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RB loss sensitizes cells to replication-associated DNA
damage after PARP inhibition by trapping

Luis Gregory Zamalloa'®, Margaret M Pruitt’, Nicole M Hermance', Himabindu Gali?, Rachel L Flynn? Amity L Manning'®

The retinoblastoma tumor suppressor protein (RB) interacts
physically and functionally with a number of epigenetic modi-
fying enzymes to control transcriptional regulation, respond to
replication stress, promote DNA damage response and repair,
and regulate genome stability. To better understand how dis-
ruption of RB function impacts epigenetic regulation of genome
stability and determine whether such changes represent ex-
ploitable weaknesses of RB-deficient cancer cells, we performed
an imaging-based screen to identify epigenetic inhibitors that
promote DNA damage and compromise the viability of RB-
deficient cells. We found that loss of RB alone leads to high
levels of replication-dependent poly-ADP ribosylation (PAR-
ylation) and that preventing PARylation by trapping PARP en-
zymes on chromatin enables RB-deficient cells to progress to
mitosis with unresolved replication stress. These defects con-
tribute to high levels of DNA damage and compromised cell
viability. We demonstrate this sensitivity is conserved across a
panel of drugs that target both PARP1 and PARP2 and can be
suppressed by reexpression of the RB protein. Together, these
data indicate that drugs that target PARP1 and PARP2 may be
clinically relevant for RB-deficient cancers.
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Introduction

The retinoblastoma tumor suppressor (RB), which is lost or func-
tionally inactivated in most cancers (Burkhart & Sage, 2008), is best
known for its role as a negative regulator of E2F-dependent
transcription (Dyson, 1998; Nevins, 2001). As RB becomes increas-
ingly phosphorylated during G1 progression, its inhibition of E2F is
abrogated, allowing for expression of key cell cycle genes, pro-
gression through the restriction point, and S-phase entry (Goodrich
et al, 1991). However, the cellular function of RB is now appreciated
to be much more extensive than E2F regulation (Velez-Cruz &
Johnson, 2017; Dick et al, 2018) and proteomics analyses indicate
that RB interacts with >300 proteins, nearly 20% of which are
histones or epigenetic modifiers of histones (Sanidas et al, 2019).

Interactions with epigenetic regulators are believed to allow RB
to orchestrate chromatin accessibility and transcription status across
the cell cycle (Gonzalo & Blasco, 2005; Guzman et al, 2020). Reported RB
interactors of this nature include histone acetylases (Manickavinayaham
et al, 2019), deacetylases (Luo et al, 1998; Wang et al, 2019; Zhou et al,
2021), methylases, and demethylases (Nielsen et al, 2007, Vandel
et al, 2001; Gonzalo et al, 2005; Blais et al, 2007; Chau et al, 2008;
Ishak et al, 2016). Disruption of RB-dependent regulation of epigenetic
factors compromises transcriptional regulation, induces replica-
tion stress, impairs DNA damage response and repair pathways, and
corrupts genome stability (Manickavinayaham et al, 2020). These data
suggest that epigenetic dysregulation may be a critical and exploitable
feature of RB-deficient cells.

Indeed, recent reports demonstrate that RB-deficient cells are ex-
quisitely sensitive to the inhibition of epigenetic modulators, including
the key mitotic kinases Aurora A and Aurora B (Gong et al, 2019; Oser
et al, 2019; Lyu et al, 2020; Yang et al, 2022). These kinases phosphorylate
key regulators of centromere and spindle structure and function, and
their inhibition synergizes with RB-dependent defects in centromere
regulation and chromosome segregation (lovino et al, 2006; Amato et al,
2009; Manning et al, 2010, 2014; Schvartzman et al, 2011). Other studies
have described sensitivity of RB-deficient cells to pharmacological
inhibition of polo-like kinase 1 function such that RB-proficient cells
arrest in response to polo-like kinase 1 inhibition, whereas those de-
ficient for RB continue to proliferate, accumulate high aneuploidy, and
ultimately undergo cell death (Witkiewicz et al, 2018).

Prior studies have also implicated RB loss in conferring sensitivity
to inhibition of poly ADP ribose polymerase (PARP) enzymes (Velez-
Cruz et al, 2016; Jiang et al, 2020; Zoumpoulidou et al, 2021), yet the
mechanistic explanation for this relationship remains unclear.
Here, we identify PARP1/2 inhibitors in a screen for epigenetic
modulators that exploit DNA damage phenotypes in cells lacking
RB. We used isogeneic cell lines with and without RB to show
that RB deficiency leads to high levels of replication-dependent
PARylation. PAR, an epigenetic mark placed by PARP enzymes,
marks sites of Okazaki fragment processing and replication stress.
This modification functions to activate the DNA damage response
pathways and stall replication until the stress is resolved (Ame et al,
2004; Sugimura et al, 2008; Bryant et al, 2009; Hanzlikova et al, 2018
Vaitsiankova et al, 2022). We find that when RB-deficient cells are
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exposed to small molecules that lock PARP on chromatin, known as
“trappers,” cells progress into G2/M in the presence of unresolved DNA
damage. This contributes to genomic instability and compromised cell
viability. Restoration of RB expression in the isogenic cell line is sufficient
to protect cells from replication stress associated with PARP trapping.

