# **Research Article**



# MiR-21 attenuates FAS-mediated cardiomyocyte apoptosis by regulating HIPK3 expression

Xinyu Wang<sup>1,2,\*</sup>, Tingting Zhang<sup>2,\*</sup>, Jianlong Zhai<sup>3</sup>, Zhongli Wang<sup>4</sup>, Yan Wang<sup>2</sup>, Lili He<sup>2</sup>, Sai Ma<sup>5</sup>, Hanying Xing<sup>6</sup> and D Yifang Guo<sup>1,2</sup>

<sup>1</sup> College of Postgraduate, Hebei North University, Zhangjiakou, Hebei, China; <sup>2</sup>Department of Geriatric Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, China; <sup>3</sup>Department of Cardiology, Hebei General Hospital, Shijiazhuang, Hebei, China; <sup>4</sup>Department of Physical Examination Center, Hebei General Hospital, Shijiazhuang, Hebei, China; <sup>5</sup>Department of Internal Medicine, Hebei General Hospital, Shijiazhuang, China; <sup>6</sup>Hebei Key Laboratory of Metabolic Disease, Hebei General Hospital, Shijiazhuang, Hebei, China

Correspondence: Yifang Guo (yifangguo@hebmu.edu.cn) or Hanying Xing (13483139983@163.com)



MicroRNA-21 (miR-21) plays an anti-apoptotic role following ischemia-reperfusion (I/R) injury (IRI) in vivo; however, its underlying mechanism remains unclear. The present study explored the effects of miR-21 and homeodomain interacting protein kinase 3 (HIPK3) on cardiomyocyte apoptosis induced by hypoxia/reoxygenation (H/R) in vitro. To this end, the rat cardiomyocyte H9C2 cell line was exposed to H/R and the roles of miR-21 and HIPK3 in regulating cell viability and apoptosis were evaluated by cell counting kit-8 assay, terminal-deoxynucleotidyl-transferase-mediated dUTP nick end labeling, and flow cytometry. Immunofluorescence and Western blotting were performed to detect the expression/phosphorylation of apoptosis-related proteins. miR-21 expression was measured with quantitative real-time polymerase chain reaction. The putative interaction between miR-21 and HIPK3 was evaluated using the luciferase reporter assay. Our results showed that (i) miR-21 overexpression or HIPK3 down-regulation significantly attenuated H9C2 cells apoptosis after H/R, (ii) suppression of miR-21 expression promoted apoptosis, (iii) miR-21 overexpression inhibited HIPK3 expression, (iv) HIPK3 was the direct and main target of miR-21, (v) miR-21/HIPK3 formed part of a reciprocal, negative feedback loop, and (vi) HIPK3 down-regulation decreased FAS-mediated apoptosis by inhibiting the phosphorylation of FADD, which subsequently inhibited the expression of BAX and cleaved caspase-3 and increased the expression of BCL2. Our study indicates that miR-21 attenuates FAS-mediated cardiomyocyte apoptosis by regulating HIPK3 expression, which could eventually have important clinical implications for patients with acute myocardial infarction.

# Introduction

Cardiovascular disease is the leading cause of death worldwide. It is usually attributed to the negative effects of acute myocardial ischemia–reperfusion (I/R) injury (IRI), for which there is still no effective prevention method [1]. Certain micro (mi)RNAs are implicated in IRI and their expression in cardiomy-ocytes changes markedly after this type of injury [2–4]. The role of miRNA-21 (miR-21) in cardiovascular disease has gained special attention [5,6]. Indeed, one study [7] identified miR-21 as one of the most important miRNAs implicated in numerous IRI-associated cardiovascular disease states. The authors of the present study used the online database miRDB to identify miR-21 target genes following IRI and found that it regulated several apoptotic genes. Of the 469 genes identified, the top target gene encoded FAS ligand (FASL) [7]. This finding suggests that miR-21 is associated with IRI-induced, FAS-mediated apoptosis.

Homeodomain interacting protein kinase 3 (HIPK3), a serine/threonine kinase, interacts with FAS-associated proteins [8,9], such as FAS-associating via death domain (FADD) and death-associated protein 6 (DAXX). Previous studies have shown that HIPK3 induces the phosphorylation of FADD at

\*These authors have contributed equally to this work and share first authorship.

Received: 07 January 2023 Revised: 03 August 2023 Accepted: 15 August 2023

Accepted Manuscript Online: 15 August 2023 Version of Record published: 05 September 2023



serine 194 [8] and promotes the apoptosis of tumor cells [10–13]. In addition, HIPK3 regulated cardiomyocyte apoptosis in a cell model of myocardial infarction [14]; however, there are few studies investigating the effect of HIPK3 on IRI-induced cardiomyocyte apoptosis.

Although both miR-21 and HIPK3 are associated with cardiomyocyte apoptosis, there is little information on how miR-21 and HIPK3 interact during myocardial IRI. Myocardial IRI can be simulated *in vitro* using myocardial hypoxia/reoxygenation (H/R). Thus, in the present study, we exposed H9C2 cells to H/R to determine the how miR-21 and HIPK3 interacted to regulate apoptosis in the context of IRI.

