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Key Points

• Busulfan exposure is
associated with OS;
5-year survival with an
exposure of ≥59.5 vs
<59.5 mg × h/L was
67% (95% CI, 59-76)
vs 40%.

• In 25% of the patients,
busulfan levels were
outside the optimal
range.
Busulfan is an alkylating drug routinely used in conditioning regimens for allogeneic

hematopoietic cell transplantation (allo-HCT). A myeloablative conditioning regimen,

including busulfan, is commonly used in patients undergoing T-cell depletion (TCD) and

allo-HCT, but data on optimal busulfan pharmacokinetic (PK) exposure in this setting are

limited. Between 2012 and 2019, busulfan PK was performed to target an area under the

curve exposure between 55 and 66 mg × h/L over 3 days using a noncompartmental analysis

model. We retrospectively re-estimated busulfan exposure following the published

population PK (popPK) model (2021) and correlated it with outcomes. To define optimal

exposure, univariable models were performed with P splines, wherein hazard ratio (HR)

plots were drawn, and thresholds were found graphically as the points at which the

confidence interval crossed 1. Cox proportional hazard and competing risk models were

used for analyses. 176 patients were included, with a median age of 59 years (range, 2-71).

Using the popPK model, the median cumulative busulfan exposure was 63.4 mg × h/L

(range, 46.3-90.7). The optimal threshold was at the upper limit of the lowest quartile

(59.5 mg × h/L). 5-year overall survival (OS) with busulfan exposure ≥59.5 vs <59.5 mg × h/L

was 67% (95% CI, 59-76) vs 40% (95% CI, 53-68), respectively (P = .02), and this association

remained in a multivariate analyses (HR, 0.5; 95% CI, 0.29; 0.88; P = .02). In patients

undergoing TCD allo-HCT, busulfan exposure is significantly associated with OS. The use of

a published popPK model to optimize exposure may significantly improve the OS.

Introduction

Allogeneic hematopoietic cell transplantation (allo-HCT) is the only curative option for patients with
certain hematologic malignancies, including most patients with acute myelogenous leukemia (AML) and
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myelodysplastic syndrome (MDS).1,2 Despite major improvements
in HCT outcomes, owing mostly to decreases in transplant-related
mortality (TRM),3 graft-versus-host disease (GVHD) remains a
major challenge, affecting patients’ quality of life and survival after
HCT.4 Acute GVHD (aGVHD) and chronic GVHD (cGVHD) are
significant post-HCT complications, with a cumulative incidence
ranging from 30% to 60%.4,5 An effective method of preventing
GVHD is via the depletion of T lymphocytes from the donor allo-
graft before infusion, which, in retrospective and prospective
studies,6-9 resulted in a significantly lower incidence of GVHD yet
without improved survival. Moreover, a myeloablative regimen is the
preferred conditioning regimen for patients with AML and fit
patients with MDS, with data supporting improved relapse-free
survival (RFS).10,11 Accordingly, a myeloablative, chemotherapy-
only conditioning regimen that combines busulfan, melphalan,
and fludarabine is commonly used in adult and pediatric patients
undergoing T-cell-depleted (TCD) allo-HCT.

Busulfan is an alkylating drug routinely used in conditioning regi-
mens in preparation for allo-HCT.12,13 Considerable interpatient
variability exists in the effectiveness, and toxicity of busulfan-
containing regimens when dosing is based on either body weight
(mg/kg) or body surface area (mg/m2).14 The variability in clinical
outcomes is partly due to interpatient differences in busulfan
pharmacokinetic (PK) and the narrow therapeutic window of sys-
temic busulfan exposure.15 Higher exposure has been reported to
be associated with an increased risk of toxicity, such as mucositis,
GVHD, veno-occlusive disease of the liver, and TRM,13,16,17

