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Abstract

Purpose of review: There are an estimated 374 million new STI infections worldwide every 

year. Our review article examines the current evidence of how STI acquisition, transmission, 

and pathogenesis is impacted upon by the genital microbiota, with a focus on epidemiological, 

biochemical, and immunological features.

Recent findings: At least in women, a genital microbiota dominated by lactobacilli has long 

been considered optimal for reproductive health, while depletion of lactobacilli may lead to 

a genital microenvironment dominated by anaerobic pathogens, which can manifest clinically 

as bacterial vaginosis (BV). Recent research efforts have characterized genital microbiota 

composition in greater resolution, sometimes at species-level, using proteomics, metabolomics, 

and deep sequencing. This has enhanced our understanding of how specific microbiota members 

influence acquisition or clinical manifestation of STI pathogen infection. Other advances include 

a steady, though still slow, increase in the number of studies that sought to determine the genital 

(penile or urethral) microbiota of males and how it may impact that of their female partners’ 

genital microbiota and risk of STI acquisition. Altogether, these data enabled us to explore 

the concept that genital microbiota may be sexually transmitted and influence pathogenesis and 

clinical presentation of other STI.

Summary:
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With STI infection rates increasing worldwide, it is important now more than ever to find novel 

STI prevention strategies. Understanding if and how the genital microbiota is a modifiable risk 

factor for STI transmission, acquisition, and clinical manifestation may prove to be an important 

strategy in our efforts to curb morbidity in at risk populations.
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Introduction

Global rates of sexually-transmitted infections (STIs) are on the rise[1], with significant 

burden of disease[2,3] and serious adverse outcomes, particularly in women, like pelvic 

inflammatory disease (PID) and obstetric consequences to both mother and baby when 

they occur during pregnancy (e.g., preterm birth reviewed in[4]). Women who have genital 

tract flora dominated by anaerobic bacteria and depleted in lactobacilli (cervicovaginal 

dysbiosis) are also at risk of PID and preterm labor [5,6,7**]. Microbe-induced inflammation 

in the context of either STIs or dysbiosis has been proposed as a possible mechanism of 

preterm birth[5,8]. Not only do STIs and BV share many epidemiological features in the 

at-risk communities, but they also overlap in time and space at mucosal surfaces[9,10,11]. 

It is possible that at the community level, their interplay may influence the acquisition 

and transmission of STI pathogens, while within hosts their interaction may influence 

pathogenesis and clinical manifestation of STIs. A deeper understanding of how STIs and 

genital microbiotas intersect may prove crucial in our quest to curb the morbidity of STIs 

and mitigate their reproductive and obstetric adverse outcomes.

The female genital microbiota has been extensively studied for more than a century, 

particularly with respect to the lower reproductive tract (vagina and ectocervix). The 

colonization of the upper genital tract, in the absence of pathogens, has been a controversial 

topic. The vaginal and ectocervical microbiotas share significant overlaps given their spatial 

proximity and contiguous luminal surface. Most data on the cervicovaginal microbiota 

have focused on bacterial flora. Fungi and other eukaryotes likely contribute to the genital 

flora, but remain largely understudied, though advances in sequencing technologies (e.g., 

metagenomics and better representation of fungal taxa in reference databases) are propelling 

this field forward. For our review, we have focused on bacterial cervicovaginal microbiotas.

Human male genital microbiota remains understudied (reviewed in[12,13]). A literature 

search of original articles in English using the terms “penile microbiota” or “male 

genital microbiota” or “urethral microbiota” returned only 20 relevant articles. Recently, 

there has been a concerted effort to accumulate more information about males[14,15,16,17]. 

Medical male circumcision alters the structure of the penile microbiota[15,17,18,19,20] and 

not surprisingly, the genital microbiota is likely shared between male and female sexual 

partners[21,22,23,24].

Finally, the pharynx and rectum are also important STI exposure sites. Each have 

characteristic microbial compositions and some mixing of rectal, pharyngeal and urogenital 
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microbes is likely[25]. Unlike the well-explored relationship between STIs and genital 

microbiota, only two published studies have investigated the rectal microbiota and 

pharyngeal microbiota associate with concurrent STI infections, specifically Chlamydia 
trachomatis and Neisseria gonorrhoeae[26,27].

The genital microbial landscape

Cervicovaginal microbiota composition can be assessed through various methods. For over 

130 years, vaginal specimens from women have been evaluated with bacteriology and 

microscopy methods. In most women, these methods reveal a predominance of Lactobacillus 
species. Disruptions in lactobacilli-dominated vaginal flora have been considered a dysbiosis 

and are generally associated with increasing quantities of anaerobic bacterial species. 