# Materials and methods

#### Cell culture, transfection, and H/R in vitro

The H9C2 embryonic rat cardiomyocytes cell line, derived from rat heart tissue, was provided by Cell Bank of Chinese Academy of Science (China). Cells were maintained in a complete medium, composed of Dulbecco's Modified Eagle's Medium (DMEM, Gibco, U.S.A.) supplemented with 10% fetal bovine serum (Gibco, U.S.A.) and 1% penicillin/streptomycin (Gibco, U.S.A.). Cells were randomized into eight groups: control (CTL), hypoxia/reoxygenation (H/R), H/R+miR-21 mimic (H/R+21mimic), H/R+miR-21 mimic negative control (H/R+21mimic NC), H/R+miR-21 inhibitor (H/R+21inhibitor), H/R+miR-21 inhibitor negative control (H/R+21inhibitor NC), H/R+small interfering (si)RNA-HIPK3 (H/R+si-HIPK3), and H/R+siRNA-HIPK3 negative control (H/R+si-NC).

Cells (except for those in the CTL and H/R groups) were transfected with the miR-21 mimic, miR-21 mimic negative control (NC), miR-21 inhibitor, miR-21 inhibitor NC, si-HIPK3, or si-HIPK3 NC (Ribo-Bio, China) using Lipofectamine 2000 (Invitrogen, U.S.A.). The oligonucleotide sequences of miR-21 mimic, miR-21 mimic NC, miR-21 inhibitor, miR-21 inhibitor NC, and si-HIPK3 were as follows: miR-21 mimic, sense: 5'-UAGCUUAUCAGACUGAUGUUGA-3' and anti-sense: 5'-UCAACAUCAGUCUGAUAAGCUA-3'; miR-21 mimic NC, sense: 5'-UUUGUACUACACAAAAGUACUG-3', and anti-sense: 5'-CAGUACUUUUGUGUAGUA-CAAA-3'; miR-21 inhibitor, 5'-UCAACAUCAGUCUGAUAAGCUA-3'; miR-21 inhibitor NC, 5'-CAGUACUUUUGUGUAGUACAAA-3'; si-HIPK3, 5'-CCATTAGCAGTGACACTGA-3'. After substituting the complete medium with glucose-free DMEM (Gibco, U.S.A.), cells were incubated in a three-gas incubator (Themor, U.S.A.) providing 94% N2, 1% O2, and 5% CO2 for 12 h to simulate a hypoxic state. After replacing the glucose-free DMEM with complete medium, cells were reoxygenated for 6 h at 37°C in a normoxic incubator with 95% air and 5% CO<sub>2</sub>. Cells in H/R group were incubated under the above-mentioned H/R conditions. Cells in CTL group were cultured in an incubator at  $37^{\circ}$ C, 5% CO<sub>2</sub>.

# Cell counting kit (CCK)-8 assay

Cells were seeded in 96-well culture plates at  $6 \times 10^4$  cells/ml. After undergoing transfection, the cells were exposed to H/R. About 10 µl CCK-8 reagent (Dojindo Molecular Technologies, Japan) was then added to each well. After 2 h, the optical density was determined spectrophotometrically at a wavelength of 450 nm.

# Lactate dehydrogenase (LDH) assay

Culture supernatant was collected. The LDH activity was measured with a LDH activity assay kit (Jiancheng Biotechnology, China), according to the manufacturer's instructions.

# Terminal-deoxynucleotidyl-transferase-mediated dUTP nick end labeling (TUNEL)

Cells were seeded in 6-well culture plates at  $3 \times 10^5$  cells/ml. Cells were fixed with 4% paraformaldehyde. 0.5% Triton X-100 was used to increase the permeability of the cell membrane. Cells were then co-incubated with the TUNEL reagent (Elabscience, China) for 1 h. Nuclei were stained with 4,6'-diamidino-2-phenylindole (DAPI) for 5 min. Images were observed on a fluorescence microscope.

#### **Flow cytometry**

Cells were harvested with trypsin (Gibco, U.S.A.), washed with phosphate-buffered saline, and suspended in  $1 \times$  binding buffer. Next, 5 µl AnnexinV-PE (BD Biosciences, U.S.A.) and 5 µl 7-amino-actinomycin D (7AAD) (BD Biosciences, U.S.A.) were added to the cell suspension, followed by a 15–20 min incubation at room temperature in the dark. About 400 µl of  $1 \times$  binding buffer was then added to each tube. Fluorescence was detected by a flow



cytometer (BD Biosciences, U.S.A.) and apoptosis was quantified using Flowjo software. The total apoptosis rate was determined by AnnexinV-PE and 7AAD assay Q2 (early apoptosis) + Q3 (late apoptosis).