whereas a low busulfan exposure has been associated with a
higher probability of graft rejection, poor graft function, and disease
relapse.18-20 Therefore, the use of therapeutic drug monitoring
(TDM) to target a specific area under the curve (AUC) in the more
recent period after consensus21 and/or concentration at steady
state has historically provided a personalized approach to dosing to
better ensure exposure within the narrow therapeutic window of
efficacy and toxicity for each patient.12 IV busulfan can be admin-
istered once daily or divided every 6 or 12 hours22 without a dif-
ference in toxicities.13 Historically, various units have been used to
report busulfan AUC goals, which led to misinterpretation and was
a barrier to data capture by HCT registries. This led to efforts
to harmonize busulfan plasma exposure unit reporting and
resulted in agreement to report exposure as an AUC with the units
mg × h/L.21 In addition, the use of different models to estimate
exposure may result in different exposure reports, as shown in a
study conducted by Bartelink et al.13

In adult and pediatric patients undergoing TCD allo-HCT, data
regarding the optimal busulfan exposure in this setting are limited.
Therefore, we aimed to assess the relationship between busulfan
exposure estimation following the published population PK
(popPK)15,23 model and clinical outcomes in a retrospective anal-
ysis of prospectively collected TDM data.
Methods

Study design and patients

We performed a retrospective, PK, and pharmacodynamic analysis
of data from consecutive pediatric and adult patients with MDS and
AML who underwent their first allo-HCT with ex vivo TCD allografts
using the CliniMACS CD34 Reagent System (Miltenyi Biotech,
5226 TAMARI et al
Gladbach, Germany) for calcineurin inhibitor-free GVHD prophy-
laxis at the Memorial Sloan Kettering Cancer Center (MSKCC)
between 2012 and 2019. The patients received supportive care,
growth factors, and antimicrobial prophylaxis according to the
MSKCC institutional protocol. All the patients received a
chemotherapy-based myeloablative conditioning regimen with IV
busulfan (from days −9 to −7), melphalan 70 mg/m2 (from days −6
to −5), and fludarabine 25 mg/m2 (from days −6 to −2). Addi-
tionally, all patients received rabbit anti–thymocyte globulin (Thy-
moglobulin) to prevent graft rejection on days −3, −2, and ±1.24 All
patients provided written informed consent for transplantation in
accordance with the principles of the Declaration of Helsinki, and
transplantation outcome analysis was approved by the MSKCC
Institutional Review and Privacy Board.

Busulfan was dosed at 3.2 mg/kg per day, divided either every 6
hours or as a single daily dose; patients aged < 4 years received
1 mg/kg every 6 hours. The first-dose AUC was estimated with 6
concentration-time samples using a noncompartmental analysis
model (Phoenix WinNonLin, Certara USA, Princeton, NJ). The 2
subsequent doses were adjusted to target an exposure from 18 to
22 mg × h/L (every 24 hours) or from 4.5 to 5.5 mg × h/L (every 6
hours), with goal cumulative AUC (cAUC) over 3 days between 55
and 66 mg × h/L, with all units converted to reporting per the latest
consensus recommendations.21 The PK sampling and analysis
were not repeated at doses 2 and 3. Busulfan samples were
obtained from a Clinical Laboratory Improvement Amendments
(CLIA)-approved clinical laboratory. In this retrospective analysis,
the initial dosing, the same 6 measured time-concentration sam-
ples, and any subsequent dose changes, if made, were entered
into the InsightRX Nova Bayesian dosing platform (Insight Rx Inc,
2021, San Francisco, CA) to re-estimate the cumulative busulfan
exposure using popPK. The estimated exposures were then related
to clinical outcome measures.