Results
RB-deficient cells are sensitive to PARP1 inhibition

Previous studies have found that RB plays a role in replication fork
progression and homologous recombination (Marshall et al, 2019)
and that RB-deficient cells are sensitive to DNA-damaging agents
that generate double-strand breaks (Velez-Cruz et al, 2016; Aubry
etal, 2020; Jiang et al, 2020). Regulation of the chromatin structure
is critical to the repair of DNA damage and modulation of nu-
cleosome positioning at sites of breaks is shown to be limiting for
repair (Hauer & Gasser, 2017). Therefore, we hypothesized that
defects in replication and homologous recombination that result
from RB loss may render cells sensitive to epigenetic perturba-
tions of chromatin structure. To test this possibility, we performed a
targeted small molecule screen to assess measures of genome
stability and viability after exposure to individual inhibitors from a
panel of 96 small molecule modulators of epigenetic regulation. We
designed a small molecule library to target 20+ categories of epi-
genetic modulators, including HDMs, HDACs, DNMTs, kinases, and
PARPs (Table S7), that have been previously implicated in the
maintenance of chromatin structure and genome stability (Putiri &
Robertson, 2011; Sultanov et al, 2017; Karakaidos et al, 2020).

Using an hTERT RPE-1 (RPE) cell line in which RB can be depleted
through doxycycline induced expression of an RB-targeting shRNA
(Manning et al, 2014), cells were first depleted of RB for 48 h. Pop-
ulations of cells with and without RB depletion were then exposed to
individual epigenetic modulators for 48 h and assessed for early signs
of sensitivity, including acquisition of DNA damage and reduced cell
number. 17 inhibitors that caused significant death of control cells
(defined as 80% or greater reduction in cell number after 2 cell cycles)
were not evaluated further. To assess DNA damage after exposure to
the remaining 79 inhibitors, cells were immunostained for yH2AX, a
phosphorylated histone mark and early indicator of DNA double-
strand breaks. Using Nikon Elements software, individual nuclei
were identified by thresholding in the DAPI channel and sum intensity
of yH2AX staining was measured (Fig S1A) to assess levels of DNA
damage. Individual cells were considered to have enhanced DNA
damage if nuclear yH2AX staining was more than twofold the average
yH2AX intensity measured in control cells from the same screening
plate. Relative fold change in the fraction of damaged cells was
calculated to identify modulators that cooperate with RB loss to
promote DNA damage. 14 inhibitors differentially induced a twofold or
greater increase in DNA damage in cells depleted of RB with a robust
Z-score of 3.0 or greater across experimental triplicates (Fig 1A and B).

Recent reports have indicated that RB-deficient cells are ex-
quisitely sensitive to inhibition of Aurora kinase, EZH2 methyl-
transferase, and BRD4 inhibition (Ishak et al, 2016; Gong et al, 2019;
Oser et al, 2019; Zhang et al, 2021). Consistent with these results, our

RB loss sensitizes cells to PARP trapping Zamalloa et al.

A _tetshRB B,\ 20 — | ® Control *
kDa + shRB 02 © shRB Rep1
100 %g 10—|| © shRB Rep3 L
GAPDH TQ gl * =% *%x* P
[ =} S S B NSl il
a & O — e e e R I e e v

Individual Epigenetic modulators

Cc

100 —_kk —kk k%

X kkk
Hk
ol N _ . ;. .
ns = B Kk
T T T T

0 Ty, -1
00101 1 10 01 1

uMO0.1 1 10 100 10 100
PARPI Olaparib Talazoparib Rucaparib
S| 100q2—2_,,, T _ NS NS ns
5 so-_*\s ~\\T _
% O—q-rrmq—rmq-rrmq —lq—rrmq—rrmq—rrmq“ =
= uMO0.1 1 10 100 01 1 10 100 0.1 1 10 100
8 PARPi  AG-14361 Veliparib 3-Aminobenzamide

NS ns NS **x ns_ns ns

100 — ¥ x o —
50 ——\ - =1—Control \*_
_|=shRB A
lq_ﬂ'lllrl'ﬂ!lq_ﬂ'lllq

0_. —
uMO.1 1 10 100 01 1 10 100 01 1 10 100
PARPi  AZD2461 INO-1001 PJ34-HCI

Figure 1. Identification of epigenetic sensitivities of RB-deficient cells.

(A) Western blot analysis of cells with and without 96 h induced expression of
an RB-targeting shRNA (tet-shRB). (B) Fraction of control (black) and shRB
(magenta, yellow, and cyan) cells with DNA damage after 48 h of exposure to
individual epigenetic modulators. * indicates differential increase in DNA
damage in RB-deficient cells with robust Z score > 3. (C) Relative cell survival of
control and shRB cells, as indicated by metabolic color conversion of PrestoBlue
reagent after incubation with the indicated PARP inhibitors and
concentrations. All experiments and statistics calculated between independent
experiments performed in triplicate. Error bars represent SD between replicates.
(*) P < 0.05; (**) P < 0.01; (***) P < 0.007; (ns) nonsignificant P > 0.05.

screen identifies inhibitors of Aurora kinase (via JNJ-7706621 and
CYC116), inhibitors of EZH2 (via EPZ-6438 and 3-Deazaneplanocin A
[DZNeP]), and inhibitors of BRD4 (via PFI-1 and Bromosporine) that
each differentially enhance DNA damage levels in RB-depleted cells.
Additional small molecules that scored as hits in our screen were
inhibitors of HDAC (RGFP966, rocilinostat, and resminostat), JAK2
(ruxolitinib, AZD1480, and gandotinib), and PARP (olaparib and
talazoparib). To further characterize these hits, we next assessed cell
viability after exposure to a concentration range of each drug (Fig
S1B). Of the 14 inhibitors assessed for impact on viability, only
Olaparib and Talazoparib, both PARP1/2 inhibitors, differentially
compromised viability of RB-deficient RPE cells in the 48-96 h time
course of this experiment (Table S2).