#### Quantitative real-time polymerase chain reaction (qRT-PCR)

Total RNA was extracted using the Trizol total RNA reagent (TIANGEN, China) and reverse-transcribed into cDNA using the FastKing RT Kit (TIANGEN, China). qRT-PCR was performed using the SuperReal PreMx Plus reagent (TIANGEN, China), with the following primers (GENERAL BIOL, China): HIPK3 (NM\_031144.3; 137 bp), forward: 5'-TCACAGAGGCTTGGAGACTG-3' and reverse: 5'-ACAACATGTGCGATGCCTAC-3'; beta-actin (NM\_031787.2; 173 bp), forward: 5'-CACCATGTACCCAGGCATTG-3' and reverse. 5'-CCTGCTTGCTGATCCACATC-3'. Reaction conditions were as follows: pre-denaturation at 95 °C for 15 min, followed by 40 cycles of denaturation at 95 °C for 10 s, and annealing and extension at 60°C for 32 s. Beta-actin served as an internal control. The miRcute miRNA Isolation Kit was used to extract miRNA and cDNA was generated with miRcute Plus miRNA First-Strand cDNA Kit (TIANGEN, China). qRT-PCR was carried out using the miRcute Plus miRNA qPCR Kit (TIANGEN, China) using the following reaction conditions: pre-denaturation at 95°C for 15 min, followed by 45 cycles of denaturation at 94°C for 20 s, and annealing and extension at 60°C for 34 s. Data were normalized to U6 spliceosomal RNA. The upstream and downstream miR-21 and U6 primers were designed by RiboBio Corporation (China).

#### Western blotting

Total protein was obtained with lysis buffer and was then separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to polyvinylidene difluoride (PVDF) membranes. After blocking for 60 min in 5% skimmed milk, membranes were incubated at 4°C overnight with antibodies targeting HIPK3 (ab72538, Abcam, U.K.; 1:1,000 dilution), FADD (14906-1-AP, Proteintech, China; 1:7,500 dilution), phospho-FADD Ser 194 (DF2996 Affinity, China; 1:1,200 dilution), BAX (ab32503, Abcam, U.K.; 1:8,000 dilution), BCL-2 (ab59348, Abcam, U.K.; 1:1,000 dilution), caspase-3 (#9662, Cell Signaling Technology, U.S.A.; 1:1,000 dilution), and bata Actin (AF7018, Affinity, China; 1:15,000 dilution). Membranes were then washed with tris-buffered saline Tween (TBST) and incubated with a horseradish peroxidase (HRP)-conjugated goat anti-rabbit secondary antibody (S0001, Affinity, China; 1:8,000 dilution) for 1 h at room temperature. Protein bands were visualized with enhanced chemiluminescence detection reagents and quantified by densitometry using ImageJ software.

#### Immunofluorescence

Cells were fixed with 4% paraformaldehyde for 20 min and then permeabilized by incubating with 150 µl 0.5% Triton X-100 for 15 min at room temperature. After blocking for 60 min in normal goat serum (ZGGB-BIO, China), cells were incubated overnight with an anti-HIPK3 antibody (ab72538, Abcam, U.K.; 1:150 dilution) diluted in 5% bovine serum albumin at 4°C. The next day, cells were incubated for 60 min with a goat anti-rabbit secondary antibody (A22220, Abbkine, U.S.A.; 1:200 dilution), counterstained with DAPI, and imaged on a fluorescence microscope.

#### Luciferase reporter assay

The luciferase reporter assay was performed using a psiCHECK<sup>TM</sup> -2 vector (Promega, U.S.A.), which contained either a wildtype or a mutant version of the HIPK3 3'-UTR (HIPK3-WT-3'-UTR or HIPK3-MUT-3'-UTR, respectively). In the mutant HIPK3 vectors, the 5'-ATAAGCTA-3' wildtype miR-21 binding site was replaced with the 5'-CTCCGATC-3' miR-21 binding site. H9C2 cells were divided into four groups. HIPK3-WT+NC cells were co-transfected with miR-21 mimic NC and psiCHECK<sup>TM</sup> -2 vector containing HIPK3-WT-3'-UTR; HIPK3-WT+3'-UTR; HIPK3-WT+NC cells were co-transfected with miR-21 mimic and psiCHECK<sup>TM</sup>-2 vector containing HIPK3-MUT+NC cells were co-transfected with miR-21 mimic and psiCHECK<sup>TM</sup>-2 vector containing HIPK3-MUT+NC cells were co-transfected with miR-21 mimic and psiCHECK<sup>TM</sup>-2 vector containing HIPK3-MUT-3'-UTR; and HIPK3-MUT+21mimic cells were co-transfected with miR-21 mimic and psiCHECK<sup>TM</sup>-2 vector containing HIPK3-MUT-3'-UTR; and HIPK3-MUT+21mimic cells were seeded into 96-well plates at 1 × 10<sup>4</sup> cells/well and co-transfected for 24 h. Luciferase activity was detected with a luciferase reporter assay kit (Promega, U.S.A.). The ratio of *Renilla* luminescence to firefly luminescence was calculated to determine relative luciferase activity.

#### **Statistical analysis**

Data were presented as means $\pm$ standard deviation (SD) and analyzed using SPSS 25.0 software. One-way ANOVA and Welch variance analysis were used for comparisons. *P*-values<0.05 were considered as a measure of statistical significance.



