
Mosaic chromosomal alterations detected in men living with HIV 
and the relationship to non-Hodgkin lymphoma

Shu-Hong LIN1,*, Sairah M. KHAN1,*, Weiyin ZHOU1, Derek W. BROWN1, Candelaria 
VERGARA2, Steven M. WOLINSKY3, Otoniel MARTÍNEZ-MAZA4, Joseph B. MARGOLICK2, 
Jeremy J. MARTINSON5, Shehnaz K. HUSSAIN6, Eric A. ENGELS1,+, Mitchell J. 
MACHIELA1,+

1Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD

2Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD

3Feinberg School of Medicine, Northwestern University, Chicago, IL

4UCLA AIDS Institute and Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, CA

5School of Public Health, University of Pittsburgh, Pittsburgh, PA

6University of California Davis Comprehensive Cancer Center, Sacramento, CA

Abstract

Objectives: People living with HIV (PLWH) have elevated risk of non-Hodgkin lymphoma 

(NHL) and other diseases. Studying clonal hematopoiesis (CH), the clonal expansion of mutated 

hematopoietic stem cells, could provide insights regarding elevated NHL risk.

Design: Cohort analysis of participants in the Multicenter AIDS Cohort Study (N=5,979).

Methods: Mosaic chromosomal alterations (mCAs), a type of CH, were detected from 

genotyping array data using MoChA. We compared CH prevalence in men living with HIV 

(MLWH) to HIV-uninfected men using logistic regression, and among MLWH, assessed the 

associations of CH with NHL incidence and overall mortality using Poisson regression.

Results: Comparing MLWH to HIV-uninfected men, we observed no difference in the frequency 

of autosomal mCAs (3.9% vs. 3.6%, p-value=0.09) or mosaic loss of the Y chromosome (mLOY) 

(1.4% vs. 2.9%, p-value=0.13). Autosomal mCAs involving copy-neutral loss of heterozygosity 

(CN-LOH) of chromosome 14q were more common in MLWH. Among MLWH, mCAs were not 

associated with subsequent NHL incidence (autosomal mCA p-value=0.65, mLOY p-value=0.48). 

However, two MLWH with diffuse large B-cell lymphoma had overlapping CN-LOH mCAs on 
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chromosome 19 spanning U2AF2 (involved in RNA splicing), and one MLWH with Burkitt 

lymphoma had high-frequency mCAs involving chromosome 1 gain and chromosome 17 CN-

LOH (cell fractions 22.1% and 25.0%, respectively). mCAs were not associated with mortality 

among MLWH (autosomal mCA p-value=0.52, mLOY p-value=0.93).

Conclusions: We found limited evidence for a relationship between HIV infection and mCAs. 

Although mCAs were not significantly associated with NHL, mCAs detected in several NHL cases 

indicate a need for further investigation.
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Introduction

Despite improvements with effective antiretroviral therapy, HIV infection is associated 

with elevated risk of non-Hodgkin lymphoma (NHL) [1]. The two most common AIDS-

associated NHLs (diffuse large B-cell lymphoma [DLBCL] and Burkitt lymphoma) manifest 

common genomic changes, including large segments of chromosomal loss or gain [2]. HIV 

infection is also associated with increased risk for infections, cardiovascular disease, and 

other conditions associated with chronic inflammation and aging [3,4].

Clonal hematopoiesis (CH) is the presence of a detectable clonal sub-fraction of circulating 

leukocytes that differs genetically from the inherited germline. CH expansion can be driven 

by small mutations of a few base pairs, referred to as clonal hematopoiesis of indeterminate 

potential (CHIP) [5,6], or can involve large structural mosaic chromosomal alterations 

(mCAs) such as gains, losses, or copy-neutral loss of heterozygosity (CN-LOH) [7,8]. CH 

increases in frequency with age and is associated with increased risk of infection and 

hematologic malignancies [5–9]. CHIP occurs more frequently among people living with 

HIV (PLWH) compared to HIV-free controls [10–14], and clone size is larger among PLWH 

[12]. However, studies of mCAs in PLWH have not been performed.

