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Determinants of response to CDK4/6 inhibitors in the
real-world setting
Agnieszka K. Witkiewicz1,2✉, Emily Schultz 1, Jianxin Wang1, Deanna Hamilton1, Ellis Levine3, Tracey O’Connor3 and
Erik S. Knudsen 1✉

Despite widespread use and a known mechanism of action for CDK4/6 inhibitors in combination with endocrine therapy,
features of disease evolution and determinants of therapeutic response in the real-world setting remain unclear. Here, a cohort
of patients treated with standard-of-care combination regimens was utilized to explore features of disease and determinants of
progression-free survival (PFS) and overall survival (OS). In this cohort of 280 patients, >90% of patients were treated with
palbociclib in combination with either an aromatase inhibitor (AI) or fulvestrant (FUL). Most of these patients had modified
Scarff–Bloom–Richardson (SBR) scores, and ER, HER2, and PR immunohistochemistry. Both the SBR score and lack of PR
expression were associated with shorter PFS in patients treated with AI combinations and remained significant in multivariate
analyses (HR = 3.86, p= 0.008). Gene expression analyses indicated substantial changes in cell cycle and estrogen receptor
signaling during the course of treatment. Furthermore, gene expression-based subtyping indicated that predominant subtypes
changed with treatment and progression. The luminal B, HER2, and basal subtypes exhibited shorter PFS in CDK4/6 inhibitor
combinations when assessed in the pretreatment biopsies; however, they were not associated with OS. Using unbiased
approaches, cell cycle-associated gene sets were strongly associated with shorter PFS in pretreatment biopsies irrespective of
endocrine therapy. Estrogen receptor signaling gene sets were associated with longer PFS particularly in the AI-treated cohort.
Together, these data suggest that there are distinct pathological and biological features of HR+/HER2− breast cancer associated
with response to CDK4/6 inhibitors. Clinical trial registration number: NCT04526587.
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INTRODUCTION
Hormone receptor-positive and HER2-negative (HR+/HER2−)
breast cancer represents one of the most prevalent malignancies
in the western world. The treatment of localized disease involves
surgery, chemotherapy (if indicated), and radiation, which is
followed by endocrine therapy in the adjuvant setting1,2. Gene
expression signatures have been developed to determine the risk
of recurrence for early-stage disease and to elucidate the benefit
from chemotherapy or extended treatment with endocrine
therapy3–5. These precision approaches are effective; however, a
significant number of patients develop recurrent metastatic
disease or present with metastatic disease de novo. HR+/HER2−
recurrent metastatic breast cancer can develop over the course of
many years and represents a continual risk6,7.
The treatment of metastatic HR+/HER2− breast cancer has

evolved1. Historically, in post-menopausal women, endocrine
therapy, either aromatase inhibitors (AI) or selective estrogen
degraders (SERDS) were prescribed for the treatment of metastatic
disease. These therapies can prolong progression-free survival
(PFS), but responses are of limited duration and treatments are not
curative. The PFS for the standard-of-care AI letrozole is ~14–16
months, while the PFS of the standard-of-care SERD fulvestrant is
~6–8 months8. Multiple clinical trials have interrogated the use of
targeted agents in conjunction with endocrine therapy to
enhance the durability of response9. These randomized trials
supported the use of CDK4/6 inhibitors to limit disease progres-
sion and in certain settings yield an increase in overall survival

(OS)8,10–16. Currently, three CDK4/6 inhibitors are FDA approved
for treatment of metastatic HR+/HER2− breast cancer. These
therapies generally double the PFS of endocrine therapy alone;
however, there is a small group of patients (15–25%) that rapidly
progress irrespective of the CDK4/6 inhibitor, suggesting the
existence of tumors that are intrinsically resistant to CDK4/6
inhibitor and endocrine therapy combination treatment.
Preclinical studies have provided insights into determinants of

response to CDK4/6 inhibition. It was shown that RB-deficient
models of breast cancer are resistant to CDK4/6 inhibitors17,18.
These models generally exhibit elevated expression of p16Ink4a

concomitant with the disruption of RB function19. While this state
appears to be relatively common in triple negative breast cancer,
loss of RB is infrequent in HR+/HER2− breast cancer20–22.
However, direct analyses of RB-status indicated shorter PFS in
patients with RB loss compared with wild-type counterparts20,22.
Several different mechanisms have emerged related to resistance,
including deregulation of Cyclin E, CDK6, RAS-pathway, AMBRA1,
MYC expression, and HIPPO-pathway21,23–27. Notably, each of
these genetic events ultimately compromise the activity of the
CDK4/6 inhibitor in eliciting potent cell cycle arrest.
Markers used to predict response to CDK4/6 inhibitors have not

yet been developed for clinical application22,28. In the context of
adjuvant endocrine therapy, several gene expression panels are
commonly used.3,29,30. These signatures generally define the risk of
recurrence, the corresponding benefit from chemotherapy, and/or
the need for longer treatment with endocrine therapy. Interest-
ingly, most of these signatures harbor proliferation-associated
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genes that are regulated by the RB pathway31,32. For example,
Oncotype Dx is comprised of modules that largely interrogate
estrogen receptor signaling and proliferation status; similarly,
PAM50 intrinsic subtyping utilizes proliferation-associated genes to
differentiate luminal A and B5,32. Therefore, several different
signatures that sample the RB pathway aberrations are prognostic
in cohorts of HR+/HER2− breast cancer33–37. Importantly, due to
the routine sampling of breast cancer to evaluate markers (i.e.,
estrogen receptor and HER2), most biomarker strategies remain
based on tissue specimens.
Due to the CDK4/6 inhibitor mechanism of action, there are

several suspected determinants of response, which would include
RB loss and p16Ink4a over-expression. While RB loss does appear to
be associated with short PFS with CDK4/6 inhibitors22, it is a rare
event in metastatic CDK4/6 inhibitor-naive breast cancer. Similarly,
Cyclin E gene expression has been associated with shorter PFS23. A
variety of biomarker analyses from randomized clinical trials have
identified putative determinants for the duration of PFS26,38–40.
However, analyses of features of response in the real-world
standard-of-care setting, incorporating standard pathological and
histological markers have yet to be evaluated. Here, we examined
a cohort of patients treated with CDK4/6 inhibitors to delineate
features of evolution during treatment as potential determinants
of PFS that could be applicable to standard practice.