**Figure 1. MiR-21 overexpression and** *HIPK3* **down-regulation increase cell viability and decrease LDH activity (A)** The cell viability relative to CTL: miR-21 overexpression or *HIPK3* down-regulation increased cell viability while miR-21 suppression decreased cell viability (n=3). (**B**) LDH activity: miR-21 overexpression or *HIPK3* down-regulation decreased LDH activity while miR-21 suppression increased LDH activity (n=3 or 4). (**C**) *HIPK3* mRNA expression relative to CTL (n=3). Data were presented as mean  $\pm$  SD; <sup>##</sup>P<0.01 vs. CTL; <sup>\*\*</sup>P<0.01 vs. H/R+ 21mimic NC; <sup>+</sup>P<0.05 vs. H/R+ 21mihibitor NC; <sup>++</sup>P<0.01 vs. H/R+ 21mihibitor NC; <sup>++</sup>P<0.01 vs. H/R+ si-NC.

### **Results** Effect of miR-21 levels on H9C2 cell viability and LDH activity after H/R

We found that miR-21 greatly affected H9C2 cell viability and LDH activity after H/R (Figure 1A,B). miR-21 overexpression increased cell viability and decreased the release of LDH, while suppression of miR-21 expression had the opposite effect. These results indicate miR-21 greatly increases cell viability and decreases cell injury after H/R.

# Down-regulation of *HIPK3* increases H9C2 cell viability and decreased LDH activity after H/R

We confirmed that the expression of *HIPK3* mRNA was effectively down-regulated following the transfection of H9C2 cells with si-HIPK3 (Figure 1C). Cells transfected with si-HIPK3 exhibited increased cell viability (Figure 1A) and decreased LDH activity than H/R+si-NC group (Figure 1B). These findings indicate that *HIPK3* down-regulation greatly increases cell viability and decreases cell injury after H/R.

#### Effect of miR-21 levels on H9C2 cell apoptosis after H/R

We found that apoptosis and BAX expression increased and BCL2 expression decreased after H/R. However, miR-21 overexpression decreased apoptosis and BAX expression and increased BCL2 expression, while the suppression of miR-21 expression had the opposite effect (Figures 2A–D and 3A–C). These results indicate that miR-21 has a protective effect by limiting apoptosis after H/R.

# HIPK3 down-regulation suppresses H9C2 cell apoptosis after H/R

Transfection of H9C2 cells with si-HIPK3 significantly decreased their rate of apoptosis (Figure 2A–D). This result indicates that *HIPK3* down-regulation inhibits apoptosis after H/R.

# miR-21/HIPK3 form part of a reciprocal, negative feedback loop

We found that miR-21 overexpression inhibited HIPK3 expression, while suppression of miR-21 expression had the opposite effect (Figure 4A–C). Meanwhile, *HIPK3* down-regulation increased miR-21 expression (Figure 4D). These results indicate that miR-21 interacts with HIPK3, forming part of a reciprocal negative feedback loop.

# HIPK3 is a direct and main target of miR-21

TargetScan 7.2 predicted that HIPK3 was a direct target of miR-21 (Figure 5A). We found that the relative luciferase activity of H9C2 cells co-transfected with miR-21 mimic and psiCHECK<sup>™</sup>-2 vector containing HIPK3-WT-3'-UTR





#### Figure 2. MiR-21 overexpression and HIPK3 down-regulation suppress apoptosis

(A) TUNEL staining showed miR-21 overexpression or *HIPK3* down-regulation significantly reduced TUNEL positive cells, and miR-21 suppression increased TUNEL positive cells (×400 magnification). (B) Representative images of flow cytometry: miR-21 overexpression or *HIPK3* down-regulation inhibited apoptosis, and miR-21 suppression promoted apoptosis. (C) Quantitative analysis of TUNEL positive cells (n=3). (D) Rates of apoptosis cells detected by flow cytometry (n=3). Data are presented as mean  $\pm$  SD; ##P<0.01 vs. CTL; \*\*P<0.01 vs. H/R+21mimic NC; +\*P<0.01 vs. H/R+21mibitor NC;  $^{\Delta\Delta}P$ <0.01 vs. H/R+si-NC.





Figure 3. MiR-21 affects apoptosis-related proteins

(A) Representative images of Western blot analysis. (B) and (C) Statistical analysis of protein levels: miR-21 overexpression decreased BAX expression and increased BCL2 expression, and miR-21 suppression increased BAX expression and decreased BCL2 expression. The gray values of bands were normalized to that of beta Actin (n=3). Data are presented as mean  $\pm$  SD; <sup>##</sup>P<0.01 vs. CTL; <sup>\*</sup>P<0.05 vs. H/R+ 21mimic NC; <sup>\*\*</sup>P<0.01 vs. H/R+ 21

was significantly lower than that of the HIPK3-WT+NC group; however, this effect was not observed in cells co-transfected with miR-21 mimic and psiCHECK<sup>™</sup>-2 vector containing HIPK3-MUT-3'-UTR (Figure 5B). The results prove that miR-21 directly targets HIPK3. After co-transfecting H9C2 cells with si-HIPK3 and miR-21 inhibitor, the effect of the miR-21 inhibitor on apoptosis and cell viability was significantly diminished (Supplementary Figure S1A–C). This finding confirms that HIPK3 is the main target of miR-21.