Seven additional PARP inhibitors were represented in the screening
library but did not meet the criteria described above to be considered
hits on the screen. We therefore sought to determine if differential
sensitivity may become apparent over a broader range of drug ex-
posure. To this end, the viability of control and RB-depleted cells
was assessed after 96 h of exposure to a concentration range of
0.01-100 M of each PARP inhibitor (Fig 1C). RB-deficient cells exhibited
reduced viability compared with control cells after exposure to four
inhibitors of PARP (rucaparib, veliparib, AG-14361, and AZD2461),
but not to the remaining three (INO-1001, 3-aminobenzamide, and
PJ34-HCl). The six inhibitors that selectively reduced viability of
RB-depleted cells all target both PARP1 and PARP2, whereas the
three that do not are described to selectively inhibit PARP1 but
not PARP2 (Wahlberg et al, 2012; Ali et al, 2016). Interestingly,
immunofluorescence-based analysis of yH2AX staining intensity
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in control and RB-depleted cells verify that the PARP1/2 inhibitor
rucaparib, but not veliparib, selectively promotes DNA damage in
RB-deficient cells (Fig S1C and D). A key distinction between
veliparib and rucaparib is the mechanism of action by which these
drugs inhibit PARPs: rucaparib, like olaparib and talazoparib,
perturb PARP function by trapping it on DNA (Zandarashvili et al,
2020). In contrast, veliparib is an enzymatic inhibitor of PARP
function that does not trap the enzyme on DNA (Huang & Kraus,
2022). Together these data indicate that RB-deficient cells are
generally sensitive to the combined inhibition of PARP1 and
PARP2. These data additionally raise the possibility that the in-
creased DNA damage seen in RB-deficient cells may stem from
lesions caused not merely by loss of PARP1 and PARP2 functions,
but from their sustained association with DNA when inhibited.
Tovalidate PARP inhibition as an approach to specifically sensitize
RB-deficient cells to high levels of DNA damage, we next measured
yH2AX foci formation in a CRISPR-engineered RB7 knockout cell line
(INicolay et al, 2015]; RPE RB*®) with and without RB re-introduction
via an inducible Halo-tagged RB construct (RB-Halo; Figs 2A and B
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and S2A and B). Cells were exposed to PARP inhibitors olaparib,
rucaparib, talazoparib or veliparib for 48 h and analyzed for yH2AX
foci. Here, yH2AX-positive DNA damage foci were quantified per
nuclei and cells exhibiting greater than five foci were considered
to have enhanced DNA damage. Similar to results from shRNA-
mediated depletion of RB, RPE RBXC cells exhibit a differential in-
crease in DNA damage after inhibition of PARP via olaparib, rucaparib
or talazoparib, but not veliparib (Figs 2C and D and S2C). Critically,
reintroduction of RB via ectopic expression of Halo-tagged RB
construct (RB-Halo), but not of a Halo-tagged GFP construct (GFP-
Halo), induced a partial decrease in the level of DNA damage in RPE
RBX© cells exposed to olaparib, indicating that sensitivity to PARP
trapping is dependent on loss of RB (Figs 2E and F and S2D and E).

Accumulation of DNA damage after RB loss and PARP trapping is
replication dependent

RB-deficient cells exhibit slow or stalled replication fork progres-
sion (Bester et al, 2011; Manning et al, 2014). The PARP enzymes
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Figure 2. PARP trapping sensitizes RB-deficient cells to high levels of DNA damage.

(A) Western blot analysis of control (WT) and RB1-null (KO) RPE cells with and without doxycycline inducible RB-Halo (tet-RB-Halo). Cells were induced to express RB-
Halo, as indicated (+). (B) Quantification of cell number in proliferative populations of RPE RB C tet-RB-Halo cell number with and without 2 ug/ml doxycycline induction.
(C, D) Representative images and quantification of yH2AX foci in RPE RB"" and RBC cells with and without 48 h of incubation with the indicated PARP inhibitors.
(E, F) Representative images and quantification of yH2AX foci in RPE RBX tet-RB-Halo cells with and without doxycycline-induced RB-halo expression and after 48 h
incubation with olaparib. (D, F) show the number of yH2AX foci per cell (top) and percent of cells with =5 damage foci (bottom). Scale bars are 10 um. Experiments were
performed and statistics calculated between independent experiments were performed in triplicate. Error bars represent SD between replicates. (*) P < 0.05; (**) P < 0.07;