RESULTS
Patient cohort and analysis of standard histological and
pathological markers
In order to define determinants of the response to CDK4/6
inhibitors used in the standard-of-care setting, an IRB approved
study was developed (NCT04526587) in parallel with retrospective
chart-review. Over 3500 patients were screened as summarized in
the CONSORT diagram (Supplementary Fig. 1). A total of 280
patients were evaluated as of December 2022 (Table 1). Detailed
clinical and pathological information was obtained by chart review
and abstracted to a REDCap database. In this patient population,
the majority (92%) were treated with palbociclib along with either
an aromatase inhibitor (AI) or fulvestrant (FUL) as summarized
(Fig. 1a). In this cohort, the progression-free survival (PFS) for
patients treated with the AI or FUL combinations were 28.6 and
17.2 months, respectively (Fig. 1b), which is comparable to that
observed in randomized clinical trials8,41,42. Among clinical
variables, visceral involvement, prior endocrine therapy and
recurrent disease were associated with shorter PFS (Supplemen-
tary Fig. 1), consistent with other studies. In this cohort, the OS
was determined from either the initiation of treatment or the
point of progression. From the initiation of treatment, the AI-
treated group had a longer OS (Supplementary Fig. 1); however,
when using the point of progression on CDK4/6 inhibitor based
therapy as the starting point, the OS for each treatment group was
veritably identical (median OS ~19 months) (Supplementary Fig.
1). As may be expected, in this cohort the post-progression
therapy was highly varied (Supplementary Fig. 1).
To determine if any standard pathological marker was

associated with PFS, we assessed progesterone receptor (PR)
and HER2 expressions. We found that the level of HER2 as
determined by IHC scoring (0, 1+, or 2+/FISH non-amplified) was
not associated with PFS in the combined cohort (Fig. 1c) or in sub-
group analysis of AI or FUL treated patients (Supplementary Fig.
2). In contrast, PR status was associated with PFS, with PR
negative/low status denoting significantly shorter PFS in the
combined cohort (Fig. 1d). In subgroup analyses the absence of PR
was specifically associated with PFS in the AI-treated patients, but
not in the FUL-treated patients (Fig. 1e, f). Since PR expression is a
surrogate for ER activity, we also assessed the influence of ER
status on PFS. While all of the cases are ER positive, a small subset

have low positivity (<10%). This state was associated with shorter
PFS (Fig. 1g), similarly low/mid levels of ER staining (<30%) were
associated with shortened PFS (Fig. 1h).
Most patients (n= 248) had tumor histologic grade assigned

using the Nottingham modification of Scarff–Bloom–Richardson
(SBR) scoring. Higher SBR score was associated with shorter PFS in
the context of the combined cohort (Fig. 2a) as well as in the AI
treated subgroup (Fig. 2b), but not in the FUL treated group (Fig.
2c). Since different tissue specimens (resection and biopsies) were
utilized for the determination of the SBR, tissue obtaining
procedures were also evaluated and did not significantly alter
the association with PFS (not shown). SBR is composed of tubular
differentiation, nuclear pleomorphism and mitotic rate grades;

Table 1. Patient characteristics.

Demographic All patients AI (%) Fulvestrant (%)

n= 280 n= 209 (74.64) n= 69 (24.64)

Age at CDK start, years

<50 51 42 9

≥50 228 167 59

ECOG at CDK start

0 144 110 34

1 107 76 29

2 16 12 4

3 2 2 0

Sex

Female 275 204 69

Male 5 5 0

Race/ethnicity

European 242 185 55

Asian 3 2 1

African American 25 15 10

Hispanic & Latino 3 1 2

Other 2 2 0

Menopause status at CDK start

Pre & Peri 49 43 6

Post 222 160 60

Male 5 5 0

Metastatic status

Visceral 133 92 40

Non-visceral 147 117 29

Metastatic status at presentation

De novo 91 81 9

Recurrent 189 128 60

Number of metastatic sites

1 124 92 32

2 86 61 23

≥3 56 45 11

Prior endocrine therapy

Yes 183 118 63

No 97 91 6

Prior chemotherapy

Yes 144 98 46

No 136 111 23

Table showing various demographic characteristics for the patients
included in the study.
AI aromatase inhibitor.
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Fig. 1 Patient cohort and analysis of pathologic markers. a Table summarizing combination of CDK therapy and hormonal therapy per
patient. b Kaplan–Meier analysis of progression-free survival comparing CDK4/6i combinations with fulvestrant vs AI. p= 0.00055 by log rank.
c Kaplan–Meier analysis of progression-free survival comparing HER2 subtype resulted by IHC across all patients. p= 0.73 by log rank.
d Kaplan–Meier analysis of progression-free survival comparing PR status across all patients. p= 0.0022 by log rank. e Kaplan–Meier analysis of
progression-free survival comparing PR status for patients taking AI. p= 0.0074 by log rank. f Kaplan–Meier analysis of progression-free
survival comparing PR status for patients taking fulvestrant. p= 0.48 by log rank. g Kaplan–Meier analysis of progression-free survival
comparing ER status split at 10% staining intensity across all patients. p= 3e−4 by log rank. h Kaplan–Meier analysis of progression-free
survival comparing ER status split at 30% staining intensity across all patients. p= 0.005 by log rank.
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Fig. 2 Analysis of SBR score components. a Kaplan–Meier analysis of progression-free survival comparing overall SBR score across all
patients. p= 0.026 by log rank. b Kaplan–Meier analysis of progression-free survival comparing overall SBR score across patients taking AI.
p= 0.0045 by log rank. c Kaplan–Meier analysis of progression-free survival comparing overall SBR score across patients taking fulvestrant.
p= 0.51 by log rank. d Kaplan–Meier analysis of progression-free survival comparing Nuclear Pleomorphism across patients taking AI.
p= 0.038 by log rank. e Kaplan–Meier analysis of progression-free survival comparing Tubular Differentiation across patients taking AI.
p= 0.44 by log rank. f Kaplan–Meier analysis of progression-free survival comparing Mitotic Rate across patients taking AI. p= 0.0052 by log
rank.
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each individual component was analyzed in the combined cohort
(Supplementary Fig. 3) as well as in the AI treated group
(Fig. 2d–f). In this context, the mitotic rate and nuclear
pleomorphism grades were associated with outcome, but not
the tubular differentiation. The SBR score variables were not
associated with PFS in the FUL sub-group (Supplementary Fig. 3).
Univariate analyses of the pathological and histological markers
are summarized in Table 2. Employing a multivariate model that
incorporated the significant markers, in concert with visceral
metastatic disease and prior endocrine therapy, PR and SBR
maintained significance (Table 2).
These findings suggest that PR and SBR status could be utilized