Outcomes of interest

The primary outcome of interest was overall survival (OS) at 2 and 5
years. OS was defined as the time from HCT to death from any
cause. Data of surviving patients were censored on the date of their
last contact. Other outcomes of interest included relapse, non-
relapse mortality, RFS, TRM, and acute GVHD on day 100. Time to
relapse was defined as the time from HCT to disease relapse. Data
of patients without relapse were censored at the last follow-up,
whereas deaths before relapse were treated as competing events.
RFS was defined as survival without any evidence of relapse. TRM
was defined as the time from HCT to death due to causes other than
the relapse of hematologic malignancies. Patients who were still alive
were censored at the date of the last follow-up and relapse was
treated as a competing event. Acute GVHD was graded and staged
according to national and international guidelines (staging based on
the Center for International Blood and Marrow Transplant Research
guidelines, with grading using modified Keystone criteria).25,26

Statistical analyses

Survival rates were estimated using the Kaplan-Meier method. To
define optimal busulfan exposure, univariate models were per-
formed with P splines, wherein hazard ratio (HR) plots were drawn.
Thresholds were found visually at the points (exposure) at which
the spline exceeded the HR of 1. If this point was around a quartile,
exposure was used as a cutoff for further analysis. Survival rates
26 SEPTEMBER 2023 • VOLUME 7, NUMBER 18



were estimated using the Kaplan-Meier method. The impact of
busulfan exposure and other variables, including sex, age (adult vs
pediatric), disease (MDS vs AML), donor type, patient and donor
cytomegalovirus serostatus, HCT-specific comorbidity index,27 and
disease risk index (DRI),28 were assessed using univariate Cox
proportional models. Busulfan was examined both when broken
into quartiles and as a binary variable, with a cutoff point deter-
mined from optimal exposure figures using a penalized spline. In the
presence of competing risks, cumulative incidence analysis was
used, and cause-specific HRs were reported. The results are
presented as HRs, 95% confidence intervals (95% CIs), and Wald
test P values. Firstly, factors were assessed in univariable models
and then entered in the multivariable model if P ≤ .10. A backward
variable selection was performed, and variables with P ≤ .05 were
retained in the final model.

Results

Patients and busulfan exposure

A total of 176 patients were included: 144 adults and 32 pediatric
patients, with a median age of 59 years and median follow-up
among survivors was 53.6 months (interquartile range, 38.3-
79.5 months). The patients and HCT characteristics are shown in
Table 1. Thirty-four patients (19.3%) received daily busulfan
dosing, and 142 (80.7%) were treated with a 6-hour regimen. In 70
patients (39.7%), the target AUC was attained with the first dose,
and no subsequent dose adjustments were required; in 77 patients
(43.7%), a dose increase was required, and in 29 patients (16%), a
dose reduction was required. Using the popPK model, the median
Table 1. Patient characteristics

Characteristic N = 176

Age, median (range) 59 (2-71)

Gender (Female) 71 (40%)

Adults/children 144 (82%)/32 (18%)

AML/MDS 104 (59%)/72 (41%)

DRI

Low 13 (7.6%)

High 25 (15%)

Intermediate 134 (78%)

Unknown 4

CMV status before HCT (positive) 78 (55%)

HCT-CI

Low 10 (6.0%)

High 85 (51%)

Intermediate 73 (43%)

Unknown 8

Donor

MRD 44 (25%)

MURD 100 (57%)

MMRD/MMURD 32 (18%)

CMV, cytomegalovirus; HCT-CI, HCT cormobidity index; MMRD, mismatched related
donor; MMURD, mismatched unrelated donor; MRD, matched related donor; MURD,
matched unrelated donor.
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cAUC was 63.4 mg × h/L (range, 46.3-90.7). The lowest quartile
distribution ranged from 46.3 to 59.4 mg × h/L, second quartile
from 59.5 to 63.4 mg × h/L, third quartile from 63.5 to 68.8 mg ×
h/L, and the fourth quartile ranged from 68.9 to 90.7 mg × h/L.

Busulfan exposure and outcomes

Survival. Using the splines, the thresholds found graphically for
OS, nonrelapse mortality, and RFS were around the upper limit of
the lowest quartile (Figure 1). Therefore, we subsequently analyzed
outcomes using 59.5 mg × h/L as a threshold. A cAUC
<59.5 mg × h/L was associated with worse OS compared with
higher busulfan exposure; the 5-year OS in patients with busulfan
exposure <59.5 mg × h/L was 40% (95% CI, 27-60) compared
with patients with exposure ≥59.5 mg × h/L, whose 5-year OS was
67% (95% CI, 59-76; P = .02; Table 2; Figure 2A). Similarly, the 5-
year RFS in patients with busulfan exposure <59.5 mg × h/L was
36% (95% CI, 23-56) vs 60% (95% CI, 52-69; P = .02) in patients
with an exposure ≥59.5 mg × h/L (Table 2; Figure 2B).