(ns) nonsignificant P > 0.05.
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respond to replication stress by placing poly ADP ribose (PAR)
modifications to initiate the DNA damage response (Ameé et al, 2004)
In addition, PARylation of substrates is necessary for efficient
fork restart and Okazaki fragment processing during replication
(Sugimura et al, 2008; Bryant et al, 2009; Hanzlikova et al, 2018;
Hanzlikova & Caldecott, 2019; Vaitsiankova et al, 2022). These re-
ports suggest that RB-deficient cells may rely on PARP-catalyzed
PARylation to process their replication stress. To test this hy-
pothesis, we examined cells in S-phase for evidence of PARylation.
Control and RB-depleted cells were pulse-labeled with EdU
for 30 min to enable identification of actively replicating cells,
then fixed and immunostained for PAR. EdU was detected via click
chemistry conjugation of a fluorophore, and DNA detected with
DAPI. Intensity of PAR staining per nuclei was measured and
compared between actively replicating cells in the control and RB-
depleted populations. We find that S-phase cells exhibit an in-
crease in nuclear PAR levels after RB depletion (Fig 3A and B).
Similar results are seen if cells are treated with the PARG inhibitor
PDD 00017273 (PARGI), to prevent turnover of PARylation marks
(Hanzlikova et al, 2018; Vaitsiankova et al, 2022). Critically, inhibition
of replication with emetine (Lukac et al, 2022), prevents the ac-
cumulation of PAR in RB-depleted S-phase cells (Fig 3A and B).
These data indicate that during replication, RB-deficient cells ex-
perience stress that is sufficient to induce a PARP-dependent
response.

If replication stress in RB-deficient cells underlies their sensitivity to
PARP trappers, sites of DNA damage that follow PARP trapping should
correspond with sites of replication stress. To test this possibility,
we monitored both replication stress and accumulation of DNA
damage concurrently. Replication protein A (RPA) binds to single-
stranded DNA, and is phosphorylated at serine-33 (pRPA) in response
to replication stress and replication-associated DNA damage
(Marechal & Zou, 2015). Consistent with previous reports showing
that RB loss promotes replication stress, we found a twofold
increase in levels of pRPA staining when RB is depleted, com-
pared with untreated RPE cells or mock-depleted RPE shRB cells.
(Fig S3A and B; Bester et al, 2011; Manning et al, 2014). After 48 h of
exposure to PARP trappers olaparib, rucaparib or talazoparib, we
found a twofold to sixfold increase in the fraction of RB-depleted
cells with 5 or more pRPA foci, compared with controls (Figs 4A
and Band S3Cand D). To confirm these results were specific to RB
loss and not the result of potential off-target effects of the RB-
targeting shRNA, we also analyzed pRPA and DNA damage foci
after siRNA-mediated depletion of RB (Fig S4B-F) and in RB1-null
osteosarcoma cells (Fig S4G-J). In both systems, we find results
comparable with that described for shRNA-mediated depletion
of RB: that RB loss sensitizes cells to high levels of both repli-
cation stress and DNA damage after PARP1/2 trapping. Notably,
PRPA foci in RB-deficient, PARP1/2-trapped cells frequently co-
localize with yH2AX foci (Fig S&A, F, and J), supporting a model
whereby DNA damage is a consequence of unresolved replica-
tion stress.

To further define the extent to which RB loss sensitizes cells to
PARP inhibition, we performed a sister chromatid exchange assay,
differentially staining sister chromatids with acridine orange. In this
assay, chromosome arm crossovers are a readout of homologous
recombination-dependent repair of DNA breaks such that the
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Figure 3. RB loss promotes replication-dependent PARylation.

(A, B) Representative images and quantification of EdU and PAR intensity per
cell for RPE tet-shRB cells with and without doxycycline induction of shRB (shRB).
Cells were untreated or treated with 2 mM emetine for 1 h, and/or 10 uM PARG
inhibitor for 30 min. All conditions were incubated with EdU for the final 30 min

to label actively replicating cells. Scale bar is 20 um. PAR intensity data are
normalized to the EdU-positive, untreated RPE cells. Error bars represent SD and
statistical analysis was performed between five independent experimental
replicates. (**) P < 0.01; (***) P < 0.001.

number of crossovers indicate the frequency of DNA double-strand
breaks in the preceding S/G2 phases of the cell cycle. We found that
RB-depleted cells treated with the PARP trapper olaparib for 24 h
display a significant increase in the number of crossovers per
chromosome compared with controls (Fig 4C and D). Together,
these data indicate that cells lacking RB are sensitive to the
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Figure 4. DNA damage accumulates at sites of replication stress after combined PARP trapping and RB depletion.

(A, B) Representative images and quantification of pRPA and yH2AX foci in RPE tet-shRB cells with (shRB) or without (control) doxycycline induction of shRB, after 48 h
incubation with Olaparib, as indicated. Scale bar is 5 um. (B) shows number of pRPA foci per cell (top) and percent of cells with =5 damage foci (bottom). Experiments were
performed and statistics calculated between independent experiments performed in triplicate. Error bars represent SD between replicates. (C, D) Representative images
and quantification of mitotic crossover events in RPE tet-shRB cells stained with acridine orange. Cells were cultured in 15 yuM BrdU for 48 h and incubated with olaparib,

as indicated, for the final 24 h before fixation. Scale bar is 10 um. Insets represents 4x enlargements of a single chromosome, with 1 um scale bar. Diagrams illustrate
crossover events present in the inset. Independent experiments were performed in triplicate. Statistics were performed between the average number of crossover events

per replicate (*) P < 0.05; (ns) nonsignificant P > 0.05.

acquisition of replication-dependent DNA double-strand breaks
after PARP trapping.