in combination to define tumors with a predicted long vs short
PFS. In the combined cohort, combining PR and SBR status was
significantly associated with PFS (Fig. 3a). In particular, the
combination of SBR3 and PR-negative status was associated with
an exceedingly short PFS, while being SBR1 and PR-positive was
associated with a longer duration of PFS (Fig. 3b). Other

combinations of SBR and PR were associated with intermediate
PFS (Fig. 3c). As expected the SBR and PR combined scores were
particularly relevant in the AI+ CDK4/6 inhibitor-treated cohort
(Supplementary Fig. 4).

Tumor evolution
Tumor tissue was obtained in the standard-of-care clinical
treatment from 141 patients (e.g., from clinically mandated
biopsies). Since multiple tissues may be available for a given
clinical case, a total of 251 samples were employed for targeted
gene expression analyses using the HTG Oncology Biomarker
Panel of 2549 genes, of which 238 samples passed quality control
(Fig. 4a and Supplementary Fig. 1). These tissues were subdivided
based on treatment (2 tissues from tamoxifen-treated tumors
were excluded), as well as the clinical stage/timepoint at which
the tissue was obtained (Fig. 4b). Primary and remote recurrence
samples represent tissue that were obtained significantly prior to

Table 2. Analysis of pathological and histological markers.

Univariate in the combined, AI, and FUL cohorts

Comparison (v1 vs v2) N1 N2 HR p value N1 N2 HR p value N1 N2 HR p value

HER2 0+ vs HER2 1+ 43 91 1.2392 0.445 39 66 0.889 0.704 4 25 3.860 0.188

HER2 0+ vs HER2 2+ 43 107 1.1357 0.645 39 82 0.8857 0.682 4 25 3.532 0.221

PR− vs PR+ 104 144 0.5859 0.00246 73 121 0.5736 0.00814 31 23 0.7865 0.477

Non-visceral vs visceral metastasis 146 132 1.4196 0.0331 117 92 1.3240 0.164 29 40 1.3728 0.281

Distant Mets vs local disease 234 14 0.4116 0.0801 198 11 0.4751 0.204 66 3 0.3024 0.239

No prior endocrine vs prior endocrine therapy 97 181 1.9834 0.00041 91 118 1.7144 0.0123 6 63 2.2928 0.165

SBR1 vs SBR2 28 152 1.3715 0.2907 20 110 1.2392 0.5736 8 42 1.7402 0.254

SBR1 vs SBR3 28 69 2.0574 0.0227 20 56 2.3817 0.0272 8 13 1.5936 0.407

Tubular differentiation 1 vs 2 10 40 1.1825 0.716 5 32 2.3227 0.260 5 8 0.7368 0.649

Tubular differentiation 1 vs 3 10 202 1.4305 0.394 5 151 2.4321 0.216 5 51 1.2789 0.642

Nuclear pleomorphism 1 vs 2 15 149 1.203 0.602 9 114 1.0953 0.847 6 35 1.9587 0.218

Nuclear pleomorphism 1 vs 3 15 89 1.704 0.138 9 66 1.8368 0.200 6 23 1.7881 0.302