In multivariate analysis, along with busulfan exposure, increasing
age and higher DRI were the other 2 variables that were associated
with worse OS and RFS, with an HR of 4.1 (0.93-18.1) and 3.72
(1.08-12.8), respectively, in patients with high DRI (Table 3).

Engraftment. One patient died before day 30 and was, therefore,
not evaluable for engraftment. Otherwise, all patients achieved
engraftment with a median time to neutrophil engraftment of
10 days (range, 8-20), with similar engraftment rates in both
pediatric and adult patients.

TRM. Among all patients, the 2 years cumulative incidence of
TRM was 20% (95% CI, 14-26). Busulfan exposure < 59.5 mg ×
h/L showed a trend toward a higher risk of TRM than exposure
≥59.5 mg × h/L (HR, 0.5; 95% CI, 0.26-0.99; P = .057). Inter-
estingly, when comparing the TRM between the 4 quartiles, the
TRM rates were similar in the lowest and highest quartiles and
higher than the rates observed in quartiles 2 and 3 (Figure 2C).
Increasing age was the only variable that was significantly asso-
ciated with TRM (HR, 1.05; 95% CI, 1.02-1.09; P ≤ .001;
Table 2).

Relapse. Among all patients, the 5-year cumulative incidence of
relapse was 24% (95% CI, 17-31). Although patients with the
highest busulfan exposure (quartile 4 with exposure > 68.9 mg × h/
L) had the lowest relapse rates when compared with the other
quartiles, this result was not statistically significant (HR, 0.31;
95% CI, 0. 11-0.9; P = .1; supplemental Figure 1A). High DRI was
the only variable that was associated with a higher risk of relapse
(HR, 3.25; 95% CI, 0.92-11.6; P = .006)

GVHD. The cumulative incidence of acute GVHD by day 100 was
30% (95% CI, 24-37), with no difference according to busulfan
exposure (supplemental Figure 1B) or any other variable. The vast
majority of aGVHD cases were grades 1 and 2 (95%), and only 5%
were grade 3, with no cases of grade 4 GVHD.

Cause of death. The causes of death distribution was different
among the 4 quartiles (Figure 3), with no mortality due to relapse
noted in the fourth quartile (highest busulfan exposure group).
BUSULFAN EXPOSURE AND TRANSPLANT OUTCOMES 5227
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Figure 1. P splines were used to define an optimal busulfan exposure. Busulfan exposure < 59.5 mg × h/L was associated with worse OS (A) and worse RFS (B).

Table 2. Univariate analysis for OS, RFS, and TRM

Characteristic N

OS RFS TRM

HR 95% CI P value HR 95% CI P value HR 95% CI P value

Age 176 1.02 1.00-1.04 .005 1.02 1.01-1.04 .003 1.05 1.02-1.09 < .001

Gender 176 > .9 .5 .7

Female — — — — — —

Male 1.02 0.62-1.66 1.15 0.73-1.82 0.89 0.47-1.69

Disease 176 > .9 .5 > .9

AML — — — — — —

MDS 0.99 0.61-1.60 1.17 0.75-1.83 1.04 0.55-1.98

DRI* 172 .017 .005

Low — — — — — —

High 5.30 1.22-23.1 4.76 1.40-16.2

Intermediate 2.77 0.67-11.4 2.18 0.68-6.95

CMV status before HCT 143 .11 .4 .2

Negative — — — — — —

Positive 1.52 0.90-2.56 1.24 0.77-1.99 1.48 0.76-2.87

HCT-CI* 168 > .9 .8

Low — — — — — —

High 1.10 0.34-3.60 1.35 0.42-4.37

Intermediate 1.09 0.33-3.58 1.24 0.38-4.04

Donor 176 .038 .077 .3

MRD — — — — — —

MMRD/MMURD 1.96 1.00-3.85 2.10 1.08-4.08 1.92 0.76-4.86

MURD 0.88 0.49-1.58 1.18 0.67-2.06 1.02 0.47-2.25

PopPK cAUC (InsightRX Nova) 171 0.97 0.93-1.01 .085 0.98 0.94-1.01 .14 0.99 0.94-1.03 .6

