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Role of caveolin-1 in metabolic
programming of fetal brain

Maliha Islam1 and Susanta K. Behura1,2,3,4,5,*

SUMMARY

Mice lacking caveolin-1 (Cav1), a key protein of plasma membrane, exhibit brain aging at an early adult
stage. Here, integrative analyses of metabolomics, transcriptomics, epigenetics, and single-cell data
were performed to test the hypothesis that metabolic deregulation of fetal brain due to the ablation of
Cav1 is linked to brain aging in these mice. The results of this study show that lack of Cav1 caused dereg-
ulation in the lipid and amino acid metabolism in the fetal brain, and genes associated with these deregu-
lated metabolites were significantly altered in the brain upon aging. Moreover, ablation of Cav1 deregu-
lated several metabolic genes in specific cell types of the fetal brain and impacted DNA methylation of
those genes in coordination withmouse epigenetic clock. The findings of this study suggest that the aging
program of brain is confounded by metabolic abnormalities in the fetal stage due to the absence of Cav1.

INTRODUCTION

Development of the central nervous system (CNS) is a highly coordinated spatiotemporal process. It includes proliferation of glia and neurons

and their migration, followed by programmed cell death, formation of synapses, myelination, and establishment of neuronal circuits. In mice,

the development of the neural tube begins at gestation day 9–9.5.1 Neurogenesis in the fetal brain increases with gestation whereas micro-

glia, brain macrophages that function as the immune system of CNS, colonize in two phases during the mid and late gestational stages.2 In

contrast to microglia, synaptogenesis occurs during late gestation and then after birth.3 Similarly, formation of the vascular network and

angiogenesis begin early in CNS development while the genesis of astrocytes begins late in gestation around day 18.3 On gestation day

(GD) 15 when the placenta is fully functional,4 extensive changes occur in the fetal brain that include formation of distinct layers of the cerebral

cortex, development of GABAergic inhibitory neurons, formation of the pituitary stalk, and accelerated growth of neuronal population in the

hindbrain. Generation of oligodendrocytes, pruning, and myelination predominantly occur during early postnatal periods.3

Our recent work showed that epigenetic aging of the mouse brain is programmed at the fetal stage.5 In an earlier study, we also observed

that sirtuin 6 (Sirt6) which regulates mouse longevity was expressed in the fetal brain in correlation with caveolin-1 (Cav1).6 Cav1 codes for a

major membrane protein which is abundantly found in endothelial cells7,8 and also in many other cell types with relatively lower

abundance.9–12 Mice lackingCav1 are viable and fertile but show phenotypes including impaired endothelial functions, angiogenesis, hyper-

proliferative and vascular abnormalities.13 Thesemice show reduced lifespan14 and exhibit neuronal aging at a young age (3–6month old) that

resembles the brain of one- and a half-year-old wild-type (WT) mice.15 Multiple hallmarks of Alzheimer’s disease (AD) such as increased am-

yloid beta, tau, astrogliosis, and shrinkage of cerebrovascular volume were observed in these mice at early adult age.15 As Cav1 influences

beta-secretase which plays a key role in the production of amyloid beta peptides in AD brain,16 links of Cav1 have been suggested with AD

symptoms in thesemice.15 Experiments with animalmodels of AD have shown that amyloid beta levels and gradual decline in cognitive ability

are associated with abnormal conditions of the brain during early development.17–20 The ‘‘Latent Early life Associated Regulation’’ (LEARn)

model proposed by Lahiri and Maloney21 suggests that changes in the epigenetic state of the brain during early life serve as precursors

for development of AD pathologies later in life.

In theWTmouse fetal brain, Cav1 plays a role in the clathrin-independent endocytosis to promote neuronal maturation.10 As there are no

caveolae in neuronal cells, Cav1 functions in a caveolae-independent manner in neuronal cells.10,22–24 Besides the role of Cav1 in neuronal

maturation, Cav1 functions as a major regulator of cellular metabolism.25–28 It plays important roles in the regulation of urea29 and serine16

as well as maintaining cellular homeostasis of cholesterol.25 Loss of Cav1 deregulates cholesterol metabolism in embryonic fibroblasts and

peritoneal macrophages in mice.13 Accumulating evidence suggests that specific stress or nutritional and/or metabolic abnormalities during

fetal stages are linked to an increased risk of neurological disorders in adult life.17,20,30–34 Studies have also shown that metabolic abnormal-

ities in early life are linked to fetal epigenetic programming for adult health and diseases.35–39 In addition, evidence suggests that epigenetic

1Division of Animal Sciences, 920 East Campus Drive, University of Missouri, Columbia, MO 65211, USA
2MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
3Interdisciplinary Reproduction and Health Group, University of Missouri, Columbia, MO, USA
4Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA
5Lead contact
*Correspondence: behuras@missouri.edu
https://doi.org/10.1016/j.isci.2023.107710

iScience 26, 107710, October 20, 2023 ª 2023 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

ll
OPEN ACCESS

mailto:behuras@missouri.edu
https://doi.org/10.1016/j.isci.2023.107710
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2023.107710&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


memory plays a key role to control the effects of early life environmental stresses on development, aging, and passing on parental exposures

and experiences to offspring.39–42 Epigenetic memory is an emerging concept in fetal origin of adult health and disease.39,43–45 As Cav1-null

mice show abnormal metabolism compared to WT mice,13,46–48 it is significant to understand how the loss of Cav1 influences brain develop-

ment and aging in mice.

The purpose of this study is to investigate metabolic, epigenetic, and transcriptomic change of mouse fetal brain due to the ablation of

Cav1. A particular aim is to identify metabolism genes that are altered in the fetal brain at the transcriptional and epigenetic levels due to the

loss ofCav1. In addition, this study aims to identify genes that are altered in the brain, both at fetal and aging stages, ofCav1-null compared to

WTmice. The final aim of this study is to identify cell types of the fetal brain and investigate expression of the impacted metabolism genes in

the individual cell types of the fetal brain in a comparative manner in Cav1-null compared to WT mice.