Mitotic rate 1 vs 2 134 69 1.2001 0.353 97 53 1.3929 0.17457 37 16 0.9408 0.857

Mitotic rate 1 vs 3 134 42 1.5627 0.0535 97 34 2.3281 0.00154 37 8 0.5587 0.277

Comparison (v1 vs v2) N1 N2 HR Covariate p value Model p value

Multivariate in the combined cohort

PR− vs PR+ 104 144 0.6019 0.0062 4e−5

Non-visceral vs visceral metastasis 146 132 1.2441 0.24502

No prior endocrine vs prior endocrine therapy 97 181 1.6544 0.0209

SBR1 vs SBR2 28 152 1.6633 0.13532

SBR1 vs SBR3 28 69 2.7842 0.00404

Multivariate in the AI cohort

PR− vs PR+ 73 121 0.5739 0.0116 3e−4

Non-visceral vs visceral metastasis 117 92 1.2368 0.3490

No prior endocrine vs prior endocrine therapy 91 118 1.3940 0.1602

SBR1 vs SBR2 20 110 1.3018 0.5179

SBR1 vs SBR3 20 56 2.6599 0.0202

Multivariate in the FUL cohort

PR− vs PR+ 31 23 0.8479 0.6587 0.4

Non-visceral vs visceral metastasis 29 40 0.8806 0.7306

No prior endocrine vs prior endocrine therapy 6 63 2.9086 0.1751

SBR1 vs SBR2 8 42 3.1049 0.0769

SBR1 vs SBR3 8 13 3.3841 0.0848

Univariate and multivariate analysis of common markers measured in ER+/HER2− breast cancer within the combined, AI, and fulvestrant cohorts of patients.
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receiving a CDK4/6 inhibitor-based therapy (mean= 78.2 months),
pretreatment tissues were prior to the start of treatment
(mean= 3.6 months), on treatment cases were while the patient
was receiving therapy, whereas post-progression was after clinical
progression on the CDK4/6 inhibitor-based therapy (Fig. 4b). To
determine features associated with disease through treatment,
paired samples from the same patient were utilized to define
differentially expressed genes between primary/remote recur-
rence and pretreatment biopsies, as well as on-treatment and
post-treatment. Ranked gene set enrichment analysis (GSEA) was
deployed to investigate biological features associated with each
step of the disease landscape (Fig. 4c). Notably, with progression
to metastatic disease there are decreases in estrogen response
signaling and TNF signaling via NF Kappa B (NFKB) (denoted in
blue). There is an increase in terms related to xenobiotic and bile
acid metabolism and weak induction of cell cycle related
signatures (denoted in red) (Fig. 4c, d). On treatment there is
profound inhibition of cell cycle signatures and modest induction
of TNF signaling genes (Fig. 4c, d). Lastly, with progression there is
further deregulation of cell cycle and decrease of estrogen
receptor signaling and TNF signaling gene sets (Fig. 4c, d). To
explore gene/signature level difference, heatmaps were used to
evaluate changes in gene expression with regard to metastatic
site and other features of disease (Fig. 4e). These analyses
indicated that the xenobiotic metabolism and similar gene sets
are associated with liver metastasis, indicating the importance of
having detailed clinical information to define the basis of selective
signatures within the data. Changes in cell cycle, TNF signaling,
and estrogen signaling were relatively general features and not
restricted to a particular metastatic site. To evaluate on-treatment
and post-progression changes, they were compared against data
from NeoPalAna where patients were treated with neo-adjuvant
palbociclib in combination with anastrozole43. These data
illustrated similar fluxes in gene expression on treatment which
are reversed following progression (Supplementary Fig. 5). Lastly,
to assess on-treatment effects related to cell cycle proteins, we
utilized multispectral immunofluorescence staining on a subset of
paired samples (Fig. 4f and Supplementary Fig. 5). These data
showed the selective loss of phosphorylated RB with treatment,
while total protein was retained consistent with the action of
CDK4/6 inhibitors44. The downstream targets MCM2, Cyclin A, and
Ki67 were suppressed, in agreement with the effect on expression
of these genes on treatment. Cyclin D1 which is known to be
retained in context of CDK4/6 inhibitor treatment44, was present in
both pre- and on-treatment specimens.

Intrinsic subtypes and association with PFS and OS
The Absolute Assignment of Breast Cancer Intrinsic Subtypes
(AIMS)45 package was utilized to assign the subtype of each
specimen. As expected, most tumors were scored as luminal A or
B. The primary tumor/remote recurrences prior to CDK4/6 therapy
start, exhibited a similar frequency of luminal A and B subtypes as
observed in the pretreatment metastatic setting (Fig. 5a). While
the number of on-treatment biopsies was limited, they were
dominated by luminal A/normal subtype (Fig. 5a). Lastly, in post-
progression disease, luminal A was observed in the minority of
tumors (Fig. 5a). These data suggest that during treatment there
are fluctuations of the subtypes, which is illustrated in the Sankey
analysis showing the trajectories between paired samples (Fig. 5b).
To further evaluate changes at the gene level, the PAM50
signature was assessed within all samples (Fig. 5c). These analyses
show the general association of post-progression samples with
high expression of cell cycle genes (e.g., PTTG1, UBE2C, and
CCNB1) and lower expression of genes associated with estrogen
signaling (e.g., PGR, ESR1, and FOXA1).
In the analysis of the relationship of the subtypes with PFS,

pretreatment samples were initially employed. In this setting, the

Fig. 3 Analysis of SBR and PR subgroups. a Kaplan–Meier analysis
of progression-free survival comparing PR status and overall SBR
score across all patients. p= 0.00086 by log rank. b Kaplan–Meier
analysis of progression-free survival comparing PR/SBR extremes
across all patients. p= 0.0079 by log rank. c Kaplan–Meier analysis of
progression-free survival comparing various PR/SBR subgroups
across all patients. p < 0.0001 by log rank.
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Fig. 4 Tumor Evolution of Sequenced Samples. a Flowchart representing study samples sent for OBP. b Table summarizing tissue timepoint
for all AI and fulvestrant samples passing OBP. c Enriched gene sets for differentially expressed genes between different timepoints using
paired samples from the same patients. Log2 fold-change are calculated using DESeq2 in the paired mode setting and used as ranked gene
list for input to GSEA. The normalized enrichment score (NES) along with associated p values are used to generate this bubble plot. d GSEA
enrichment plots for select gene sets under each of the three timepoint comparisons. e Heatmap depicting gene expression fluctuations for
select genes under different functional groups during the course of therapy. f Multispectral immunofluorescence imaging of a paired
pretreatment and on-treatment sample.
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Fig. 5 AIMS subtype evolution of sequenced samples. a Pie charts comparing breast cancer subtypes across tissue timepoints as predicted
by Absolute Assignment of Breast Cancer Intrinsic Molecular Subtype (AIMS). b Sankey plot comparing breast cancer subtypes across tissue
timepoints as predicted by AIMS. c Heatmap showing activation/suppression of genes in the PAM50 gene set. The AIMS predicted subtypes
showed strong association with the gene expression programs of patients using this biomarker.

AK Witkiewicz et al.
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AIMS subtypes were associated with PFS (Fig. 6a). Separating
historically poor prognostic subtypes (luminal B, basal, and HER2)
from better prognostic subtypes (luminal A and normal) illustrated
association with PFS in the full cohort (Fig. 6b). This stratification
was significant in subgroups of patients treated with AI, but not
FUL although this could be due to the relatively small number of
cases in the FUL sub-group (Fig. 6c, d). Similarly, the stratification
of luminal A vs luminal B was significant only in the AI treated
group (Fig. 6e, f). When applied to the remote recurrence/primary
tumor samples, the AIMS subtypes only trended toward sig-
nificance supporting the potential importance of evaluating the
pretreatment metastatic samples (Supplementary Fig. 6). Interest-
ingly, in evaluating the duration of OS, subtypes were only
modestly associated with survival, albeit the non-luminal subtypes
invariably associated with poorer outcome (Supplementary Fig. 6).