Persistent replication in the presence of damage perpetuates
genomic instability and compromises cell viability

To examine the consequence of extensive DNA damage and in-
vestigate the possibility that cell cycle defects correspond with
continued replication or translesion repair, cells were briefly
pulsed with EdU, followed by examination of mitotic cells. RPE cells
spend 2-4 h in G2 after completion of replication before mitotic
entry. As a result, cells that enter mitosis during a 2-h EdU pulse are
not expected to incorporate EdU. Consistent with this, only ~5% of
control mitotic cells exhibit EdU foci after this short pulse. In
contrast, ~25% of RB-depleted, PARP1/2-trapped cells display one
or more EdU foci (Fig 5A and B). To distinguish whether EdU in-
corporation just before mitosis is a consequence of incomplete
replication during S phase, or instead indicative of a shortened G2
phase, we repeated this analysis with a short, 30-min EdU pulse.
Consistent with the longer EdU pulse, we find that RB-depleted cells
exposed to PARP1/2 trappers, but not control cells, display an
increased incidence of EdU foci during mitosis after a 30-min EdU
pulse (Fig S5A and B). Given the short pulse of EdU, it is unlikely that
this analysis is merely capturing the completion of normal S phase
replication that precedes a shortened G2 phase. Instead, continued
replication during or immediately before mitotic entry is indicative
of an S phase exit and G2 progression with under-replicated DNA.
Consistent with this interpretation, live cell imaging of an RPE

RB loss sensitizes cells to PARP trapping Zamalloa et al.

fluorescent, ubiquitination-based cell cycle indicator (FUCCI) cell
line to monitor cell cycle progression indicated that duration of G2
is increased, not decreased, in RB-depleted Olaparib treated cells,
compared with cells treated with only control or RB-targeting
SiRNA, or those treated with olaparib alone (Fig S5C and D).

Incompletely replicated DNA is susceptible to breaks when
chromatin compacts in preparation for mitosis (Lezaja & Altmeyer,
2021). Indeed, we found that EdU foci in mitotic RB-depleted and
PARP1/2-trapped cells frequently co-localize with yH2AX (Fig 5A and
B). Consistent with the presence of chromatin breaks during mi-
tosis, interphase RPE RBXC cells treated with PARP inhibitors ola-
parib, rucaparib or talazoparib for 48 h exhibit a high frequency of
micronuclei. RB loss alone has previously been shown to lead to
whole chromosome segregation errors (Manning & Dyson, 2011).
However, most of the micronuclei that result from the combined
loss of RB and PARP1/2 trapping lack centromeres, indicating that
the increase in micronuclei result from chromatin fragments that
fail to incorporate into the main nucleus after mitotic exit, and not
from an increase in whole chromosome segregation errors (Fig 5C
and D).

Micronuclei are not only a consequence of genome instability
but can serve to perpetuate further genomic lesions (Crasta et al,
2012; Soto et al, 2018). Therefore, to assess the long-term impact of
increased genomic instability on RB-depleted cells, we monitored
the replicative capacity of cells with and without PARP1/2 trapping
and find that continued cell cycle progression cannot be main-
tained after both RB loss and PARP1/2 trapping. When incubated
in media supplemented with EdU for 24 h, nearly 100% of control
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Figure 5. Continued proliferation of RB-deficient cells in the presence of PARP
trapping promotes genome instability.

(A, B) Representative images and quantification of EdU and yH2AX foci in mitotic
RPE tet-shRB cells with (shRB) or without (control) doxycycline induction of shRB,
incubated with 2.5 uM olaparib for 24 h, and cultured in 10 uM EdU for 2 h before
fixation. Images and analysis reflect analysis of mitotic cells. Scale bar is 10 um.
Error bars represent SD between three independent experimental replicates.
Statistical analysis was performed for co-localized yH2AX and EdU foci,
between replicates. (C, D) Representative images and quantification of the
fraction of control (RB"") and RB-null (RBX®) cells with micronuclei after
incubation with the indicated PARP inhibitors for 48 h. Insets highlight
micronuclei indicated by the arrow. Scale bar is 20 um. Error bars represent SD
between three independent experimental replicates and statistical analysis is
performed between replicates. (*) P < 0.05; (**) P < 0.01; (***) P < 0.007; (ns)
nonsignificant P > 0.05.

and RB-depleted cells, and over 80% of cells treated with PARP1/2
trapper alone, incorporate EdU, indicating that these populations
are highly proliferative. In contrast, after 48 h of olaparib treat-
ment, proliferation of RB-deficient cells is significantly compro-
mised, with only ~40% of the cells within the population remaining
competent to incorporate EdU (Fig 6A and B). Consistent with
decreased replication, progression to mitosis is similarly reduced
in RB-depleted cells in which PARP1/2 is trapped on chromatin
(Fig 6C). To next determine if PARP1/2 trapping is cytotoxic for
RB-deficient cells, or merely cytostatic, we assessed populations
of control and RB-depleted cells for cell death after olaparib treat-
ment. PARP1/2 inhibition impairs caspase-dependent mechanisms of
cell death (Zhang et al, 2012; Tsikarishvili et al, 2021) making readouts of
apoptosis ineffective for this system. We therefore opted for live cell
imaging to assess the frequency at which cells exhibit blebbing and
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loss of anchorage, indicative of cell death. Consistent with vi-
ability assays (Fig 1C), live cell imaging confirms that concen-
trations of PARP1/2 inhibitor that are sublethal for control cells,
increase death of RB-depleted and RPE RB*C cells within 72 h (Fig
6D-F). Similar results are seen for RB-null SAOS2 osteosarcoma
cells where dead/dying cells are not apparent in control pop-
ulations but become prevalent after PARP1/2 trapping (Fig 6G
and H).