#### Effect of HIPK3 on FAS-mediated apoptosis

Down-regulation of *HIPK3* decreased FAS-mediated apoptosis by inhibiting the phosphorylation of FADD. The reduced phosphorylation of FADD inhibited the expression of BAX and cleaved caspase-3 (C-caspase-3), while promoting the expression of BCL2 (Figure 6A–F).

# Discussion

miR-21 is an abundant miRNA in cardiomyocytes and is tightly associated with myocardial IRI [5,6]. The up-regulation of miR-21 has been confirmed in various pathological conditions [15–19]; however, several studies have reported the down-regulation of miR-21 in myocardial IRI [20,21]. Consistent with the results of these my-ocardial IRI studies, we also showed that miR-21 was down-regulated after H/R in H9C2 cells. Since apoptosis is a common pathological phenomenon in the I/R-induced death of cardiomyocytes, it is often used to assess the extent of IRI [22]. Sayed et al. [21] found that the overexpression of miR-21 in mouse hearts with IRI pathology resulted in a smaller infarct size and a lower cardiomyocyte apoptosis rate. Moreover, Cheng et al. [23] found that ischemic preconditioning (IP)-induced cardiac protection against I/R was eliminated, while cardiomyocyte apoptosis rate was increased, in miR-21-deficient rats. Our study showed that miR-21 overexpression attenuated cardiomyocyte apoptosis after H/R, while the inhibition of miR-21 expression had the opposite effect, which suggests that miR-21 plays an anti-apoptotic role in cardiomyocytes after H/R.

HIPK3 is aberrantly expressed in malignant tumors and is associated with apoptosis [10–13]. Researchers confirmed that FADD is a substrate of HIPK3, and that HIPK3 affects the phosphorylation of FADD at serine 194 [8,10]; this modification is the key to FAS-mediated apoptosis and the subsequent nuclear translocation of FADD [24]. In addition, FAS is required for the stabilization of the HIPK3-FADD complex [8]. Moreover, the phosphorylated FADD enhances the activation of MEK kinase 1 (MEKK1) and c-jun NH<sub>2</sub>-terminal kinase 1 (JNK1), which further promotes apoptosis [25]. In our study, *HIPK3* down-regulation decreased FADD phosphorylation and cardiomyocyte apoptosis after H/R; however, whether the phosphorylation of FADD drives cardiomyocyte apoptosis by enhancing MEKK1 and JNK1 activation remains unclear.

Both miR-21 and HIPK3 play a role in cardiomyocyte apoptosis; however, it was unclear whether they interacted with each other. Our study showed that miR-21 interacted with HIPK3 to protect cardiomyocytes against H/R-induced apoptosis, likely via the miR-21-mediated inhibition of HIPK3 expression. Specifically, we showed that





#### Figure 4. MiR-21 interacts with HIPK3

(A) Representative immunofluorescence images of HIPK3 expression levels (×400 magnification). (B) Representative images of Western blot analysis. (C) Statistical analysis of HIPK3 levels: miR-21 overexpression inhibited HIPK3 expression, and miR-21 suppression up-regulated HIPK3 expression. The gray values of bands were normalized to that of beta Actin (n=3). (D) MiR-21 expression relative to CTL: transfecting with si-HIPK3 increased miR-21 expression, and transfecting with miR-21 mimic increased miR-21 expression while transfecting with miR-21 inhibitor decreased miR-21 expression (n=3–5). Data are presented as mean  $\pm$  SD;  $^{\#}P$ <0.05 vs. CTL;  $^{\#}P$ <0.01 vs. CTL;  $^{*P}$ <0.05 vs. H/R+ 21mimic NC;  $^{**}P$ <0.01 vs. H/R+21mimic NC;  $^{+P}$ <0.05 vs. H/R+21mihibitor NC;  $^{\Delta P}$ <0.01 vs. H/R+ si-NC.

PORTLAND PRESS

(A)

|                                                     | Predicted consequential pairing of target region<br>(top) and miRNA (bottom) | Site type | Context++<br>score |
|-----------------------------------------------------|------------------------------------------------------------------------------|-----------|--------------------|
| Position 2034-2041 of HIPK3 3' UTR<br>hsa-miR-21-5p | 5'AGUACAGCGUUCACAAUAAGCUA<br>       <br>3' AGUUGUAGUCAGACUAUUCGAU            | 8mer      | -0.17              |





#### Figure 5. MiR-21-5p directly binds to 3'-UTR of HIPK3

(A) The binding site of miR-21 with HIPK3 3'-UTR was predicted in the TargetScan 7.2 website. (B) Luciferase activity of HIPK3-WT-3'-UTR or HIPK3-MUT-3'-UTR after cotransfecting miR-21 mimic was detected by dual luciferase reporter assay. Luciferase activity of H9C2 cells cotransfected with miR-21 mimic and psiCHECK<sup>TM</sup>-2 vector containing HIPK3-WT-3'-UTR significantly decreased (n=3). Data are presented as mean  $\pm$  SD; \*\*P<0.01; NS, no significance.

