

batch containing N+ 1 tokens, and each token having a

length of C, which can comprehensively represent dynamic

temporal information across different phases. The further

proposed spatial-temporal transformers (Ts and Tt) can exp-

loit the latent relationship among spatial tokens and tem-

poral tokens to improve segmentation performance via the

attention mechanism. Specifically, the output tokens can be

expressed as ~zspatial = TsðzspatialÞ˛RðN+1Þ3K3C and ~ztemporal =

TtðztemporalÞ˛RK3ðN+1Þ3C. We restore the feature maps ~f ˛
RC03L03W 03H0

by combining spatial-temporal tokens together

and use convolution layers to reduce phase dimension, where

C0 is the channel number of new feature maps. Then, we can

get segmentation results (~y˛R13L3W3H) from the decoder D,

which is ~y = Dð~fÞ. In order to remove the over-segmentation

in the non-breast regions, the final tumor segmentation results
Table 4. Comparison of tumor segmentation (in terms of

accuracy and efficiency) between our proposed AI assistant and

two radiologists

Model Expert-1 Expert-1a Expert-2 Expert-2a AI assistant

DSC (%) 81.70 86.17 81.15 86.20 82.04

SEN (%) 79.46 82.49 73.82 80.85 75.68

HD (mm) 0.56 0.52 1.69 0.78 1.25

Time (min) 14.28 2.09 15.16 1.42 0.67
aIndicates further manual annotation refinement based on automatic seg-

mentations by our proposed AI assistant. It can be seen that AI + further

manual annotation obtains the best result.

10 Patterns 4, 100826, September 8, 2023
are masked by the whole-breast segmentation region for effec-

tive removal of false-positive segmentations.

In our segmentation model (Figure 5), we choose the U-Net

structure with residual blocks for the encoder E and the decoder

D. Four downsampling and upsampling blocks are adopted. For

the spatial and temporal transformers, we use the same archi-

tecture as the vision transformer,39 and the number of trans-

former layers is 12. We use both DICE and binary cross-entropy

loss functions to supervise the training of tumor segmenta-

tion model.

Training details

All experiments are conducted on the PyTorch platform with two

NVIDIA TITAN RTX GPUs (24GB). We use the ADAM optimizer to

optimize all networks. The initial learning rates of the whole-

breast and tumor segmentation models are 0.002 and 0.001,

respectively. And, the learning rate decays by half for every 50

epochs. A total number of 300 epochs are set for each task.

We compute the training loss within 10 epochs to determine

the convergence. While using the well-trained segmentation

models to test the results, we use sliding windows to crop the

overlapping patches, whose stride is half of the patch size.

Then, we average the overlapping patches to obtain the final

results.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for data should be directed to and will be ful-

filled by the lead contact, Dinggang Shen (dgshen@shanghaitech.edu.cn).

Materials availability

This study did not generate new unique materials.

Ethical approval

The data were collected from seven medical centers, including Guangdong

Provincial People’s Hospital, Yunnan Cancer Hospital, Hangzhou First Peo-

ple’s Hospital, Shanghai General Hospital, The Second Xiangya Hospital,

Guizhou Provincial People’s Hospital, and Ruijin Hospital. This study was

approval by the ethical committee of each medical center. Due to the retro-

spective nature of this study, the informed consent was waived by the relevant

institutional review board.

Data and code availability

The full datasets are protected because of privacy issues and regulation pol-

icies in hospitals. Partial data can be accessible to support the results in this

study, with permission from respective medical centers. The released data

mailto:dgshen@shanghaitech.edu.cn
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can be download via Zenodo54 (https://doi.org/10.5281/zenodo.8068383).

The codes and inference version of the breast AI assistant are also accessible

via Zenodo54 (https://doi.org/10.5281/zenodo.8059654).
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