RESULTS

Metabolic deregulation of fetal brain due to Cav1 ablation

We performed untargeted metabolomics analysis of GD15 fetal brain, representing both sexes of WT and Cav1-null mice, to identify metab-

olites that were impacted due to the ablation of Cav1. A total of 139 and 142 metabolites were detected in the WT and Cav1-null fetal brain,

respectively (Table S1). Of the 139 detected metabolites of the WT brain, the identity of 85 was known and that of the other 54 metabolites

were unknown. In the Cav1-null brain, 81 were identified and the other 61 were unknown. While several metabolites showed female-bias

expression in the WT mice, an opposite pattern was observed in Cav1-null mice (see Table S1). Though sex differences in the rate of meta-

bolism are known in human,49 this finding suggested thatCav1may play a role in brainmetabolism in a sex-dependentmanner. Specific lipids

and amino acids were significantly (p < 0.02) deregulated in the fetal brain due to the loss of Cav1 (Table S2). Cholesterol, hexadecanoic acid

(also known as palmitic acid), and stearic acid decreased in the fetal brain of Cav1-null mice (Figure 1). While cholesterol and palmitic acid

decreased by 10 and 4.7-folds, respectively, stearic acid decreased by�100-folds. L-proline and 5,6-dihydrouracil also decreased significantly

due to the absence of Cav1 (Table S2). On the other hand, several amino acids and organic compounds significantly increased in the fetal

brain in response to the loss of Cav1. The alpha glycerophosphate ester, an esterified form of glycerol, increased by �60-fold. Among all

the identified metabolites, urea was the most altered brain metabolite in the Cav1-null mice. Urea level increased drastically, by 2,183-folds,

in the fetal brain of Cav1-null compared to WT mice suggesting a major role of Cav1 in the regulation of brain urea.

By mapping the deregulatedmetabolites to the compounds database of Kyoto Encyclopedia of Genes and Genomes (KEGG), we further

identified that these metabolites were associated with specific metabolic pathways (Table S2). The deregulated lipids were associated with

Figure 1. Experimental design and metabolomics analysis

(A) Timed pregnancy was performed separately with WT and Cav1-null mice to collect GD15 fetal brain. (B) Pairwise cluster analysis of variation of metabolite

levels show that specific lipids, including cholesterol, were suppressed whereas several amino acids were activated in the fetal brain due to the absence of Cav1.
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cholesterol metabolism, bile acid and steroid hormone biosynthesis whereas the deregulated amino acids were associated with pathways

of alanine, aspartate, and glutamate metabolism, GABA (gamma-aminobutyrate) shunt, histidine degradation, and arginine and proline

biosynthesis.

Transcriptomic and epigenetic changes of metabolism genes in the fetal brain due to Cav1 ablation

RNA-seq was performed with the fetal brain (GD15) of WT and Cav1-null mice to investigate expression of metabolic pathway genes asso-

ciated with the deregulated metabolites. RNA-seq data (accession numbers GEO: GSE215138 and GEO: GSE215139) analysis identified sig-

nificant (false discovery rate <0.05) differential expression (DE) of 2,218 genes in the fetal brain of Cav1-null compared to that of the WTmice

(Table S3). By mapping the deregulated genes andmetabolites to KEGG databases, we identifiedmetabolite-gene pairs that are associated

with common KEGG pathways (Figure 2A). In the next step, we identified the pairs where both the metabolite and gene were either up regu-

lated or downregulated due to the loss ofCav1 (Figure 2B). The list of these co-regulated gene-metabolite pairs is listed in Table S4. Bicluster

analysis50 showed three distinct clusters (CL1, CL2, and CL3) in which these metabolites and genes varied in a canonical correlation51 manner

inCav1-null compared toWTbrain (Figures 2C and 2D). Enrichment analysis by hypergeometric test showed that specificmetabolic pathways

were significantly (p < 0.05) enriched by these co-regulated genes (Table 1). They are related to metabolism of starch and sugar, vitamins,

sphingolipids, and amino acids. The covariate estimates of gene expression andmetabolite changes in each cluster, based on canonical cor-

relation analysis,52 are listed in Table S5. Both CL1 and CL2 represented genes and metabolites associated with different lipid metabolism

Figure 2. Integrative analysis of metabolomics and RNA-seq data

(A) Metabolites (Ms) weremapped to KEGG compounds database, and genes (Gs) weremapped to KEGGgenes database to identify metabolite-gene pairs that

mapped to the same pathways (Ps).

(B) The direction of change of metabolite and gene was then evaluated. Pairs in which both the gene and metabolite showed similar change (U: upregulation,

D: downregulation) in the brain of Cav1-null compared to WT mice were extracted. They were subjected to canonical correlation analysis.

(C) Canonical changes of metabolites (U: upregulated, D: downregulated) clustered into three distinct clusters (CL1, CL2, and CL3). Each dot here represents a

metabolite. The patterns of variation are shown in boxplots with different colors.

(D) Canonical changes of genes (U: upregulated, D: downregulated) in the same three clusters (CL1, CL2, and CL3). Each dot represents a gene. The patterns of

variation are shown in boxplots with different colors.
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pathways. However, we observed genes (Dgkb, Pla2g4b, Prkcg, Coq3, Gng10, Gng11, Gng5, Prkcg and Prlr, and Ggh) and metabolites

(alpha-glycerophosphate ester, L-tyrosine, and methionine) that were expressed in CL1 but not in CL2. On the other hand, CL3 primarily

represented amino acid metabolism pathway genes. Based on mutual information network analysis53 and network centrality test,54 specific

metabolites and genes played central roles in the regulation of these pathways.Aqp1 andAdcy3, and cholesterol were predicted as key gene-

metabolite interactions in CL1 and CL2. Dnah2 and glutamic acid were predicted as key gene-metabolite interaction in CL3. Mapping the

genes associated with the clusters to known ligand-receptor genes,55 we further identified specific ligand and receptor genes that were pre-

dominantly associated with cholesterol (Table S6). While our earlier study had identified a plethora of co-expressed ligand-receptor genes in

the WT mouse fetal brain,56 the current finding suggested that the loss of Cav1 perturbated several receptor-ligand interactions due to the

deregulation of cholesterol in the brain. A majority of these receptor-ligand genes were downregulated in the fetal brain of Cav1-null

compared to that of WT mice supporting the idea that these genes are associated with the deregulation of cholesterol homeostasis in

Cav1-null mice.13 Besides cholesterol, we also observed ligand-receptor genes associated with D-erythro-sphingosine and L-glutamic acid

(Table S6). The ligand and receptor genes associated with cholesterol altered in the same direction but those associated with D-erythro-

sphingosine or L-glutamic acid altered in an opposite direction suggesting differential receptor-ligand signaling in the brain in response

to Cav1 ablation.