Discussion

Together, this study defines an increased sensitivity of RB-
deficient cells to trapping of PARP1/2 enzymes on chromatin
and mechanistically links this phenotype with replication-
induced DNA damage. We show that RB-deficient cells experi-
ence stress during replication that promotes robust and sustained
PARylation. After exposure to PARP1/2-trapping drugs, DNA lesions
that would otherwise slow replication in a PAR-dependent manner
appear to be bypassed as cells progress through the S phase. Using
a combination of acute depletion of RB and constitutive RB1
knockout, we show that when PARP1/2 is trapped on DNA sites of
replication stress accumulate DNA damage during S phase and that
persistent or incomplete replication during mitotic chromatin
compaction sensitizes G2/M cells to further DNA damage. The
resulting genome instability is evident in fragmented chromatin
that accumulate in micronuclei in subsequent cell cycles. In line
with previous studies that show RB loss is synthetic lethal with
PARP inhibition in osteosarcoma cells (Velez-Cruz et al, 2016; Jiang
et al, 2020; Zoumpoulidou et al, 2021), we find that these assaults to
genomic integrity correspond with reduced proliferation and in-
creased cell death both in contexts where RB is experimentally
depleted, and in cancer cells where the RB1 gene is deleted. These
data posit that defects in RB-deficient cells’ capacity to restrain
replication in response to stress and/or damage may underlie
this synergy. Together with work by Mittnacht and colleagues
(Zoumpoulidou et al, 2021), our data provide evidence that RB
status is a clinically relevant biomarker for selection of PARP in-
hibitors and suggest that RB-deficient cells may be similarly
sensitive to additional modulators of replication stress and fork
restart (Witkiewicz et al, 2018; Ubhi & Brown, 2019).

Of the nine PARP inhibitors evaluated in this study, inhibitors
targeting both PARP1 and PARP2, but not those specific for PARP1,
had a differential impact on RB-deficient cell viability, suggesting
that in the context of this study, PARP1and PARP2 have redundant
roles. This is consistent with reports implicating both PARP1 and
PARP2 as early sensors of DNA damage and the first line of de-
fense against genomic instability (Hottiger, 2015). PARP is ac-
tivated by binding to sites of single-stranded DNA (Yang et al,
2004), initiating DNA damage repair pathways (Okano et al,
2003). In addition, PARP1 and PARP2 have important roles in
regulating base excision repair (Ronson et al, 2018) pathways
and non-homologous end joining (NHEJ)-based repair of DNA
double-strand breaks (Luijsterburg et al, 2016). This role in NHE)
makes both PARP1 and PARP2 clinically relevant targets in
tumors where the complementary double-strand break repair

https://doi.org/10.26508/1sa.202302067 vol 6 | no 12 | €202302067 6 of 11


https://doi.org/10.26508/lsa.202302067

(<Y< . . .
s2ep Life Science Alliance

A +Olaparib +EdU Analyze B %
| |
Oh 24h  48h - 100 LA sk
EdU  Merge w/DAPI 2 %
S Q75 %
[}
= 50
q e, g
. & )
hel
Yoo
shRB + +
Olaparib + o+
K ns
20
2 > 3 15 —
: SIS T
B‘l o 10
= S
S 05 %
0.0
siRB + +
Olaparib + o+

D +Olaparib Movies
e —
Oh  72h

RBWT

RBKC

E F
. 8 -
5 A &
= =
7 4 =
S 2 a
8 o =4
= RB KO KO = shRB + +
Olaparib + o+ Olaparib + o+

H |
15 RB loss —pp» Replication —pp Damage
= A stress  PAR repair
©
g 10 A DNA trapping?‘\\ /
F= Y
§ PARP inhibition
a5
g 1) Delayed Replication
S 2) Persistent Damage
; 3) Decreased Survival
Olaparib +