PopPK cAUC (InsightRX Nova), binary 171 .020 .020

<59.5 — — — — — — .057

≥59.5 0.53 0.31-0.89 0.55 0.33-0.89 0.50 0.26, 0.99

NCA cAUC (WinNonLin, Certara) 176 1.00 0.96-1.04 > .9 0.99 0.95-1.03 .7

CMV, cytomegalovirus; HCT-CI, HCT comorbidity index; MMRD, mismatched related donor; MMURD, mismatched unrelated donor; MRD, matched related donor; MURD, matched unrelated
donor.
*The models for HCT-CI and DRI do not converge for the nonrelapse mortality end point.
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Figure 2. Association between busulfan exposure and transplant outcomes. Busulfan exposure < 59.5 mg × h/L was associated with worse OS (A) and worse RFS (B);

increased TRM was noted with the lowest and highest busulfan quartiles (C).
Discussion

In this analysis of pediatric and adult patients with myeloid
malignancies who underwent TCD allo-HCT using a homoge-
neous, chemotherapy-only conditioning regimen, we demon-
strated that the cumulative busulfan exposure before allo-HCT
26 SEPTEMBER 2023 • VOLUME 7, NUMBER 18
was significantly associated with OS, suggesting that optimizing
busulfan exposure using a popPK model may improve HCT
outcomes. Optimal exposure of >59.5 mg × hL was found.
Because clinically there is no reason to believe that a cutoff of
59.5 mg × h/L behaves differently from a cutoff of 60 mg × h/L,
BUSULFAN EXPOSURE AND TRANSPLANT OUTCOMES 5229



Table 3. Multivariate analysis for OS and RFS

Characteristic

OS RFS

HR 95% CI P value HR1 95% CI P value

Age 1.04 1.02-1.06 < .001 1.03 1.01-1.05 < .001

DRI .045 .012

Low — — — —

High 4.10 0.93-18.1 3.72 1.08-12.8

Intermediate 2.11 0.51-8.72 1.61 0.50-5.18

Donor .002 .008

MRD — — — —

MMRD/MMURD 3.00 1.47-6.15 2.91 1.44-5.87

MURD 0.87 0.48-1.59 1.15 0.64-2.06

PopPK cAUC (InsightRX Nova), binary .020 .045

<59.5 — — — —

≥59.5 0.50 0.29-0.88 0.58 0.34-0.97

MMRD, mismatched related donor; MMURD, mismatched unrelated donor; MRD, matched related donor; MURD, matched unrelated donor.
the recommendation from this analysis is to aim for busulfan levels
>60 mg × h/L.

In a previous analysis, including >650 pediatric and young adult
patients (up to age 34 years)13 who underwent an unmodified allo-
HCT using busulfan-containing conditioning regimens, the optimal
busulfan exposure, re-estimated for all patients by following the
published popPK model, was found to be from 78 to 101 mg × h/L
(for single- and double-alkylator conditioning). Exposures
<78 mg × h/L and >101 mg × h/L were associated with signifi-
cantly lower event-free survival due to relapse/graft failure
(<78 mg × h/L) and toxicity (>101 mg × h/L). In this analysis as
well as in a study by Bognar et al,29 the addition of an alkylator
agent increased toxicity compared with single alkylator condition-
ing regimens, even when the total exposure was the same. In this
study, using a homogenous conditioning regimen with 2 alkylator
agents (busulfan and melphalan), a lower threshold (in this mainly
adult cohort of patients) was identified, in which inferior OS and
RFS were observed in patients with busulfan exposure <59.5 mg ×
h/L. In this analysis, higher levels of busulfan exposure were not
associated with worse outcomes, though it is important to indicate
that the highest exposure in this cohort was 90.7 mg × h/L, which
is within the optimal range found by Bartelink et al. 113