CDK regulatory genes and duration of PFS
From preclinical studies, multiple genes associated with CDK
regulation have been suggested to play a role in response to
CDK4/6 inhibitors. Here we evaluated cell cycle related Cyclins and
CDKs and key regulators (e.g., CDKN1B and CKS1B) in a relatively
unbiased fashion. A subset of these genes was associated with
shorter PFS (red), with only one gene associated with a longer PFS
(blue) (Fig. 7a). Interestingly, a number of genes suspected to be
associated with response (e.g., CCND1 and RB1) were not
associated with PFS (Supplementary Fig. 7). Unsupervised
hierarchical clustering illustrated that there is a degree of co-
regulation of cell cycle genes, wherein high expression of many
cell cycle genes is associated with shorter PFS (Fig. 7b, c). The
behavior of CCNE1 and CDK6 are shown by Kaplan–Meier (K-M)
plots in the combined cohort and treatment selective sub-cohorts
(Fig. 7d–i). The only gene identified to associate with longer
duration of PFS is CCND2 (Fig. 7j–l), which is inversely correlated
with many of the other cell cycle regulated genes and is
responsive to interferon/NF Kappa B signaling46,47.

Biological features associated with PFS
The data with PR, SBR and AIMS subtyping, suggest that there are
intrinsic features associated with PFS in tumors treated with CDK4/
6 inhibitors and endocrine therapy. To explore features associated
with PFS duration, the cohort was divided according to the
endocrine therapy (AI or FUL). For each therapy type, univariate
Cox proportional hazard regression analysis was conducted to
define genes that were independently associated (in terms of
hazard ratios and p values) with sensitivity or resistance to the
therapies (Supplementary Dataset 1). As shown in Fig. 8a, a
collection of genes was associated with shorter PFS in both AI and
FUL treatment groups. To determine the biological features
associated with sensitivity or resistance, we employed ranked
Gene Set Enrichment Analysis (GSEA) on the combined cohort48.
In this analysis, genes are ranked on hazard ratios and tested for
enrichment for the hallmark gene sets from the Molecular
Signatures Database (MSigDB)48,49 on the high- and low-end of
the HR spectrum. These analyses indicated that cell cycle genes
regulated by RB/E2F were associated with short PFS in the
combined cohort (Fig. 8a, b) as well as in each of the individual
treatment groups (Fig. 8c). To explore predictive features of these
gene sets, we utilized common cell cycle genes in the top 100 of
genes associated with HR in both AI and FUL cohorts. This list of
10 genes was significantly associated with PFS in both the AI and
the FUL cohorts (Fig. 8d–g). However, this combined gene set was
inferior to the top cell cycle genes selective to either AI or FUL
(Fig. 8h–k).
In terms of longer PFS, fewer common genes for AI and FUL

treatment were observed for association (Fig. 9a). By GSEA
analyses, estrogen receptor-signaling was the top gene set
associated with longer PFS in the combined cohort, and the

AI+ CDK4/6 inhibitors group (Fig. 9b, c). A module of 10 estrogen
receptor signaling associated genes was strongly associated with
PFS in the AI cohort (Fig. 9d, e) and the combined cohort (Fig. 9f).
In FUL+ CDK4/6 inhibitor group, this pathway only trended
toward longer PFS (Fig. 9g). Analyses of the FUL+ CDK4/6 group
using the same methodology showed that TNF signaling and
interferon-gamma (IFN gamma) gene sets were associated with
longer PFS (Fig. 9c, h). This association was confirmed in the
context of clustering based on Euclidean distance and subsequent
K-M analyses (Fig. 9i, j). Thus, while cell cycle signatures are
commonly associated with shorter PFS, there are differential
programs which appear dominant for AI vs FUL for longer PFS.

DISCUSSION
Here we used “real-world” clinical data and tissue samples to
explore gene expression features of response to standard-of-care
CDK4/6-inhibitor based therapy in HR+/HER2− metastatic breast
cancer. To date, the only marker employed in delivering CDK4/6
inhibitors in this population is ER and HER2 status that is used to
direct endocrine therapy, although potential features of response
have been described from the analyses of the randomized clinical
trials26,38–40.
Since in addition to ER, the status of PR was known, we could

evaluate how PR status associates with the duration of PFS. In our
cohort, which is composed of patients treated largely with
palbociclib and AI or FUL, PR status was relevant in the AI
treatment cohort. Our finding is consistent with another recently
published real-world study that evaluated PR in a smaller cohort of
patients50. Similar to our observations, they found that PR was not
significant in the FUL treated cohort, suggesting that biological
distinctions related to the endocrine sensitivity and prior
treatments will have an impact on putative biomarkers. Notting-
ham scoring (modified SBR score) represents a composite of
pathological features associated with tubular differentiation,
nuclear pleomorphism and mitotic rate. As shown here, SBR
scores were associated with the duration of PFS in our cohort. As
with the PR, SBR showed significance only in the AI treated
groups. These findings and work carried out with PALOMA-2 and
PALOMA-339, suggests that biomarkers developed will likely have
to be selective for the line of treatment. Interestingly, a robust
marker for the duration of PFS in the AI cohort was developed by
simply combining the SBR and PR status. In the arm with SBR3 and
PR low/deficient, the PFS was 6.21 months, suggesting that
estimations of likely PFS could be deduced from a relatively small
number of existing pathological measures in patients treated with
CDK4/6 inhibitor and AI.
To expand beyond common clinical markers, we used the HTG