The RNA-seq data identified several DE genes that were associated with mouse epigenetic clock.57 By profiling the methylation level of

CpG (cytosine-guanine) associated with an epigenetic clock in the fetal brain ofWT andCav1-null mice (Table S7), we identified sites (n = 784)

that were methylated at a higher level in the fetal brain of Cav1-null compared to WT mice (Figure 3). A lesser number of CpGs (n = 492)

showed an opposite pattern of methylation. The Venn diagrams in Figure 3 show patterns of hyper and hypo-methylations (shown as ‘‘m’’)

within the epigenetic clock genes (shown as ‘‘g’’) in the fetal brain of Cav1-null compared to WT mice. A total of 80 clock genes were

hypo-methylated at 406 CpG sites, and another group of 63 clock genes were hyper-methylated at 232 sites in the Cav1-null brain compared

to that of theWTbrain. In addition, we identified a total of 60 genes each of which showed both the types ofmethylations. A total of 169 hypo-

methylated and 133 hyper-methylated sites were identified in these genes. Specificmetabolic geneswere among these epigenetically altered

gene groups. Stard3, Dapk1, Bdnf, and Cpt1c were hyper-methylated whereas Wnt3a, Wnt7b, Apoe, and Gabra5 were hypo-methylated

genes in the fetal brain due to Cav1 ablation. On the other hand, Fzd2 and Pou2f2 showed both types of methylations in the fetal brain of

Cav1-null mice relative to WT mice.

Next, we asked how these metabolism genes differentially methylated in the fetal brain were expressed in the brain of aging mice. RNA-

seq was performed to determine gene expression changes of brain of 70-weeks old Cav1-null mice compared to age-matched WT mice

(accession numbers GEO: GSE215138 and GEO: GSE215139). Differential expression (DE) analysis identified 2,747 genes that were altered

significantly (false discovery rate <0.05) in the aging brain of Cav1-null compared to WT mice (Table S8). Specific genes (n = 290), henceforth

referred to as common DE genes (CDGs), were significantly altered both in fetal as well as aging brain in response to the loss of Cav1

(Table S9). They included genes that were associatedwith the deregulatedmetabolites in the fetal brain, referred to asMDGs, and also genes

that were epigenetically altered in the fetal brain, referred to as EDGs (Table S10). We identified groups of CDGs, EDGs, andMDGs that were

coordinately activated or suppressed in both the fetal and aging brain due to the loss of Cav1 (Table S11) suggesting that gene expression

pattern in the aging brain of Cav1-null mice was linked to the metabolic and epigenetic changes in the fetal brain. To further validate gene

expression data, a subset of five genes (Hspg2, Mmp9, Igf2, Eif3j1, and Hbb-bt) were assayed by quantitative real-time PCR (qRT-PCR) with

brain samples from the fetal (GD15) and aged (week 70) from WT and Cav1-null mice. The qRT-PCR expression of all the five genes showed

similar expression changes as observed from RNA-seq data (Figure S1). The similarity in expression changes was assessed by Pearson cor-

relation coefficients that varied between 0.908 and 0.995.

Table 1. List of metabolic pathways significantly enriched by the metabolic genes differentially expressed in fetal brain of Cav1-null compared to WT

mice

Pathway name Pathway ID p value Fold enrichment

Starch and sucrose metabolism mmu00500 0.009221 34

Retinol metabolism mmu00830 0.000006 32.33

Sphingolipid metabolism mmu00600 0.001619 27

Cysteine and methionine metabolism mmu00270 0.001619 27

Amino sugar and nucleotide sugar metabolism mmu00520 0.002664 25.5

Linoleic acid metabolism mmu00591 0.003141 25

Porphyrin metabolism mmu00860 0.009749 21.5

Nicotinate and nicotinamide metabolism mmu00760 0.013375 20.5

Alanine, aspartate and glutamate metabolism mmu00250 0.018279 19.5

Drug metabolism - other enzymes mmu00983 0.000327 18.4

Arachidonic acid metabolism mmu00590 0.002566 14.33

Purine metabolism mmu00230 0.000329 13.4
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Identification of cell types and marker genes of WT and Cav1-null fetal brain

We investigated expression patterns of metabolic genes in single cells of the fetal brain from the WT and Cav1-null mice. Single-nuclei RNA

sequencing (snRNA-seq)58 was performed to achieve this objective. The snRNA-seq data (accession number GEO: GSE214759) identified a

total of 9,544 cells of the WT brain and 10,535 cells of the Cav1-null fetal brain. Integrated data analysis of WT and Cav1-null snRNA-seq data

by Seurat59 identified clusters of neurons, ependymal, radial glia, andmicroglial cells (Figure 4) based on expression of knownmarker genes of

these cells.60 The list of marker genes of individual clusters is provided in Table S12. A significant bias (Yates Chi-Square = 174.73, p < 0.0001)

was observed in the relative number of neuronal and glial cells in the brain of Cav1-null compared to WTmice (Figure 5). While the WT brain

showed 3,623 neurons and 5,921 glial cells (comprising of radial glia, ependymal, and microglia cells), the Cav1-null brain showed 4,974 neu-

rons and 5,561 glial cells. This suggested a change in the relative abundance between neuronal vs. glial cells in the fetal brain due to the loss of

Cav1. In addition, we observed a significant change (Yates Chi-Square = 149.09, p < 0.0001) in the number of ependymal and radial glia cells

due to the loss ofCav1. A greater number of ependymal cells compared to the radial glial cells were observed in theWTbrain, but an opposite

pattern was evident in the Cav1-null brain. Differential network patterns were observed between neuronal and glial cells in the Cav1-null fetal

brain compared to the WT brain (Figure S2). In particular, the neuronal and microglial cells showed lower mutual information in gene expres-

sion in theCav1-null fetal brain compared to that of theWTbrain. Radial glia cells weremore abundant inCav1-null compared to theWTbrain

Figure 3. Epigenetic changes of fetal brain and influence on gene expression of aging brain

(A) Higher level of methylation (beta values, shown in y axis) in Cav1-null (KO) brain compared to WT brain (female:1, male:2).

(B) Lower level of methylation in Cav1-null brain compared to WT brain (female:1, male:2).