(i) H/R decreased the expression of miR-21 and concomitantly increased that of HIPK3; (ii) miR-21 overexpression reduced HIPK3 expression and apoptosis, while suppressing miR-21 expression had the opposite effect; (iii) *HIPK3* down-regulation increased miR-21 expression and reduced apoptosis; (iv) co-transfecting cardiomyocytes with si-HIPK3 and a miR-21 inhibitor significantly decreased the pro-apoptotic effect of the miR-21 inhibitor; (v) miR-21-5p directly targeted the 3'-UTR of *HIPK3* mRNA.

We found that miR-21 and HIPK3 functioned as part of a reciprocal, negative feedback loop, whereby, miR-21 overexpression inhibited HIPK3 expression, while *HIPK3* downregulation increased miR-21 expression. We speculate that this feedback loop helps maintain high miR-21 levels in H9C2 cells during H/R and enables it to exert its anti-apoptotic effect; this phenomenon has also been found in other studies of miR-21. For instance, Liang et al. [26] reported a reciprocal miR-21/transforming growth factor  $\beta$ -receptor III (TGF $\beta$ RIII) loop in cardiac fibroblasts, whereby miR-21 up-regulation resulted in the down-regulation of *TGF\betaRIII*, which increased TGF- $\beta$ 1 expression; conversely, the increase in TGF- $\beta$ 1 expression up-regulated the expression of miR-21. Sun et al. [27] also reported a reciprocal, negative feedback loop involving miR-21/programmed cell death 4 (PDCD4)/activation protein-1 (AP-1) in renal fibrogenesis, whereby miR-21-mediated PDCD4 inhibition enhanced AP-1 activity, and AP-1 in turn promoted miR-21 transcription. Because reciprocal, negative feedback loops involving miR-21-mediated PDCD4 inhibition enhanced AP-1 have been identified in a variety of diseases, we believe that such a mechanism is crucial for the biological function of miR-21.

miR-21 regulates multiple mRNAs by altering their transcriptional stability or impacting on their translation [28]. For instance, the overexpression of miR-21 inhibited the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in a mouse model of IRI [29] and PDCD4 expression in an IRI rat model and H/R-exposed H9C2 cells, which subsequently inhibited apoptosis [30]. However, by co-transfecting H9C2 cells with si-HIPK3





#### Figure 6. HIPK3 down-regulation affects the expression of proteins relative to Fas-mediated apoptosis

(A) Representative images of Western blot analysis. (B–F) Statistical analysis of protein levels: *HIPK3* down-regulation decreased the phosphorylation of FADD and the expression of BAX and C-Caspase-3, and increased the expression of BCL2 (n=3). In panels B,D,E, the gray values of bands were normalized to that of beta Actin. C-Caspase-3, cleaved caspase-3; p-FADD, phosphorylated FADD. Data are presented as mean ± SD; #P<0.05 vs. CTL; ##P<0.01 vs. CTL;  $^{\Delta}P$ <0.05 vs. H/R+ si-NC;  $^{\Delta\Delta}P$ <0.01 vs. H/R+ si-NC.

and miR-21 inhibitor, we observed that *HIPK3* down-regulation effectively reversed the pro-apoptotic action of the miR-21 inhibitor after H/R. Therefore, we believe that miR-21 mainly targets HIPK3 in H/R H9C2 cells but cannot exclude the possibility that other miR-21 targets may also play a role.

In conclusion, we confirmed that miR-21 attenuated cardiomyocyte apoptosis after H/R by inhibiting HIPK3 expression. Reduced HIPK3 levels in turn inhibited FAS-mediated apoptosis by preventing FADD phosphorylation. We also confirmed that miR-21 directly and predominantly targets HIPK3 and forms part of a reciprocal, negative miR-21/HIPK3 feedback loop.

The data from the present study provide a potential therapeutic approach for preventing IRI-associated apoptosis, which could be applied in a clinical setting to improve the prognosis of patients with acute myocardial infarction. However, because all of our data were generated using H9C2 cells *in vitro*, they will need to be validated in animal IRI models and clinical trials.

#### **Data Availability**

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

#### **Competing Interests**

The authors declare that there are no competing interests associated with the manuscript.

#### Funding

This work was supported by the 2019 Hebei Science and Technology Project [grant number 19277787D] and the 2019 Hebei Innovation Capability Promotion Project [grant number 199776249D].

#### **CRediT Author Contribution**

Xinyu Wang: Data curation, Formal analysis, Validation, Visualization, Methodology, Writing—original draft. Tingting Zhang: Conceptualization, Data curation, Software, Methodology, Writing—review & editing. Jianlong Zhai: Conceptualization, Data curation, Software, Investigation, Methodology. Zhongli Wang: Data curation, Investigation. Yan Wang: Data curation, Supervision, Investigation, Methodology. Lili He: Data curation, Supervision, Methodology. Sai Ma: Data curation, Software, Supervision. Hanying





Xing: Conceptualization, Data curation, Software, Supervision, Writing-review & editing. Yifang Guo: Resources, Funding acquisition, Project administration, Writing-review & editing.