Oncology biomarker panel which has been employed in multiple
analyses from randomized clinical trials23,26,38. Using molecular
subtyping (AIMS), we defined a degree of plasticity in gene
expression during therapy. In both the remote recurrence and the
metastatic setting prior to CDK4/6 inhibitor combination treat-
ment, there were comparable frequencies of luminal A and
luminal B tumors. During treatment, there is a shift toward luminal
A and normal-like subtypes. This response profile is ostensibly due
to the on-target effect of CDK4/6 inhibitors on the suppression of
cell cycle genes that denote the predominant difference of
luminal B as opposed to luminal A and normal like subtypes.
Interestingly, investigating the behavior of tumors which
“switched” to luminal A as opposed to originating from luminal
A revealed that being luminal A prior to treatment had a longer
PFS, although the numbers are too limited to make a robust
conclusion (Supplementary Fig. 8). After disease progression, few
luminal A tumors remained and there was a general further
deregulation of cell cycle genes. These data suggest that while the
therapy is effective at suppressing proliferation, once tumors
progress, they have evolved to a more aggressive biology. This
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Fig. 6 PFS of subtype subgroups. Testing for association of AIMS predicted Intrinsic subtypes with PFS. a Combined (AI and fulvestrant
treated) cohorts for individual subtypes. p= 0.034 by log rank test. b Combined cohort on luminal A and normal, luminal B, Her2 and basal
combined groups. p= 0.0029 by log rank test. c, d AI- or fulvestrant-treated cohorts separately on combined subtypes. p= 0.016 and p= 0.18,
respectively, by log rank test. e, f AI- or fulvestrant-treated cohorts separately between luminal A and luminal B subtypes. p= 0.018 and
p= 0.35, respectively, by log rank test.
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Fig. 7 PFS with CDK regulatory genes. a Table summarizing association of PFS with major cell cycle genes across cohorts of patients.
b Heatmap showing expression of these genes across pretreatment biopsies. This unsupervised clustering is able to stratify luminal A patients
from other subtypes (mainly luminal B). c Kaplan–Meier plot showing progression-free survival difference between the two groups stratified
by unsupervised clustering. p= 0.0035 by log rank test. d–l Testing for power of single genes in stratifying patients for progression-free
survival using gene expression data from pretreatment biopsies. For CCNE1 in the combined, AI, and FUL cohorts, p= 0.0843, p= 0.4007, and
p= 0.0257 by log rank test, respectively. For CDK6 in the combined, AI, and FUL cohorts, p= 0.0252, p= 0.0087, and p= 0.815 by log rank test,
respectively. For CCND2 in the combined, AI, and FUL cohorts, p= 0.047, p= 0.77, and p < 0.001 by log rank test, respectively.
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Fig. 8 PFS with common cell cycle genes. a Genes associated with shorter PFS as identified by univariate Cox Proportional Hazards
Regression on each of the treatment cohorts. −Log10 p values from the AI and the FUL cohort are shown on the x-axis and the y-axis,
respectively. Data are filtered by HR < 1, p value ≤ 0.1 (AI cohort) or p value ≤ 0.05 (fulvestrant cohort). b, c Gene Set Enrichment Analysis for
genes associated with shorter PFS. HR values from univariate Cox PH analysis on the combined cohorts were used to perform GSEA pre-ranked
analysis. HR values are subtracted by 1 to center the genes with no association to zero. d–g Heatmap and K-M plots for common cell cycle gene
modules tested on the AI (d, e) or FUL (f, g) treated cohort. p= 0.13 and p= 0.01, respectively, by log rank test. h–k Testing of cell cycle gene
modules identified from each cohort separately for association with PFS on the same cohort. p= 0.003 and p < 0.001, respectively, by log rank
test. Columns in these heatmaps are ordered by average log2-transformed normalized gene expression values from high (left) to low (right).
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may also explain why in this cohort, post progression OS is
essentially identical. In the context of the present study, the
subtype of disease in the pretreatment biopsy was associated with
duration of PFS. This largely followed the prognostic significance

of breast cancer subtypes wherein luminal B, Her2, and basal are
associated with poor outcome. Interestingly, this association of
subtypes was only significant in the AI treated subgroup. Part of
the lack of significance could be due to the relatively small
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number of patients in the FUL treated cohort, as well as the
greater heterogeneity with regard to subtypes beyond luminal
A and B.
To approach the biological features associated with PFS, a

relatively unbiased approach was employed. Interestingly, it
showed that cell cycle deregulation, exemplified by E2F target
genes or G2/M associated genes are jointly associated with
shortened PFS irrespective of the endocrine therapy employed,
specifically when applied to the pretreatment biopsy (Supple-
mentary Fig. 9). These findings are similar to those emerging from
the analyses of the PALOMA-2/3 analyses26,38–40. However, at the
gene-level there were differences between the treatment cohorts.
Similarly, it would appear that CDK4/6 expression is relevant in the
context of AI treated tumors, while CDK2 and CCNE1 are more
relevant in the context of FUL treated tumors. Thus, whether the
importance of select E2F-target genes is due to a primary
mechanism of resistance e.g., CCNE1 vs CDK6 deregulation,
remains unknown. In terms of longer PFS, estrogen receptor
signaling was strongly associated with progression-free duration,
most potently in the pretreatment biopsy as opposed to the
primary/recurrence sample (Supplementary Fig. 9). This finding
was also observed in analyses of PALOMA-2/3 studies39. However,
in our FUL treated cohort there was minimal enrichment for these
genes associated with duration of PFS. In contrast, the TNF and
IFN-gamma gene sets were more strongly associated with longer
PFS in FUL treated cohorts. This could relate also to the association
of CCND2 with the duration of PFS predominantly in the FUL
treatment group47. This finding contrasts with other settings,
where it has been proposed that genes associated with interferon
signaling are associated with resistance to CDK4/6 inhibitors in
clinical populations26. The TNF and IFN-gamma gene sets are
highly heterogeneous, and it will be important to evaluate
individual genes between experimental groups to ultimately
make strong conclusion. We believe that at least part of the signal
being detected in the FUL cohort is reflective of TILs that are
generally associated with improved prognosis in HR+/HER2−
breast cancer. Immunologically restricted genes (e.g., CD40 and
CD3D) were selectively associated with longer PFS in the FUL
treated cohort (Supplementary Fig. 8). Interestingly, by using
METABRIC data51, we could compare the association of the gene
sets employed here with prognosis (Supplementary Fig. 10). Cell
cycle modules are associated with prognosis, however, neither the
estrogen nor the TNF gene modules were associated with disease-
free survival in METABRIC samples. Surprisingly only the estrogen
response module is strongly associated with OS in this cohort
(Supplementary Fig. 11).
In total, the studies here identified multiple biological features