(C) In themiddle panel, Venn diagram shows the number ofmethylations (shown as ‘‘m’’) identified in clock genes (shown as ‘‘g’’). The number ofmethylations that

increased in the fetal brain ofCav1-null compared toWTmice is shown in red. The genes are shown as gray bar with red stars (methylations). An opposite pattern

was also observed where CpG sites were hypo-methylated in the fetal brain of Cav1-null compared to WT mice. The genes are shown as gray bar with blue stars

(methylations). In a third group of genes (n = 60), both the types of methylations were observed. They are shown as gray bar (gene) with both red and blue stars

(methylations). Specific metabolic genes were identified within these three groups of differentially methylated genes. The gene name, number of methylations

(within parenthesis) in the gene, and association with deregulated metabolites are shown.
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(Figures 5A and 5B) suggesting a role of Cav1 in radial glia proliferation. Several metabolic genes associated with lactic acid (LA), L-tyrosine

(TY), myo-inositol (MI), glycerophosphate ester (GP), L-glutamic acid (GA), and cholesterol (CH) were identified from snRNA-seq data as cell-

specific markers (Table S13). A varying number of metabolic genes were expressed as markers of different cell types between the WT and

Cav1-null fetal brain (Figure 5C and 5D). The marker genes related to cholesterol were predominantly associated with microglia cells.

They included Bcl2, Cdk6, Creb5, Gli2, Gli3, Lef1, Notch2, Plcb1, Plpp3, Prkca, Pbx1, Prkd1, Runx1t1, and Tcf7l1 whose expression showed

differential hierarchical clustering patterns in the microglia of Cav1-null compared to WT mice (Figure S3). The Runx1t1 gene that controls

neuronal differentiation in the developing brain61 was expressed in the ependymal and radial glia cells at a reduced level in the Cav1-null

compared to the WT brain (Figure 6). Similarly, Cntnap2 (contactin-associated protein 2) gene, a major regulator of brain development,62

was expressed at a reduced level in the radial glia cells of Cav1-null compared to the WT brain (Figure 6). Genes related to L-glutamic

acid were mostly associated with neurons and radial glia (Table S13). A greater number of L-glutamic acid genes were associated with micro-

glia and ependymal cells of the Cav1-null brain compared to the WT brain. These findings collectively suggested that ablation of Cav1 de-

regulated specific metabolic genes in specific cell types of the fetal brain.

DISCUSSION

Relevance of metabolic change

The current study showed that lack of Cav1 perturbed specific metabolites in the fetal brain of mouse. A reduced level of cholesterol was

observed in the fetal brain in response to the loss of Cav1. Reduced level of cholesterol was also observed in embryonic fibroblasts and

peritoneal macrophages of Cav1-null mice in an earlier study.13 The same study13 further observed that reduction of cholesterol was asso-

ciated with an increase of acyl-CoA:cholesterol acyl-transferase suggesting a higher level of esterification of cholesterol in response to

Cav1 ablation. However, brain cholesterol is largely independent of circulating cholesterol in the blood due to the blood-brain barrier.

Though cholesterol is transported from maternal circulation to the fetal circulation via the placenta,63 cholesterol is primarily synthesized

in the glia cells of the brain.64 Within neurons, cholesterol homeostasis is controlled by the activation of the oxysterol 24S-hydroxycholes-

terol (24S-HC) that removes excess cholesterol. In the developing mouse brain, specific nuclear receptors such as liver-X receptors (LXR)

play major roles in the regulation of neurogenesis.65 LXRs can be activated by 24S-HC in the brain66 that results in the activation of choles-

terol transporter Abca1 to increase efflux of cholesterol from glia.64 Cholesterol plays critical roles in patterning, myelination, neuronal dif-

ferentiation, and synaptogenesis during brain development.67 Deregulation of cholesterol in the fetal brain can also lead to developmental

defects of the brain later in life.34 Besides cholesterol, the metabolomics analysis in the present study showed reduction of palmitic acid

and stearic acid but increase of several amino acids in the fetal brain of Cav1-null mice. Changes in lipids and amino acids may be asso-

ciated with the lipid-protein interactions in the brain.68 Furthermore, the fetal brain of Cav1-null mice showed a dramatic increase of urea

compared to that of WT mice. Urea is primarily produced in the liver. But urea in the brain is produced by arginine that acts as a substrate

for urea cycle.69 Increased urea level in the brain is associated with age-related brain disorders including Huntington’s disease, Parkinson’s

disease, and Alzheimer’s disease.70–72 It is likely that high level of urea is linked to accelerated aging and early life neurodegeneration

known in Cav1-null mice.15

Figure 4. Dimensional plot of single-cell gene expression of Cav1-null and WT fetal brain

PC1 and PC2 represent the principal component axes. Each dot represents a cell. Cell types are color coded as shown in the legends.
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Relevance of metabolism to signaling pathways

Our integrative analysis of metabolomics and gene expression showed that specific metabolite and gene pairs were coordinately upregu-

lated or downregulated in the fetal brain due to the ablation of Cav1. These genes and metabolites were commonly associated with specific

KEGG pathwaymodules (a module represents a group of interacting pathways) including beta-oxidation (mmu_M00086), cholesterol biosyn-

thesis (mmu_M00101), and triacylglycerol biosynthesis (mmu_M00089) suggesting role of these pathways in metabolic deregulation of lipids

in the Cav1-null brain. Fatty acids are generally avoided as energy source for the brain as they demand more oxygen than glucose. Instead,

beta-oxidation of glucose is widely used as the major source of energy for brain.73,74 Stearic acid was the most deregulated lipid in the fetal

brain due to loss ofCav1. Stearic acid plays a critical role in brain development in mice.75 Stearic acid along with palmitic acid are significantly

altered in the cortex in aging brain.76 Moreover, brain lipids including cholesterol play influential roles in neuronal aging and aging-related

brain disorders.15,77,78 The increase of urea in the Cav1-null brain may be facilitated due to carbamylation79 which is a post-translational

protein modification process via nonenzymatic reaction between isocyanic acid and free amino groups. Carbamylation leads to endothelial

dysfunctions that are hallmarks of aging.79 Therefore, we speculate that high level of urea in the fetal brain of Cav1-null mice may cause LDL

carbamylation leading to accelerated neuronal aging.18 In a healthy brain, urea homeostasis is tightly controlled and its deregulation is known

to cause pathogenic conditions that eventually lead to dementia.69–72

Relevance of receptor-ligand deregulation

Our data also identified specific ligand and receptor genes that were impacted in the fetal brain due to the ablation of Cav1. The ligands

included apolipoprotein, calmodulin, collagen, fibroblast growth factors, fibronectin, and jagged and G proteins (Table S6). The cognate

receptors of these ligands were identified as integrins, fibroblast growth factor receptor, notch, adenylate cyclases.Apoe functions as a trans-

porter of cholesterol in the brain80–82 whereas calcium and calcium-binding proteins (calmodulin) play as regulators of cholesterol meta-

bolism.83,84 Functional connections of collagen, fibroblast growth factors, and fibronectin with the regulation of cholesterol have been