#### Abbreviations

AP-1, activation protein-1; C-caspase-3, Cleaved caspase-3; Daxx, death-associated protein 6; FADD, Fas-associating via death domain; FASL, FAS ligand; JNK1, c-jun NH<sub>2</sub>-terminal kinase 1; HIPK3, homeodomain interacting protein kinase 3; HIPK3-MUT-3'-UTR, HIPK3-mutant3'-UTR; HIPK3-WT-3'-UTR, HIPK3-wild-type-3'-UTR; H/R, hypoxia/reoxygenation; IP, ischemic preconditioning; IRI, ischemic reperfusion injury; I/R, ischemia–reperfusion; LDH, lactate dehydrogenase; MEKK1, MEK kinase 1; mi, micro; miR-21, microRNA-21; NC, negative control; PDCD4, programmed cell death 4; PTEN, phosphatase and tensin homolog; p-FADD, phosphorylated FADD; TGF $\beta$ RIII, transforming growth factor  $\beta$  receptor III; TUNEL, terminal-deoxynucleotidyl-transferase-mediated dUTP nick end labeling.

#### References

- 1 Hausenloy, D.J. and Yellon, D.M. (2013) Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J. Clin. Invest. **123**, 92–100, https://doi.org/10.1172/JCI62874
- 2 Minamino, T. (2012) Cardioprotection from ischemia/reperfusion injury: basic and translational research. Circ. J. 76, 1074–1082, https://doi.org/10.1253/circj.CJ-12-0132
- 3 Zhu, H. and Fan, G.C. (2012) Role of microRNAs in the reperfused myocardium towards post-infarct remodelling. *Cardiovasc. Res.* 94, 284–292, https://doi.org/10.1093/cvr/cvr291
- 4 Wang, X., Morelli, M.B., Matarese, A., Sardu, C. and Santulli, G. (2020) Cardiomyocyte-derived exosomal microRNA-92a mediates post-ischemic myofibroblast activation both in vitro andex vivo. *Esc Heart Fail.* 7, 285–289, https://doi.org/10.1002/ehf2.12584
- 5 Surina, S., Fontanella, R.A., Scisciola, L., Marfella, R., Paolisso, G. and Barbieri, M. (2021) miR-21 in Human Cardiomyopathies. *Front. Cardiovasc. Med.* 8, 767064, https://doi.org/10.3389/fcvm.2021.767064
- 6 Jayawardena, E., Medzikovic, L., Ruffenach, G. and Eghbali, M. (2022) Role of miRNA-1 and miRNA-21 in acute myocardial ischemia-reperfusion injury and their potential as therapeutic strategy. *Int. J. Mol. Sci.* 23, 1512, https://doi.org/10.3390/ijms23031512
- 7 Huang, Z., Shi, J., Gao, Y., Cui, C., Zhang, S., Li, J. et al. (2019) HMDD v3.0: a database for experimentally supported human microRNA-disease associations. *Nucleic Acids Res.* 47, D1013–D1017, https://doi.org/10.1093/nar/gky1010
- 8 Rochat-Steiner, V., Becker, K., Micheau, O., Schneider, P., Burns, K. and Tschopp, J. (2000) FIST/HIPK3: a Fas/FADD-interacting serine/threonine kinase that induces FADD phosphorylation and inhibits fas-mediated Jun NH(2)-terminal kinase activation. J. Exp. Med. **192**, 1165–1174, https://doi.org/10.1084/jem.192.8.1165
- 9 Lan, H., Wu, C., Shih, H. and Chung, B. (2012) Death-associated Protein 6 (Daxx) mediates cAMP-dependent stimulation of cyp11a1 (P450scc) transcription. J. Biol. Chem. 287, 5910–5916, https://doi.org/10.1074/jbc.M111.307603
- 10 Curtin, J.F. and Cotter, T.G. (2004) JNK regulates HIPK3 expression and promotes resistance to Fas-mediated apoptosis in DU 145 prostate carcinoma cells. J. Biol. Chem. 279, 17090–17100, https://doi.org/10.1074/jbc.M307629200
- 11 Tao, L., Xu, C., Shen, W., Tan, J., Li, L., Fan, M. et al. (2022) HIPK3 inhibition by exosomal hsa-miR-101-3p is related to metabolic reprogramming in colorectal cancer. *Front. Oncol.* **11**, https://doi.org/10.3389/fonc.2021.758336
- 12 Xiao, W., Wang, T., Ye, Y., Wang, X., Chen, B., Xing, J. et al. (2021) Identification of HIPK3 as a potential biomarker and an inhibitor of clear cell renal cell carcinoma. *Aging (Albany NY)* **13**, 3536–3553, https://doi.org/10.18632/aging.202294
- 13 Liu, Y., Qian, L., Yang, J., Huang, H., Feng, J., Li, X. et al. (2018) The expression level and prognostic value of HIPK3 among non-small-cell lung cancer patients in China. *Oncotargets Ther.* **11**, 7459–7469, https://doi.org/10.2147/0TT.S166878
- 14 Ma, Z., Wang, N., Zhang, J., Wan, Y., Xiao, N. and Chen, C. (2021) Overexpression of miR-431 inhibits cardiomyocyte apoptosis following myocardial infarction via targeting HIPK3. *Eur. Rev. Med. Pharmacol. Sci.* 25, 2056–2064
- 15 Zhang, J., Xing, Q., Zhou, X., Li, J., Li, Y., Zhang, L. et al. (2017) Circulating miRNA-21 is a promising biomarker for heart failure. *Mol. Med. Rep.* **16**, 7766–7774, https://doi.org/10.3892/mmr.2017.7575
- 16 Tang, J., Li, X., Cheng, T. and Wu, J. (2021) miR-21-5p/SMAD7 axis promotes the progress of lung cancer. *Thorac. Cancer* **12**, 2307–2313, https://doi.org/10.1111/1759-7714.14060
- 17 Major, J.L., Bagchi, R.A. and Pires Da Silva, J. (2021) Application of microRNA database mining in biomarker discovery and identification of therapeutic targets for complex disease. *Methods Protoc* **4**, 5, https://doi.org/10.3390/mps4010005
- 18 Chang, W.T., Shih, J.Y., Lin, Y.W., Huang, T.L., Chen, Z.C., Chen, C.L. et al. (2022) miR-21 upregulation exacerbates pressure overload-induced cardiac hypertrophy in aged hearts. *Aging (Albany NY)* **14**, 5925–5945, https://doi.org/10.18632/aging.204194
- 19 Watanabe, K., Narumi, T., Watanabe, T., Otaki, Y., Takahashi, T., Aono, T. et al. (2020) The association between microRNA-21 and hypertension-induced cardiac remodeling. *PloS ONE* **15**, e226053, https://doi.org/10.1371/journal.pone.0226053
- 20 Yang, Q., Yang, K. and Li, A. (2014) microRNA-21 protects against ischemia-reperfusion and hypoxia-reperfusion-induced cardiocyte apoptosis via the phosphatase and tensin homolog/ Akt-dependent mechanism. *Mol. Med. Rep.* **9**, 2213–2220, https://doi.org/10.3892/mmr.2014.2068
- 21 Sayed, D., He, M., Hong, C., Gao, S., Rane, S., Yang, Z. et al. (2010) MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas Ligand. *J. Biol. Chem.* **285**, 20281–20290, https://doi.org/10.1074/jbc.M110.109207
- 22 Yelloyn, D.M. and Hausenloy, D.J. (2007) Myocardial reperfusion injury. N. Engl. J. Med. 357, 1121–1135, https://doi.org/10.1056/NEJMra071667