that emerge during treatment with CDK4/6 inhibitors and
suggested pathways relevant to PFS. However, further study will
be required to develop these genes or clinical features to the
point of a biomarker. Ongoing studies are developing indepen-
dent cohorts to validate the findings here and to develop
prospectively validated biomarkers for duration of response to
CDK4/6 with endocrine therapy regimens.

METHODS
Data source and patient selection
Chart review was conducted for 280 patients who were diagnosed
with HR+/HER2− breast cancer and received a CDK4/6 inhibitor
from 2015 to 2022 at Roswell Park Comprehensive Cancer Center
as inclusion criteria for the study. The great majority (>95%) of
consented patients were women. Patient data from two studies
approved by the Roswell Park Comprehensive Cancer Center
Institutional Review Board was used. A retrospective protocol was
utilized to collect information and biospecimens on 71 patients.
Subsequently a combination retrospective and prospective
(NCT04526587) protocol was developed. Two hundred and
twenty-nine patients have been consented as of December 22,
2022. Eligible patients were ≥18 years of age, had ER+/HER2−
advanced breast cancer, and were treated with a CDK4/6 inhibitor.
Electronic medical records were used to extract demographic
information, smoking history, menopausal status, BMI, Eastern
Cooperative Oncology Group (ECOG) performance status, surgery
and pathology reports, genomic data, dates of diagnosis and
recurrence(s), site(s) of metastases, and cancer treatment
information.

Ethics
The clinical information collected was approved by the Institu-
tional Research Board of Roswell Park Cancer Center. Written
informed consent was obtained for all patients through either the
clinical trial (NCT04526587) or the Roswell Park Remnant Tissue
protocol and corresponding IRB approved investigator protocol
specific to this study.

Tissue selection
All surgical pathology case slides from the Roswell Park
Comprehensive Cancer Center Department of Pathology were
reviewed for each patient to ensure adequate tumor tissue.
Chosen cases were then coded by specific timepoint during their
treatment as shown in Fig. 4b. Selected blocks were sectioned,
and regions of high tumor cellularity were defined by a breast
pathologist (AKW). Slides were then sent to HTG Molecular
Diagnostics, Inc. for targeted gene expression consistent with
other studies26,39,40.

Statistical analysis
The PFS was defined as the time from the first dose of CDK4/6i
inhibitor therapy to either scan- or marker-proven progression, or
death while on therapy. The OS, was defined as the time of the
biopsy (or scan if no biopsy was performed) leading to the
initiation of CDK4/6 inhibitor therapy, to death or date of last
follow-up. Patients who stopped ciclib therapy due to toxicities
(n= 22) were not considered in PFS calculations. For the primary
purpose of this study, patients were divided into 2 groups:
patients taking an aromatase inhibitor (letrozole, anastrozole, or
exemestane) with a CDK 4/6 inhibitor, and patients taking
fulvestrant with a CDK 4/6 inhibitor. K-M survival analysis

Fig. 9 PFS with estrogen receptor and TNF/IFN gamma gene sets. a Genes associated with longer PFS as identified by univariate Cox
Proportional Hazards Regression on each of the treatment cohorts. −Log10 p values from the AI and the FUL cohort are shown on the x-axis
and the y-axis, respectively. Data are filtered by HR < 1, p value ≤ 0.1 (AI cohort) or p value ≤ 0.05 (fulvestrant cohort). b Estrogen response early
gene set is associated with longer PFS as revealed by GSEA on combined cohort. c Bubble plot showing differential enrichment for gene sets
between AI and fulvestrant treated cohorts. d Heatmap using genes from estrogen response module on gene expression data from
pretreatment biopsies in the AI-treated cohort. e K-M plot showing PFS difference between high and low average expression values of this
estrogen response gene module in the AI treated cohort. p < 0.001 by log rank test. f, g K-M plots showing survival difference between low
and high average gene expression groups of the estrogen response gene module on the combined (f) or fulvestrant (g) treated cohorts.
p < 0.001 and p= 0.55, respectively, by log rank test. h GSEA plot showing enrichment of genes in the TNF signaling via NFKB gene set.
i, j Heatmap and K-M plot showing gene expression pattern of the TNF-IFN gamma gene module and its power in stratifying patients on the
fulvestrant treated cohort using gene expression data from the pretreatment biopsies. p= 0.0012 by log rank test.
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compared with log-rank tests, univariate, and multivariate Cox
proportional-hazards regression were used to compare PFS by
endocrine therapy. R version 3.6.1 or 4.2.0 (R Foundation for
Statistical Computing, Vienna, Austria) was used for all statistical
analyses.

RNA-Seq data preparation and processing
Patient tissue samples that were obtained during standard-of-
care from various clinical timepoints were sent to HTG Molecular
Diagnostics, Inc. for targeted sequencing using their HTG
EdgeSeq Oncology Biomarker Panel consisting of 2549 selected
cancer associated genes. Raw data was assembled from four
separate HTG runs. Raw read counts from four batches were
subjected to batch effect removal using ComBat-seq52. The
batch effect corrected raw read count matrix is then used as
input to edgeR53 for data normalization. Normalized data was
then log2 transformed by adding a pseudo-count of 1 to each
value in the data matrix and subsequently used for downstream
analyses.

Paired sample differential gene expression analysis
Differential gene expression analysis was performed between
different timepoints (on-treatment vs pretreatment, post-
treatment vs pretreatment, pretreatment vs primary/recurrence)
on paired patient specimens using the DESeq254 (v1.36.0)
Bioconductor package.