Figure 5. Cell types and metabolic genes as cell specific markers

In the upper panel, the histograms show the differential abundance of glial and neuronal cells in the fetal brain ofWT (A) andCav1-null mice (B). In the lower panel,

the heatmaps show association of identified marker genes with lactic acid (LA), L-tyrosine (TY), myo-inositol (MI), glycerophosphate ester (GP), L-glutamic acid

(GA), and cholesterol (CH) in different cell types of WT (C) and Cav1-null fetal brain (D). The scales right to the heatmaps show the color codes for the number of

marker genes.
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demonstrated.85–87 Genes coding for these ligands were downregulated in the Cav1-null brain. As abnormal cholesterol level in the brain

influences neurodegeneration,15,88 these findings suggest possible role of cholesterol deregulation in the early life brain aging of Cav1-

null mice.

Metabolic changes and epigenetic alteration of brain

Within this study, we investigated if genes associatedwith the deregulatedmetabolites were epigenetically altered in the brain.We identified

several genes including those associated with Wnt signaling that were differentially methylated in the fetal brain of Cav1-null mice. Wnt

signaling plays important functions during brain development, particularly in neuronal maturation and synaptogenesis.89 Methylation of

Wnt signaling modulates the regulation of prenatal hypoxia of the brain.90 Wnt signaling genes are deregulated in aging brain as well as

in the brain of AD patients.91 It is likely that epigenetic changes of Wnt signaling genes in Cav1-null mice are associated with Alzheimer’s

disease symptoms observed in thesemice at an early age.15 While some arguments have beenmade for the use ofCav1-null mice as a model

for AD,15 additional studies are needed to support its usefulness as a reliable animal model to study AD pathogenesis in humans.92 AD

pathology depends not only on the formation of amyloid plaques but also on abnormal neurofibrillary tangle.93 Thus, a better understanding

of the role of Cav1 in both these processes is necessary to determine usefulness of these mice as animal models of AD. There are established

mouse models (such as APPSWE, TAU, ARTE10, and humanized APOE) that researchers commonly use in studying human AD. The study by

Head et al.15 suggested that Cav1 ablation was linked to accelerated neurodegeneration as Cav1 controls beta-secretase which plays a key

role in the production of amyloid beta peptides. We didn’t pursue any work to use Cav1-null mouse as a model to investigate AD pathogen-

esis in this study.

The findings of the current study are relevant to the ‘‘Latent Early life Associated Regulation’’ (LEARn) model proposed by Lahiri and

Maloneywhich suggests that changes in the epigenetic state of the brain during early life can be linked to the development of ADpathologies

later in life. Links between metabolism and epigenetic changes in fetal brain programming are known.37,45,45,94 By profiling methylation of

mouse epigenetic clock genes,5 the present study showed that nearly 50% of the CpGs associated with the mouse epigenetic clock were

differentially methylated in the fetal brain due to the loss of Cav1. We wanted to know how the metabolism genes epigenetically altered

in the fetal brain were expressed in the brain at old age. The WT and Cav1-null mice were aged to 70 weeks, and brain gene expression

was profiled by RNA-seq. The data analysis showed that metabolism genes epigenetically alerted in the fetal brain were differentially

regulated in the aging brain. Previous studies have suggested that early life metabolic stresses are epigenetically linked to adult health

and diseases.37 In addition, the role of epigenetics in early life links of aging and longevity has been suggested.19,95–97 Our recent work

suggested that brain aging in mice is programmed by epigenetic changes in the fetal stage.5 However, further work is needed to confirm

if metabolic changes in the fetal brain of Cav1-null mice are linked to accelerated aging and neurodegeneration of these mice.

Cav1 and glia-neuron crosstalk

Finally, by performing snRNA-seq, we identified specific cell types that were impacted in the fetal brain due toCav1 ablation. The snRNA-seq

data showed that the relative abundance of glial and neuronal cells was significantly altered in the fetal brain due to the loss ofCav1 (Figure 5).

In particular, the radial glia cell population was significantly altered in response to Cav1 ablation. During brain development, radial glial cells

play important functions to guide newborn neurons to migrate radially from the ventricular zone to the mantle region. This process is critical

for the formation of the cerebral cortex. Recent studies have also shown that these cells regulate gyrification and folding of the cortex98 as well

as pattern formation of the central nervous system.99 The ependymal cells in the fetal brain play multifaceted function to control the produc-

tion and flow of cerebrospinal fluid, regulate brain metabolism, and facilitate removal of waste.100 Deregulated ependyma can impair these

process during brain development leading to increased risk for neurodegenerative diseases.101 Cav1 is known to influence cell proliferation

Figure 6. Violin plots showing expression of Runx1t1 and Cntnap2 in brain cells of WT (A) and Cav1-null mice (B)

X axis shows the cell type and Y axis shows the relative expression values of the integrated data. The cell types in the X axis are abbreviated as R (radial glia), E

(ependymal), M (microglia), N (neuron) for both the wild-type (WT) and knockout (KO) samples. The kernel density, wherever applicable, is shown with color.
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and death11,24,102 by controlling specific apoptosis genes.103,104 Cav1 is regarded as a master regulator of cellular senescence.105 We iden-

tified specific genes associated withmetabolic pathways (KEGG) of cholesterol, alpha-glycerophosphate ester, myo-inositol, L-glutamic acid,

L-tyrosine, and lactic acid that were differentially expressed in specific cells of the fetal brain of Cav1-null compared to WT mice (Table S13).