Previous studies in adults who underwent unmodified allo-HCT
with myeloablative conditioning regimens containing busulfan,
such as BU/FLU/TBI16 or BU/Cy,30 reported worse OS with high
busulfan exposure, with significantly higher TRM in patients with
high busulfan exposure than in those with low exposure. However,
it is important to note that different busulfan PK models were used
in these studies (trapezoidal AUC estimation and not popPK esti-
mation), which limits the ability to compare the actual levels of
busulfan exposure between different studies, because these
exposure estimations do not consistently match those of the
popPK model.13

To the best of our knowledge, this is the first study assessing the
association between busulfan exposure and key outcomes in
patients undergoing TCD-selected allo-HCT. A recent prospective
5230 TAMARI et al
randomized Blood & Marrow Transplant Clinical Trials Network (BMT
CTN) study comparing TCD-selected allo-HCT with an unmodified
allo-HCT with either tacrolimus and methotrexate or posttransplant
cyclophosphamide, tacrolimus, and mycophenolate mofetil for GVHD
prophylaxis reported worse OS for patients treated in the TCD arm,
mostly driven by increased TRM secondary to infectious complica-
tions and organ failure.6 The results of the current analysis suggest
that targeting busulfan levels higher than 59.5 mg × h/L (60 mg × h/
L) may improve OS without increasing TRM among patients under-
going a TCD allo-HCT, with results similar to those reported in the
randomized CTN trial for the 2 other arms.

Despite having a homogenous study population regarding the
conditioning regimen and allo-HCT platform, the relatively small
size of the cohort limited our ability to define a firm optimal range
beyond the threshold of 59.5 mg × h/L (60 mg × h/L). However, a
higher busulfan exposure was associated with a lower incidence of
relapse suggesting that an exposure target level from 59.5 or
60 mg × h/L to 68.8 mg × h/L may provide better disease control
without increasing TRM in patients with AML/MDS undergoing
TCD allo-HCT with a chemotherapy-only regimen. However, this
needs to be confirmed prospectively. Given the variation in
busulfan TDM practices across different centers, studies have
found inaccuracies in up to 29% of dosing recommendations
provided based on first-dose AUC calculations.31 Use of a popPK
model to estimate exposure has the benefit of integrating all rele-
vant PK information across a range of doses and populations,
identifying covariates that influence exposure, and incorporating
age-specific clearance parameters. Additionally, the Food and
Drug Administration and EMA have recognized published popPK
analysis as their preferred methodology for exposure analysis (Food
and Drug Administration 202232 and EMEA 200733), and the use
of these methods may optimize outcomes through a more accurate
estimation of cumulative busulfan exposure. For this analysis, it was
difficult to determine the exact cause of worse survival in the lower
exposure group (<59 mg × h/L); TRM and relapse in the lower
quartile did not reach significance, but were both visually higher in
the low exposure than those in the high exposure group. Thus, the
26 SEPTEMBER 2023 • VOLUME 7, NUMBER 18
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Figure 3. Cause of death distribution among the 4 busulfan quartiles. Relapse did not account for any cases of mortality in the fourth quartile (highest exposure).
different survival was a composite of these 2 main causes of failure:
increased relapsed-related death (Figure 3A) and increased TRM.
Based on other reports by Bartelink et al, we speculated that lower
exposure was associated with worse graft function, which can be
associated with increased infections.

In summary, this analysis adds to the growing literature supporting
the importance of TDM and precision drug dosing of conditioning
regimen agents and their association with allo-HCT outcomes in
both unmodified and TCD-selected allo-HCTs. 113,24,34,35 More-
over, our group is actively studying precision conditioning regimen
drug dosing in the context of TCD allo-HCT in an actively accruing,
prospective clinical trial (NCT04872595).
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