Figure 6. PARP trapping synergizes with RB loss to compromise cell viability.
(A, B) Representative images and quantification of replication-competent RPE
tet-shRB cells with (shRB) or without (control) doxycycline induction of shRB,
afterincubation with 2.5 uM olaparib for 48 h. Cells were incubated with 10 uM EdU
for the final 24 h before fixation. Scale bar is 20 ym. (C) Quantification of the
fraction of RPE cell populations in mitosis after siRNA-based depletion of RB,
then incubation in 2.5 uM olaparib for 48 h. Error bars represent the SD between
three independent experimental replicates. Statistical analysis was performed
between replicates. (D, E, F, G, H) Representative still frames and quantification of
cell death from live cell imaging of control (RB"T) and RB-null (RBX?) cells, (F) in
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pathway, homologous recombination (HR) is already compro-
mised (Bryant et al, 2005; Farmer et al, 2005). Given the pre-
viously described role for RB in HR-dependent DNA damage
repair pathways (Marshall et al, 2019), it is tempting to spec-
ulate that synergy between RB loss and PARP inhibition occurs
as a result of dual inhibition of HR and NHE). However, this
model fails to account for the persistent replication during G2/M that
is apparent when both RB and PARP1/2 functions are compromised,
but not when either is lost alone. Instead, our findings are consistent
with a model whereby PAR-dependent signaling is necessary to
sustain fork stability and prevent replication fork progression when
DNA lesions are present. In the absence of PAR, RB-deficient cells may
bypass such replication impediments, resulting in under-replicated,
single-stranded regions of DNA that recruit pRPA and are the sites
of continued replication late in G2/M. In addition, our observation
that inhibitors functioning to trap PARP on chromatin, but not veliparib
which inhibits poly ADP ribosylation without trapping, enhance DNA
damage in RB-deficient cells suggesting that robustness of this
synergy may require loss of poly ADP ribosylation and be exacerbated
by the physical impediment to replication that results from PARP
trapping. This model (Fig 61) is supported by the replication-dependent
nature of pRPA and yH2AX accumulation and evidence of under-
replicated regions of DNA in mitotic cells in which both RB and PARP
functions are compromised. This model is also consistent with reports
demonstrating that RB loss facilitates translesion synthesis in the
presence of crosslinking agents (Bosco et al, 2004) and that RB-null
cancers are sensitive to loss of a number of DNA damage repair
proteins (Aubry et al, 2020).

RB loss as a biomarker to predict sensitivity to epigenetic
perturbation of replication stress response

Loss or functional inactivation of the retinoblastoma tumor suppressor
protein RB is common in a variety of human cancers (Burkhart & Sage,
2008; Peifer et al, 2012; George et al, 2015; Sanchez-Vega et al, 2018).
Genomics (Burkhart & Sage, 2008; George et al, 2015) and tran-
scriptomics (Chen et al, 2019) analysis of cancer patients reveal that RB1
alterations predict poor clinical outcomes, raising the need for targeted
therapies. Synthetic lethality is a phenomenon where alterations in one
gene hypersensitize cells to alterations in another gene by means of
pathway dependence or redundance, and it presents an exciting avenue
to target RB-deficient cancers. Recent reports describe synthetic lethal
interactions of RB-deficient cells with epigenetic modulators including
inhibitors of Aurora kinases (Gong et al, 2019; Oser et al, 2019; Yang et al,
2022) and EZH2 (Ishak et al, 2016). Our data add to a growing body of
work showing that RB-deficient cells are exquisitely sensitive to PARP

trapping.

RPE tet-shRB cells with (shRB) or without (control) doxycycline induction of
shRB, and (G, H) RB7-null SAOS2 osteosarcoma cells incubated with or without
olaparib. Scale bars are 20 ym. Timestamps indicate time since PARP inhibitor
addition. Live cell imaging was performed in duplicate. (*) P < 0.05; (***) P <
0.007; (ns) nonsignificant P > 0.05. (1) model of the proposed mechanism
underlying replication stress, DNA damage, and reduced viability in Rb-deficient
cells after PARP trapping.
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Materials and Methods

Cell culture, transfection, and immunofluorescence

hTERT RPE-1 FUCCI cells were cultured in DMEM/F12 (GenClone)
and other RPE-1 cell derivatives were cultured in DMEM (Gen-
Clone) supplemented with 10% FBS (Sigma-Aldrich) and 1%
penicillin/streptomycin (Gibco). RPE FUCCI cells were kindly
provided by Dr. Neul Ganem (Boston University School of Medi-
cine) RPE RB1%C and parental RPE cells were kindly provided by Dr.
Nick Dyson (MGH Cancer Center). SAOS-2 cells were cultured in
McCoy's 5A Medium (Gibco) supplemented with 15% FBS (Sigma-
Aldrich) and 1% penicillin/streptomycin (Gibco). All cells were
maintained at 37°C and 5% CO,. Acute RB depletion was obtained
through addition of 2 ug/ml doxycycline to induce expression of
an RB-targeting shRNA (Manning & Dyson, 2011), or alternatively
via reverse-transfection of a pool of four RB-targeting siRNA
sequences for 48 h, as previously described (Manning et al, 2014).
For all experiments, siRNA- or shRNA-driven RB depletion was
performed 48 h before treatment with inhibitors to PARP or other
epigenetic modulators. RPE RB1C tet-RB-Halo cells were gener-
ated via lentiviral transduction of a pLenti CMV/TO RB7-Halo
construct. Depletion and/or induced expression of RB was moni-
tored by Western blot analysis of whole cell lysates prepared using
2x Laemmli sample buffer (#1610737; Bio-Rad) supplemented with
2-mercapto-ethanol (#BP176-100, 1:20; Thermo Fisher Scientific).
Further information on reagents and antibodies used can be found
in Table S3.