The marker genes associated with cholesterol were predominantly expressed in microglia cells, an observation which is consistent to earlier

report that high concentrations of cholesterol were required for the survival of microglia.106 Previous single-cell RNA-seq studies have also

shown that specific metabolism genes such as Trem2, Lpl, andApoE are activated in the microglia that influencesmetabolic demands during

brain development.81,107,107 In particular, Trem2 plays a pivotal role in regulating cholesterol metabolism,81 survival of microglia cells,108 and

mitigating inflammatory responses in the brain.109

Limitations of the study

Despite these findings, we consider that our study has limitations. Though methodologies have recently emerged to quantify metabolites in

single cells,110,111 one of the limitations of the present study is the lack of information about metabolite changes in single cells of the brain.

However, we were able to determine expression differences of metabolic genes in brain cells in Cav1-null relative to the WT brain. The other

limitation of the study relates to the mechanisms of howmetabolic deregulation can program the fetal brain of Cav1-null mice. There may be

maternal effects on deregulation of fetal brain metabolism112,113 that have not been addressed in the current work. However, brain

metabolism including that of cholesterol is largely independent from peripheral metabolisms. It is likely that the placenta of Cav1-null

mice is metabolically deregulated resulting in an abnormal regulation of the brain-placental in these mice. Also, we want to emphasize

that although Cav1-null mice show certain molecular hallmarks of Alzheimer’s disease,15,114 the present study was not directed to investigate

Alzheimer’s disease in these mice. Given the biological effect of the large metabolomic effects observed in this study, it is possible that the

changes in the metabolites may not be relevant to AD. Future experiments are necessary for biological validation of the omics data of this

study relative to AD using established mouse models or in-vitro cell culture. Nevertheless, the findings of the present study suggest that

abnormality in brain metabolism during fetal life can have profound impacts on the brain during aging.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

B Mice

d METHOD DETAILS

B Metabolomics analysis of fetal brain

B Bulk RNA-seq analysis

B DNA methylation analysis

B Single-nuclei RNA-seq

B Data validation

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2023.107710.

ACKNOWLEDGMENTS

This work was supported, in part, by start-up fund from the University of Missouri to SKB. The authors acknowledge the University of Missouri

Genomics Technology Core and theMetabolomics Center for the 10XGenomics andmetabolomics services, and Ananya Samal and Shankar

P Poudel for reading the manuscript.

AUTHOR CONTRIBUTIONS

S.K.B. designed the study, M.I. performed experiments, M.I. and S.K.B. performed data analysis, M.I. and S.K.B. wrote the paper.

DECLARATION OF INTERESTS

The authors declare that they have no competing interests in this research.

ll
OPEN ACCESS

iScience 26, 107710, October 20, 2023 9

iScience
Article

https://doi.org/10.1016/j.isci.2023.107710


Received: March 15, 2023

Revised: May 10, 2023

Accepted: August 23, 2023

Published: August 25, 2023

REFERENCES
1. Greene, N.D.E., and Copp, A.J. (2014).

Neural tube defects. Annu. Rev. Neurosci.
37, 221–242. https://doi.org/10.1146/
annurev-neuro-062012-170354.

2. Matcovitch-Natan, O., Winter, D.R., Giladi,
A., Vargas Aguilar, S., Spinrad, A., Sarrazin,
S., Ben-Yehuda, H., David, E., Zelada
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the corresponding author, Susanta

K. Behura (behuras@missouri.edu).

Materials availability

This study didn’t create newmousemodel to share. Themice used in this study are available for purchase from The Jackson Laboratory. Strain

numbers are listed in the key resources table.

Data and code availability

d The snRNA-seq, and bulk RNA-seq data (both raw and processed) have been deposited in the Gene Expression Omnibus (GEO) database

and are publicly available as of the date of publication. The accession number for snRNA-seq data is GEO: GSE214759. The accession

numbers for bulk RNA-seq are GEO: GSE215138 and GEO: GSE215139. The metabolomics and methylation data are provided in the sup-

plemental files within this study. File numbers are listed in the key resources table.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice

The WT (C57BL/6J) and Cav1-null mice were obtained from Jackson Laboratory (stock numbers: 000664 and 007083 respectively). Adult fe-

males were mated with fertile males to induce pregnancy. The start of pregnancy (day 1) was considered when a vaginal plug was observed.

The pregnant mice were euthanized on GD15, and the whole fetal brain was collected.56 The samples were washed in sterile PBS and snap

frozen in liquid nitrogen. Additionally, Cav1-null mice were aged to 70 weeks to collect aging brain. All animal procedures were approved by

the Institutional Animal Care and Use Committee of the University of Missouri, and were conducted according to the Guide for the Care and

Use of Laboratory Animals (National Institutes of Health, Bethesda, MD, USA).

METHOD DETAILS

Metabolomics analysis of fetal brain

The WT and Cav1-null fetal brain samples, in three replicates, were processed at the University of Missouri Metabolomics Center for untar-

geted metabolomics profiling of by gas chromatography–mass spectrometry (GC-MS). An Agilent 6890 GC coupled to a 5973N MSD mass

spectrometer was used for GC-MS analysis. The replicate sample represented the whole brain from individual male and female fetuses. Using

pestle and mortar, each sample was homogenized dry. 1 mg of the homogenate was mixed with 0.5mL of chloroform containing 10.0 mg/mL

docosanol (as a non-polar internal standard) by vortexing for 1 minute. The mixture was then incubated at 50�C for 45 minutes in an oven with

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw and processed data: snRNA-seq This paper GEO: GSE214759

Raw and processed data: bulk RNA-seq (wildtype and knockout fetal brain) This paper GEO: GSE215139

Raw and processed data: bulk RNA-seq (wildtype aging brain) Islam et al.5 GEO: GSE215138

Raw and processed data: bulk RNA-seq (knockout aging brain) This paper GEO: GSE215139

Metabolomics This paper Table S1

DNA methylation This paper Table S7

Experimental models: Organisms/strains

Mice: C57BL6/J (Strain #:000664) The Jackson Laboratory RRID:IMSR_JAX:000664

Mice: B6.Cg-Cav1tm1Mls/J (Strain #:007083) The Jackson Laboratory RRID:IMSR_JAX:007083

Oligonucleotides

List of primers for qRT-PCR data validation, see Table S14 This paper N/A
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periodical shaking. The samples were equilibrated at room temperature and then added with 0.5ml of water containing 25 mg/mL ribitol (as a

polar internal standard) and vortexing for 1 minute. The mixture was incubated at 50�C for 45 minutes. The samples, after allowing to equil-

ibrate to room temperature, were centrifuged at 3000xg for 30 minutes at 4�C to separate the solution into two layers, and 1ml of each layer

was transferred into 2.0mL auto-sampler vials using a syringe. The syringe was washed three times using chloroform (for organic layer) and

methanol (for aqueous layer). The aqueous polar layer (upper layer) was dried in a rotary evaporator.