With improved survival, PLWH are aging, which translates into rising age-related 

comorbidity [15], promoting a need for markers that identify PLWH at elevated risk for 

NHL and other HIV-associated outcomes. Our study aimed to identify potential relationships 

between HIV infection, mCAs, NHL, and mortality in a population of 5,979 men living with 

HIV (MLWH) and men without HIV infection.

Methods

Study population

Starting in 1984, the Multicenter AIDS Cohort Study (MACS) enrolled men who have 

sex with men with HIV or at risk of acquiring HIV [16,17]. Participants were evaluated 

twice yearly for health assessment, blood collection, and HIV testing. NHL diagnoses were 

confirmed by medical records and cancer registry data. All participants provided informed 

consent.
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Genotyping and mosaicism detection

Peripheral blood DNA was genotyped using the Illumina Multi-Ethnic Genotyping Array at 

the MACS visit with the greatest amount of available DNA. Raw genotyping array intensity 

data were used to calculate B allele frequencies and log2 R ratios which were utilized 

by MoChA (v2020–08-14) to detect mCAs [7] (Supplemental Methods, Supplementary 

Digital Content). Mosaic loss of chromosome Y (mLOY) detection utilized probes in the 

pseudoautosomal region [18]. Included samples had a genotyping call rate ≥96%, and mCAs 

were restricted to >2 megabases (Mb) to minimize false positives.

Statistical Analyses

HIV status refers to when the genotyped blood sample was collected (baseline). A total 

of 6,170 samples were scanned for mCAs. We removed duplicate observations (n=1) and 

samples with unknown collection date/no follow-up time (n=165) or conflicting data on HIV 

status at sample collection (n=13), resulting in 5,979 included participants.

Logistic regression examined associations of autosomal mCA and mLOY with HIV, 

adjusting for established mCA risk factors: age per decade, age2 per decade2, and smoking 

status (never, former, current). For analyses where mCA was not the outcome of interest, 

we categorized age into groups (<35, 35–44, 45–54, and 55+ years). Fisher exact tests were 

used to identify differences in mCA distribution.

Poisson regression examined the relationship between mCAs and NHL incidence among 

MLWH, with follow-up starting at the baseline timepoint. The analysis was unadjusted 

due to the limited number of NHL events. Poisson regression was also used to assess the 

association between mCAs and mortality among MLWH, adjusting for age group, calendar 

year at entry, and smoking status. All statistical tests were two-sided (α=0.05).

Results

Fifty-three percent of the 5,979 included MACS participants had HIV infection at 

baseline (Table S1, Supplemental Digital Content). Most participants were non-Hispanic 

White (74%), and MLWH were significantly younger than HIV-uninfected participants. 

Approximately one-third (36%) of MLWH were currently smoking.

We identified 223 individuals (3.7%) with at least one detectable autosomal mCA and 127 

(2.1%) with mLOY (Table S2, Supplemental Digital Content). Autosomal mCA frequency 

was similar in MLWH and HIV-uninfected participants (3.9% vs. 3.6%), and, although 

mLOY appeared less common in MLWH (1.4% vs. 2.9%), multivariable analysis indicated 

HIV status was not significantly associated with the presence of autosomal mCAs (odds 

ratio [OR]=1.28, 95%CI=0.96–1.71, p-value=0.09) or mLOY (OR=0.73, 95%CI=0.49–1.09, 

p-value=0.13) (Table 1).

In analyses restricted to MLWH and adjusted for age and smoking status (Table S3, 

Supplemental Digital Content), no HIV-specific risk factors were associated with autosomal 

mCAs. Relative to MLWH with CD4 counts above 500 cells/mm3, MLWH with CD4 

counts below 350 cells/mm3 had elevated mLOY frequency (OR=2.63, 95%CI=1.25–5.48, 
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p-value=9.8 × 10−3). Antiretroviral therapy and baseline HIV viral load were not associated 

with mCAs (Table S3, Supplemental Digital Content).