- 23 Cheng, Y., Zhu, P., Yang, J., Liu, X., Dong, S., Wang, X. et al. (2010) Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. *Cardiovasc. Res.* 87, 431–439, <u>https://doi.org/10.1093/cvr/cvq082</u>
- 24 Oh, J. and Malter, J.S. (2013) Pin1–FADD interactions regulate Fas-mediated apoptosis in activated eosinophils. *J. Immunol.* **190**, 4937–4945, https://doi.org/10.4049/jimmunol.1202646
- 25 Shimada, K. (2004) Phosphorylation of FADD is critical for sensitivity to anticancer drug-induced apoptosis. *Carcinogenesis* **25**, 1089–1097, https://doi.org/10.1093/carcin/bgh130
- 26 Liang, H., Zhang, C., Ban, T., Liu, Y., Mei, L., Piao, X. et al. (2012) A novel reciprocal loop between microRNA-21 and TGFβRIII is involved in cardiac fibrosis. *Int. J. Biochem. Cell Biol.* 44, 2152–2160, https://doi.org/10.1016/j.biocel.2012.08.019
- 27 Sun, Q., Miao, J., Luo, J., Yuan, Q., Cao, H., Su, W. et al. (2018) The feedback loop between miR-21, PDCD4 and AP-1 functions as a driving force for renal fibrogenesis. J. Cell Sci. **131**, jcs202317, https://doi.org/10.1242/jcs.202317
- 28 Bartel, D.P. (2018) Metazoan MicroRNAs. Cell 173, 20-51, https://doi.org/10.1016/j.cell.2018.03.006
- 29 Tu, Y., Wan, L., Fan, Y., Wang, K., Bu, L., Huang, T. et al. (2013) Ischemic postconditioning-mediated miRNA-21 protects against cardiac ischemia/reperfusion injury via PTEN/Akt pathway. PLoS ONE 8, e75872, https://doi.org/10.1371/journal.pone.0075872
- 30 Zhang, J., Luo, C.J., Xiong, X.Q., Li, J., Tang, S.H., Sun, L. et al. (2021) MiR-21-5p-expressing bone marrow mesenchymal stem cells alleviate myocardial ischemia/reperfusion injury by regulating the circRNA\_0031672/miR-21-5p/programmed cell death protein 4 pathway. *J. Geriatr. Cardiol.* 18, 1029–1043