Derivatization of polar metabolites was performedby adding 40mL of freshly preparedmethoxyamine solution followed by brief sonication

and incubation at 50�C for 1h. The samples were allowed to equilibrate at room temperature, and then added with 40mL N-Trimethylsilyl-N-

methyl trifluoroacetamide (MSTFA) and 1% trimethylchlorosilane (TMCS) followedby incubation for 1h at 50�C. After the sampleswere cooled

down to room temperature, 1.0 mL of the solution was injected at 15:1 split ratio onto a HP 6890N GC equipped with a 60M DB-5-MS column

coupled to a HP 5973NMS. The injection port and transfer arm were held at 280�C. Separation was achieved with a temperature program of

80�C for 2 min, then ramped at 5�C per min to 315�C and held for 12 min at a constant flow of 1.0 mL/min. The MS source was held at 250�C,
and scanned from m/z 50-650. Derivatization of polar metabolites was performed by resuspending the non-polar layer of each sample in

0.4ml of chloroform and hydrolyzedby adding 0.5mL of 1.25MHCl inMeOH. After evaporating the solvents, the samples were re-suspended

in 35 mL pyridine, briefly sonicated, and incubated at 50�C until residue was dissolved. Then 30 mL of MSTFA+ 1% TMCS were added, and the

mixture was incubated 1hr at 50�C. After allowing the samples to equilibrate to room temperature, they were transferred to autosample vial

with a 200 mL glass insert using glass pipette and analyzed using an Agilent 6890GC coupled to 5973MSD scanning fromm/z 50-650. 1.0 mL of

the solutionwere injected at 1:1 split ratio. The injection port and transfer armwere held at 280�C, separationwas achievedwith a temperature

program of 80�C, for 2 min, then ramped at 5�C/min to 315�C and held for 12 min at a constant flow of 1.0 mL/min. The spectral analysis was

performed by the AMDIS (AutomatedMass Spectral Deconvolution and Identification System), andmetabolites were identified using a com-

mercial NIST17 mass spectral library. The abundance of the identified metabolites was determined by the Metabolomics Ion-Based Data

Extraction Algorithm (MET-IDEA).115

Bulk RNA-seq analysis

Total RNAwas isolated fromGD15 fetal brain ofWT andCav1-null mice as well as fromweek 70 oldCav1-null mice using anAllPrepDNA/RNA

Mini Kit (Qiagen, Cat No./ID: 80204) following themanufacturer’s instruction. Samples from six female fetuses, three fromWT and threeCav1-

null mice, were used for RNA isolation. The RNA-seq data of week 70 WT mice brain was used from our earlier study5 (Accession # GEO:

GSE215138). For RNA extraction, samples were homogenized with 500 ul RLT buffer (Qiagen, Cat No./ID: 79216) supplemented with 5ml

of 2-mercaptoethanol. The homogenate was transferred to a fresh tube and centrifuged for 1 minute at R 8000 x g. From the supernatant,

750ml was transferred to a fresh tube and mixed with 1 volume 70% ethanol to precipitate RNA. RNA was eluted in 30ml nuclease-free water

twice to a total volume of 60ml. Concentration of RNA was determined using a Nanodrop 1000 spectrophotometer (Thermo Fisher Scientific).

RNA integrity was determined using Agilent 2100. The quality-checked RNA was used for preparation of libraries followed by library

sequencing (RNA-seq) by the Novogene Cooperation Inc, Sacramento, CA. Each library was sequenced to 20 million paired end reads of

150 bases using a NovaSeq sequencer. RNA-seq data analysis was performed as described earlier.116,117 Briefly, the quality of raw sequences

was checked by FastQC followed by trimming the adaptors from the sequence reads by cutadapt. The trimmomatic tool was used to perform

base quality trimming (Phred score >30) by sliding window scan (4 nucleotides). The quality reads were then mapped to the mouse reference

genome GRCm39 using Hisat2 aligner.118 Read counting from the alignment data was performed by FeatureCounts.119 The feature count

data was then analyzed by edgeR120 to determine significance of differential expression of genes in Cav1-null compared to WT brain.

DNA methylation analysis

DNAmethylation ofWT andCav1-null fetal brain was profiled for the 2,045 CpG sites associatedwithmouse epigenetic clock.5,57Methylation

profiling was performed by Zymo Research, Irvine, CA.5 Briefly, genomic DNA from frozen brain samples were purified using Quick-DNATM

Miniprep Plus kit (Cat. No. D4068). Bisulfite conversion was performed using the EZ DNA Methylation-Lightning TM Kit (Cat. No. D5030) fol-

lowed by enrichment for target loci, and sequencing on an Illumina�HiSeq instrument. Sequence analysis was performed usingBismark121 to

extract methylation sites and beta-values122 of methylation level for each site. Methylation data was analyzed in R.5,123

Single-nuclei RNA-seq

Single-nuclei RNA sequencing (snRNA-seq)58,124 was performed to profile gene expression of single cells of female fetal brain (GD15) from

WT and Cav1-null mice. Single nuclei were isolated using Pure Prep Nuclei Isolation kit (Product No. NUC-201, Sigma, St. Louis, MO, USA) as

per manufacturer’s instructions with slight modifications as follows. The frozen brain samples after thawingwereminced into small pieces on a

chilled petri dish on ice and added with 2ml lysis buffer supplied in the kit. The lysis buffer was freshly prepared by adding 1M dithiothreitol

(DTT) and 10%Triton X-100. Using a dounce homogenizer, the samples were homogenized till the solution looked evenlymixed, which gener-

ally required 15-20 dounces. A 70mmcell strainer was used to filter the nuclei from the lysed cells. The filtrate that contained nuclei was diluted

by adding 3ml additional lysis buffer and layered over a freshly prepared 1.8M sucrose cushion solution. Samples were centrifuged at

30,000xg for 45 minutes at 4�C to pellet the nuclei. After removing the supernatant, the pellet that contained nuclei was suspended with

1 ml of ice-cold storage buffer from the kit, and then centrifuged at 500xg for 5 minutes at 4�C. The supernatant was carefully removed

and the nuclei pellet was resuspended in 200ul of ice-cold storage buffer from the kit. The suspension was then loaded onto a 40mm cell
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strainer to collect the filtrate that contained the purified nuclei. Counting of nuclei was performed using a Countess II FL Automated Cell

Counter (ThermoFisher).