We observed differences in the distribution of mCAs comparing MLWH to HIV-uninfected 

men. Chromosome 14 CN-LOH mCAs were more common in MLWH (N=12 events 

vs. N=1 in HIV-uninfected men, p-value=0.003) (Figure 1; Table S4, Supplemental 

Digital Content), frequently impacting the q arm spanning chr14:102,902,329–107,349,540 

(GRCh37) (Figures S1 and S2, Supplemental Digital Content). In addition, chromosome 1 

gains and chromosome 11 losses were present only among HIV-uninfected men (p-values 

0.028 and 0.028, respectively, based on N=5 and N=5 events) (Table S4, Supplemental 

Digital Content).

NHL was diagnosed in 203 participants (16 prevalent cases and 187 incident cases), most of 

whom were MLWH (N=187, 92.1%). Incident NHL was diagnosed in 177 MLWH (5.7%), 

with DLBCL being the most common subtype (N=64) followed by central nervous system 

lymphoma (N=51), Burkitt lymphoma (N=18), and other/unspecified lymphoma (N=54).

Nine autosomal mCAs (7 copy-neutral events, 2 gains) and 4 mLOY events were detected 

in 11 participants with prevalent or incident NHL (Table S5, Supplemental Digital Content). 

Among MLWH with incident NHL, 8 had an mCA at baseline (5 autosomal mCA, 3 mLOY, 

Table S5, Supplemental Digital Content). The presence of mCAs was not significantly 

associated with NHL incidence among MLWH (p=0.65 for autosomal mCAs, p=0.48 

for mLOY; Table S6, Supplemental Digital Content). However, the time from baseline 

until NHL diagnosis was shorter for MLWH with detectable mCAs (median 0.46 years, 

interquartile range [IQR] 0.22–0.60, range=0.02–1.02) than for those with no detectable 

mCA (median 3.76 years, IQR=1.28–6.15 years, range=0.06–21; p-value=7×10−5).

Two MLWH with incident DLBCL (participants 2 and 6) had CN-LOH mCAs that involved 

an overlapping region on chromosome 19 that included U2AF2 (Table S5, Supplemental 

Digital Content), a gene involved in RNA splicing [19]. The highest mCA cell fractions 

were observed in participant 1, a 25-year-old MLWH with Burkitt lymphoma diagnosed 

8 days after sample collection who had a chromosome 1 gain (22.1% of cells) and 

chromosome 17 CN-LOH event (25.0%) that spanned SETDB1 and SRSF2, respectively. 

SETDB1 encodes a histone methyltransferase involved in transcriptional repression, and 

SRSF2 encodes a pre-mRNA splicing factor involved in protein translation [20,21].

A total of 1,732 deaths were observed in MLWH, among whom 67 (2.1%) had autosomal 

mCAs and 16 (0.5%) had mLOY at baseline. In multivariable models adjusted for age, 

calendar year, and smoking status (Table S7, Supplemental Digital Content), mortality was 

not associated with presence of autosomal mCAs (mortality rate ratio 1.16, 95%CI 0.90–

1.47, p-value=0.23) or mLOY (1.19, 0.69–1.91, p-value=0.49).

Discussion

In this large study of MLWH and HIV-uninfected men, the similarity in the frequency of 

mCAs by HIV status suggests that HIV infection does not notably impact overall clonal 

expansion of leukocytes with autosomal mCAs and mLOY. Chromosome 14 CN-LOH 
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events were more common among MLWH, although we could not identify any genes 

plausibly related to HIV, CH, or myeloid or lymphoid malignancies in the minimally 

impacted region [10,22]. In addition, while no overall association between HIV infection 

and mLOY was observed, MLWH with the lowest CD4 cell counts (<350 cells/mm2) had 

a higher frequency of mLOY compared to those with CD4 cell counts of 500+ cells/mm2. 

Future studies may identify important genes in these regions relevant to clonal expansion in 

the presence of HIV.

Previous work identified an association between HIV and an increased frequency of CHIP, 

in which single base pair alterations occur primarily in myeloid driver genes [10–13]. 

However, CHIP and mCAs differentially impact protein products and gene expression, 

potentially explaining observed differences of association. Likewise, the null association of 

mCAs with mortality among MLWH is contrary to previous reports from larger CH studies 

in the general population [23]. Future studies that investigate both types of CH jointly will 

be beneficial in understanding how CH is related to HIV and HIV-associated outcomes.