Gene Set Enrichment Analysis (GSEA)
We used a locally installed GSEA software (v4.2.1) to perform GSEA
Preranked analyses to identify associations of gene sets in the
HALLMARK dataset in the Molecular Signature Database
(h.all.v2023) with gene lists ranked by hazard ratios (substracted
by one, to center the HR= 1 (no association) to zero) (Figs. 8b and
9b, h) or with magnitude (Log2FC) of differentially expressed
genes between timepoints (Fig. 4d). To obtain normalized
enrichment score and p values for generating plots in Figs. 4c,
8c, and 9c, we used the fgsea Bioconductor package (https://
doi.org/10.1101/060012) and custom R code.

External datasets used in this study
The NeoPalAna dataset was retrieved from Gene Expression
Omnibus (GEO) with accession number GSE93204. We used the
GEOquery (v2.64.2) Bioconductor package for retrieving the gene
expression data and clinical information. The METABRIC dataset51

was downloaded from cBioPortal. To match patient characteristics,
we extracted a subset of this dataset to include only those
patients with HR+/HER2− status.

Intrinsic subtype assignment
To predict intrinsic cancer subtypes, we used the AIMS45 R
package. Since the HTG gene panel does not include all the genes
used in AIMS, we evaluated subtype classification accuracy with
the reduced gene set used in the HTG panel. We first ran the
example code in the AIMS documentation with data included in
that package. Next, we ran the code again with the reduced
testing dataset by including only genes available in the HTG gene
panel. This resulted in the misclassification of 52 samples out of
the 321 samples in total (an 84% of concordance). To run AIMS, we
replaced the gene symbol in the raw RNA-Seq read count data
matrix with the Entrez gene ID using the org.Hs.eg.db Biocon-
ductor R package (v3.10.0).

Gene module selection
Univariate Cox regression analysis were performed on each of the
treatment cohorts (AI, fulvestrant, and combined) separately,

using the gene expression data from pretreatment biopsies. The
hazard ratio values were subtracted by 1 to have zero values
indicating no association (HR= 1) and used in GSEA pre-ranked
analysis against the HALLMARK gene sets (h.all.v2023). We
identified the E2F Targets and G2M Checkpoint as the top
enriched gene sets, Estrogen Response Early as the top depleted
gene set in the AI treated cohort, IFN-gamma response and TNF
signaling via NFKB as the top depleted gene sets in the fulvestrant
treated cohort. The leading-edge genes in each of the top
enriched/depleted gene sets are intersected with the top 100 high
HR genes or the bottom 100 low HR genes. We plotted heatmaps
for these genes sets and selected ten genes based on their
expression pattern. We termed them as “Estrogen Response
Module” for the 10 genes selected using the AI-treated cohort,
“TNF-IFN gamma Module” for the 10 genes selected using the
fulvestrant-treated cohort, and “Common Cell Cycle Module” for
the ten genes selected from both the AI and the fulvestrant
combined cohorts.

Plotting
The Sankey plot was made using the plotly R package (v4.9). We
first performed prediction of tumor intrinsic subtypes for all
samples using AIMS. The prediction results for samples from the
same patient with different timepoints (primary, pretreatment, on-
treatment, and post-treatment) were used as input to a custom R
script to create the Sankey plot. All the heatmaps are potted using
the ComplexHeatmap55 R package (v2.12.1). K-M plots are based
on the survival R package (3.4–0) with custom wrapper code for
enhancements. Other plots were prepared using the ggplot2
(v3.3.6) or ggpubr (v0.4.0) R packages.

mIF staining
Formalin-fixed paraffin-embedded (FFPE) 4 µm sections were cut
and placed on charged slides. Slides were dried at 65 °C for 2 h.
After drying, the slides were placed on the BOND RXm Research
Stainer (Leica Biosystems) and deparaffinized with BOND Dewax
solution (AR9222, Lecia Biosystems). The multispectral immuno-
fluorescent (mIF) staining process involved serial repetitions of
the following for each biomarker: epitope retrieval/stripping
with ER1 (citrate buffer pH 6, AR996, Leica Biosystems) or ER2
(Tris-EDTA buffer pH9, AR9640, Leica Biosystems), blocking
buffer (AKOYA Biosciences), primary antibody, Opal Polymer
HRP secondary antibody (AKOYA Biosciences), Opal Fluorophore
(AKOYA Biosciences). All AKOYA reagents used for mIF staining
come as a kit (NEL821001KT). Spectral DAPI (AKOYA Biosciences)
was applied once slides were removed from the BOND. They
were cover slipped using an aqueous method and Diamond
antifade mounting medium (Invitrogen ThermoFisher). The mIF
panel consisted of the following antibodies: Ki67 (Abcam,
ab16667), AE1AE3 (Dako, M3515), CCNE (Abcam, ab33911),
CCND1 (ThermoFisher, MA1-39546), CCNA (Abcam, ab32386), RB
(Cell Signaling, 9309s), pRB (Cell Signaling, 8516), and MCM2
(BioSb, BSB6334).

Tissue imaging and analysis
Slides were imaged on the PhenoImager™ HT (AKOYA Bios-
ciences). Further analysis of the slides was performed using
inForm® Software v2.6.0 (AKOYA Biosciences). The whole slides
were first scanned in an unmixed view, then representative ROIs
were selected for acquisition under guidance of a pathologist.
These ROIs were then rescanned to achieve full spectral unmixing.
A representative subset of these unmixed ROIs was then used to
train tissue and cell segmentation. Next a unique algorithm was
created using a machine learning technique, in which the operator
selects positive and negative cell examples for each marker. These
algorithms were then batch applied across a greater number of
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ROIs selected for inclusion in further analysis. The RStudio plugin,
phenoptrReports, was used to extract phenotype counts from the
resulting data tables.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The datasets generated and analyzed in the current study are available from the
corresponding author on reasonable request.
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