For the epigenetic modulator, screen cells were cultured in im-
aging bottom dishes (#3904; Corning) and incubated with individual
drugs at a final concentration of 10 uM for 48 h before fixation in
4% PFA and yH2AX immunofluorescence as previously described
(Manning et al, 2014). Cells were subsequently counterstained with
fluorophore-conjugated secondary antibodies (Invitrogen) and
0.2 pg/ml DAPI. 10 mg/ml DABCO (#112470250; Thermo Fisher Sci-
entific) in glycerol-PBS (9:1) antifade reagent was used to stabilize the
signal. yH2AX and/or pRPA immunofluorescence was performed in
cells grown on coverslips and fixed in 4% PFA, as previously de-
scribed (Manning et al, 2014). Replicating cells were labeled with a
pulse of 10 uM EdU for 2-24 h, as indicated in the text, and visualized
using the Click-iT EdU Imaging Kit (#C10637; Invitrogen), as per the
manufacturer’s instructions. To detect PAR, cells were processed as
previously described (Vaitsiankova et al, 2022) and incubated with PAR
antibody. Cells were counterstained with fluorophore-conjugated
secondary antibodies and 0.2 pg/ml DAPI, mounted on slides with
ProLong Gold, and imaged using a Nikon Eclipse Ti-E microscope
equipped with a Zyla sSCMOS camera and controlled by NIS-Elements
software. All experiments were performed in triplicate and a
minimum of 30 cells per condition were analyzed. Experimental
conditions from within a biological replicate were imaged in
parallel and at the same exposure time. Representative images
were deconvolved in NIS-Elements software.

For live cell imaging, cells were grown on 12-well plates and
treated with olaparib for 72 h. Cells were imaged using the Nikon Eclipse
Ti-E equipped with perfect focus software and an environmental
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chamber to maintain 37°C and 5% CO, Phase contrast images
were captured every 5 min for the final 12-15 h of olaparib incu-
bation. Gamma adjustments were made in the phase contrast
channel of representative movie stills to enable better visualiza-
tion across time.

Cell proliferation and viability assays

For each of three independently prepared and analyzed replicates,
cells were incubated with the indicated inhibitor concentrations in
technical duplicates. At 96 h, cells were suspended and manually
counted with a hemocytometer. Alternatively, PrestoBlue Cell Vi-
ability Reagent (#A13261, 1:10 dilution; Invitrogen) was added at
indicated timepoints and incubated for 3 h. Fluorescence was
analyzed at 560/590 nm ex/em with a PerkinElmer Victor3 1420
plate reader.

Sister chromatid exchange assay

To differentially label replicated sister chromosomes, cells were
incubated in 15 uM BrdU for 48 h (-2 cell cycles). When indicated,
olaparib was added for the final 24 h of BrdU labeling. Chromosome
spreads were prepared by treating cells with 0.1 ug/ml Nocodazole
for 30 min to depolymerize microtubules, followed by incubation in
75 mM KCl for 16 min. Cells were fixed in methanol-acetic acid (3:1)
for 20 min at 4°C. Fixed cells were then dropped onto slides, dried
overnight in the dark, stained with 100 pg/ml acridine orange
(#A3568; Molecular Probes), and mounted in 0.1 M Na,HPO, and
0.1 M KH,PO,,.

Image analysis and statistics

For the drug sensitivity screen, extended depth of focus 2D-
projections were generated using NIS-Elements software. Nu-
clear regions were identified based on a DAPI threshold and yH2AX
staining intensities were measured. Cells were considered dam-
aged if the sum intensity of a given cell was twofold or greater
than the average intensity observed in the untreated controls.
For imaging of cells on coverslips, a Cell Profiler (Stirling et al,
2021) pipeline was generated to first identify nuclei and then
detect individual yH2AX-positive foci. Cells were considered
damaged if the yH2AX foci count per nuclei was 5 or greater.
Thresholds for nuclear EdU staining intensities were set on a per
replicate basis and kept consistent across conditions within an
individual replicate. SuperPlots represent 100 cells scored per
experimental condition and triangles indicate averages per
biological replicate. Statistical analysis was performed across
independent experimental triplicates. Where relevant, technical
replicates were averaged before comparisons were made be-
tween biological triplicates.

Relative 1Cso calculations for Table S2 were performed in
GraphPad Prism software, using four-parameter logistic regression
with iterative predictions of the following equation:

Y = Bottom + (Top - Bottom) /(1 + 10™((LogIC50 - X) = HillSlope)),
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where X is a concentration (uM) tested for a given drug, Y is the
respective % Cell survival, Top and Bottom are plateaus in units of %
Cell survival, HillSlope indicates the steepness of the curve, and
LoglIC50 indicates the logarithm in base 10 of the concentration
required to bring the curve down to the point halfway between Top
and Bottom.

Unless stated otherwise, statistical analyses are two-tailed
unpaired t tests, with P-values indicated in figure legends. For
the screen statistical analysis, robust-Z-scores were calculated as
previously described (Chung et al, 2008) via the following equation:

MAD =1.4826 x median (|x;— median(x)|),

where x; indicates the fold change of percent damaged cells be-
tween RB-depleted and control cells for a given experimental
condition (shown in Table S1), and x indicates the median among
the 79 epigenetic modulators tested. Robust Z-scores are defined
by x;; divided by MAD. Hit discovery was assessed with a threshold of
Z2>3.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/sa.
202302067.
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