We did not observe an association between mCAs and subsequent NHL incidence among 

MLWH. In interpreting this null association, one possible explanation is that mCAs are 

not etiologically relevant. However, an alternative interpretation is that the time interval 

between the baseline blood sample and NHL diagnosis was too long for most NHL cases. Of 

note, the time between sample collection and NHL diagnosis was a year or less among the 

incident NHL cases who had an autosomal mCA or mLOY, suggesting that mCAs arise late 

in the development of NHL and that the sampling timeframe could be a critical component 

for detecting emerging neoplastic clones.

If mCAs arise late in the course of NHL development, expanded cell clones would likely 

include mutations in the same genomic regions found in NHL tumors; however, incident 

NHL cases among MLWH had no genomic regions that were generally elevated in mCA 

frequency. None of the mCAs among MLWH diagnosed with DLBCL encompassed genes 

previously identified as chromosomal translocation targets in HIV-related DLBCL (e.g., 

BLC2, BLC6, and MYC) [2]. Among the 8 DLBCL cases with autosomal mCAs, two 

had mCAs in a region that includes the chromosome 19 gene U2AF2. U2AF2 mutations 

have been associated with hematological malignancies, but not specifically NHL [24–27]. 

In addition, the highest mCA cell fraction was observed in a man who developed Burkitt 

lymphoma within days of baseline. His mCAs encompassed SETDB1 and SRSF2, both of 

which are mutated in other hematologic malignancies [28–30].

The present study is the first to examine the relationships of mCAs with NHL and 

mortality among MLWH. We used prospectively collected blood samples and employed 

robust methods that detected mCAs in the MACS study down to cell fractions of 0.6% and 

2.6% for autosomal and mLOY events, respectively. As analyses were restricted to men, the 

findings may not be generalizable to women living with HIV. In addition, the low frequency 

of mCAs could be due to the age of the MACS study population and the timing of blood 

sample collection relative to NHL diagnosis.
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In conclusion, we found limited evidence for a relationship between HIV infection and 

mCAs, although the enrichment among MLWH of copy-neutral mCAs on chromosome 

14, mCAs encompassing U2AF2 in two DLBCL cases, and mCAs spanning SETDB1 and 

SRSF2 in one Burkitt lymphoma case may warrant further investigation. Future studies 

examining the relationship between mCAs and NHL risk should examine blood samples 

collected closer in time to NHL diagnosis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Circos plots displaying the frequency and type of autosomal mosaic chromosomal alteration 

(mCA) by HIV and non-Hodgkin lymphoma (NHL) status. Participants with NHL 

diagnosed before the blood draw are not included in these analyses. (A) HIV-uninfected 

participants with no record of incident or prevalent NHL, (B) Men living with HIV (MLWH) 

with no record of incident or prevalent NHL, and (C) MLWH with incident NHL. The 

height of the colored bars indicates the number of participants with mCA in the specified 

chromosomal region
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Table 1.

Multivariable associations of mosaic chromosomal alterations with HIV infection, smoking, and age

Autosomal mCA mLOY

Exposure Subjects N % Adjusted OR (95% CI) P Value* N % Adjusted OR (95% CI) P-Value*

HIV status 0.09 0.13

 Without 2840 102 3.6% reference 83 2.9% reference

 Living With 3139 121 3.9% 1.28 (0.96, 1.71) 44 1.4% 0.73 (0.49, 1.09)

Age, per decade 5979 223 3.7% 0.95 (0.49, 1.91) 0.88 127 2.1% 2.06 (0.64, 7.39) 0.23

Age2, per decade2 5979 223 3.7% 1.05 (0.99, 1.12) 0.13 127 2.1% 1.04 (0.93, 1.15) 0.46

Smoking status 0.54 0.29

 Never 1817 63 3.5% reference 33 1.8% reference

 Former 1988 83 4.2% 1.01 (0.72, 1.42) 65 3.3% 1.30 (0.83, 2.05)

 Current 1863 64 3.4% 1.20 (0.84, 1.73) 25 1.3% 1.54 (0.87, 2.69)

*
Likelihood ratio test p-value

Abbreviations: CI confidence interval; mCA mosaic chromosomal alterations; OR odds ratio
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