The freshly prepared nuclei were used to prepare sequencing libraries using 10X Genomics Chromium Single Cell 3ʹ GEM, Library & Gel

Bead Kit v3.1 at the University of Missouri Genomics Technology Core. The nuclei suspension, reverse transcriptionmaster mix, and partition-

ing oil were loaded on a ChromiumNext GEMG chip. Post-chromium controller GEMs were transferred to a PCR strip tube and reverse tran-

scription was performed on an Applied Biosystems Veriti thermal cycler at 53�C for 45 minutes. cDNAwas amplified for 12 cycles and purified

using Axygen AxyPrep MagPCR clean-up beads. cDNA fragmentation, end-repair, A-tailing, and ligation of sequencing adaptors were per-

formed according to manufacturer’s specifications. The libraries were quantified using a Qubit HS DNA kit. The fragment size was analyzed

using an Agilent Fragment Analyzer system. Libraries were sequenced on an Illumina NovaSeq 6000 with a sequencing configuration of 28

base pair (bp) on first read and 98 bp on the second read. Each library was sequenced to a depth of 20,000 paired-end (single-indexing) reads

per nucleus. The base call (BCL) files were processed by the Cell Ranger pipeline (v. 3.0.1) to generate the FASTQ files. The STAR aligner125

was used to map the reads to the mouse reference genome GRCm39 to generate read count data of genes of single cells.

The read count data was processed by Seurat59 to identify expression clusters, and assign the clusters to cell types. Briefly, WT and

Cav1-null brain read count data were integrated based on integration anchors identified from the first 20 dimensions of data variation.

The scaled-normalized integrated data was subjected to cluster identification by principal component analysis (PCA) and non-linear dimen-

sional reduction by tSNE (t-distributed stochastic neighbor embedding).126 The ‘FindAllMarkers’ function of Seurat was used to identify

marker genes of each cluster. The cell types of the predicted clusters were annotated based on marker genes of brain cells curated in

PanglaoDB60 and recently published single-cell RNA studies of brain.127–130

Data validation

To further validate gene expression data of RNA-seq, we performed qRT-PCR with a selected set (Hspg2, Mmp9, Igf2, Eif3j1, and Hbb-bt) of

genes. The qRT-PCR assays56 were performed as follows. Briefly, total RNA (500 ng) from the fetal (GD15) and aged brain (week 70) fromWT

and Cav1-null mice were reverse transcribed in 10 ml reaction volume by RevertAid reverse transcriptase and oligo (dT)18 primer. Three

replicates were used for each of the four groups. So, a total of 12 samples were used in the qRT-PCR analysis. The RevertAid First Strand

cDNA Synthesis Kit (catalog # K1621, ThermoFisher Scientific) was used for cDNA synthesis as per manufacturer’s instruction. The qRT-

PCR assays were performed using SYBR� Select Master Mix (catalog # 4472903, ThermoFisher Scientific, Waltham, MA) and gene-specific

primers in 10ul reaction volume. The gene-specific primers were designed using Primer3web (version 4.1.0) tool and synthesized by Inte-

grated DNA Technologies (IDT, Coralville, IA). The sequences of the forward and reverse primers for each gene are provided in

Table S14. Gapdh was used as a reference gene. The Gapdh primers as well as positive RNA control used in the assay were supplied in

the SYBR� Select Master Mix kit. Along with positive control with the kit-supplied RNA, negative controls, one without enzyme and another

without the test RNA, were included for each sample. The three replicates were run for each sample in a 384-well plate using the BioRad

CFX384 Real-Time System. The thermocycle conditions were 50�C for 2 minutes (min) and 95�C for 2 min for hot start activation of enzyme

followed by 40 cycles of 95�C for 15 seconds and 60�C for 1 min. Data analysis was performed using delta-delta cycle threshold method131 to

calculate relative expression of gene compared to the reference. Pearson correlation coefficient was used to assess similarity in expression

changes between qRT-PCR and RNA-seq data for each of the test genes.

QUANTIFICATION AND STATISTICAL ANALYSIS

The integrativemetabolomics and RNA-seq data analysis was performed bymapping the deregulatedmetabolites and genes to KEGG com-

pound and gene databases respectively. We have illustrated the approach in Figure 2. The genes and metabolites that mapped to the same

pathways were identified, and they were used to integrate the RNA-seq and themetabolomics data. The resulting combineddataset was then

analyzed by applying two-dimensional clustering technique called as biclustering.50,132 We used biclustering to determine data variation of

both rows and columns which contrasts from one-dimensional clustering techniques in which ether rows or columns are analyzed.We applied

mean squared residue method50 to calculate variation score for each metabolite-gene pair using the equation

1

kIkkJk
X

i˛ I;j˛ J

�
aij � aiJ � aIj+aIJ

�2

where aiJ is the mean of row i, aIj is the mean of column j, and aIJ is the overall mean of the rows and columns. The calculated scores were

then evaluated relative to scaling and threshold parameters, known as alpha and delta respectively, in order to select subsets of rows and

columns to identify the biclusters. This was performed using R package Biclust with delta=0.001 and alpha=1 in three steps. In the first

step, the rows and columns were deleted if they had scores larger than alpha times the matrix score. In the second step, the rows and

columns with largest scores were removed. In the third and final step, rows and columns were added until the desired scaling (specified

by alpha) was reached.

Mutual information (MI) network analysis53 was performed to infer crosstalk between genes and metabolites. MI is a measure of the

information that is shared between two variables calculated from the joint and marginal probability of variation.133 MIs were calculated in

a pair-wise manner between metabolites and genes from the combined RNA-seq and metabolomics data. An weighted adjacency matrix
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of theMI values was generated byMaximum RelevanceMinimum Redundancy (MRMR) method.134 The adjacency matrix defined the degree

of inter-dependence among genes and metabolites. Network inference was then made using R package minet.53

Canonical correlation analysis (CCA)51 was performed to assess co-variation between genes and metabolites in Cav1-null relative to WT

brain. This was performed using the R package CCA.5 The receptor and ligand genes56,116 were identified from the database developed by

Ramilowski et al.55 Hierarchical cluster analysis was performed using the R package Dendextend.135
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