Prior to the advent of sequencing technologies, Nugent scoring, a Gram stain microscopy 

approach, was one of the most systematic approaches in vaginal flora assessment. Nugent 

scoring distinguishes between large Gram-positive rods (consistent with Lactobacillus), 

small Gram-variable rods (consistent with Gardnerella vaginalis) and curved Gram-variable 

rods (consistent with Mobiluncus spp.)[28] and classify vaginal flora. A Nugent score 

0–3 indicates abundant lactobacilli, Nugent score 4–6 indicates intermediate flora with 

presence of both lactobacilli and others, and a score 7–10 indicates few lactobacilli 

with high abundance of others (e.g., G. vaginalis and Mobiluncus spp.). As high 

throughput sequencing methods have been developed to assess the composition of microbial 

communities in a culture-independent fashion, the human vaginal microbial community has 

been characterized in unprecedented resolution. Sequencing-based molecular definitions of 

cervicovaginal microbiotas are now standard[13,29,30**,31**]. Reproductive aged women can 

be classified into five community state types (CSTs): CST I is dominated by Lactobacillus 
crispatus, CST II by Lactobacillus gasseri, CST III by Lactobacillus iners, and CST 

V with Lactobacillus jensenii. Low-Lactobacillus communities (CST IV) comprise of a 

variety of anaerobic bacteria. CST I-III are considered optimal, whereas CST IV reflects 

dysbiotic microbial communities[13]. Interestingly, women with L. iners-dominated vaginas 

can transition between Lactobacillus predominant and dysbiotic states[13,32].

Available evidence indicates that flora commonly detected in females also colonize 

the penis, including the distal urethra[15,16,17,18,19,33,34,35,36]. In uncircumcised males, 

the predominant taxa belong to Prevotellaceae, Veillonellaceae, Clostridiales family 

XI, Actinomycetaceae, Coriobacteriaceae, and Porphyromonadaceae families[18,19]; 

circumcision alters the structure of the penile microbiota in distinctive ways[15,17,18,19,20]. 

Reduction in total bacterial load and in prevalence of anaerobes (e.g., Porphyromonas, 
Prevotella, Dialister, Mobiluncus, Fusobacterium) in the coronal sulcus are observed 

following the procedure[18]. Interestingly, many of the bacteria with reduced prevalence 

after circumcision are organisms associated with female genital dysbiosis[15,17,18,19,20]. The 

notion that the male genital microbiota and female genital microbiota are interconnected 

between sexual partners is discussed further below (see “Sexual transmission of genital 

dysbiosis).
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Bacterial Vaginosis (BV) and genital microbiota

Genital dysbiosis characterized by Nugent scores of 7–10 or by molecular typing as CST 

IV are associated with the development of vaginal symptoms, including vaginal discharge, 

pruritis, discomfort, and odor. Collectively, these clinical symptoms are now referred to as 

bacterial vaginosis (BV)[37**,38,39]. In the clinic, criteria known as Amsel criteria are often 

used to diagnose BV[40]. Molecular tests can also directly detect BV-associated bacteria 

with high specificity and sensitivity (summarized in[37**]), which can also be used to 

diagnose BV in patients with clinical syndromes consistent with BV. Microbiologically, BV 

is characterized by a depletion of lactobacilli other than L. iners and an increase in a diverse 

and heterogeneous group of anaerobic bacteria[41,42]. Low-Lactobacillus communities (CST 

IV), which comprise a variety of anaerobic bacteria, is a risk factor for having clinically 

diagnosed BV[43] and is termed molecular-BV[42]. BV is the most common cause of vaginal 

discharge globally with high disease and economic burden[39,44].

Symptoms associated with BV are thought to result from BV pathogenesis. The mechanism 

of BV pathogenesis is not completely understood, but recent work has begun to decipher 

some of its complex mechanisms (see this important review in same journal from 2020[45]). 

Underpinning our current understanding of BV pathogenesis are conceptual pathogenesis 

models put forward by Schwebke and colleagues[46,47]. An updated model was published 

in 2019[47]. In short, certain strains of Gardnerella vaginalis with high pathogenic potential, 

which may be sexually-transmitted[48,49], adhere to the epithelium and displace lactobacilli 

and instigate the formation of biofilm[50]. This is followed by an increase in Prevotella 
bivia abundance[51], which in synergy with G. vaginalis produces metabolites that facilitate 

their proliferation[52] and the degradation of the vaginal epithelium mucous layer, possibly 

through vaginal sialidases[53,54,55]. More recently, data have emerged for how G. vaginalis 
may be involved in epithelial cell layer integrity disruption[56]. Next, secondary colonizers 

are recruited to the biofilm, especially Atopobium vaginae that rarely co-occurs without 

G. vaginalis[57], possibly leading to the creation the polymicrobial biofilm characteristic of 

BV. This mature, resilient polymicrobial biofilm may explain why treatment for BV with 

classical antibiotics is not very effective[58]. Once the mature biofilm is established and the 

epithelial barrier is compromised, inflammation may ensue, possibly from a combination 

of secondary colonizers, since neither G. vaginalis and P. bivia induce a robust immune 

response[55,59]; exfoliating epithelial cells; and from recruited immune cells. By contrast, 

cervicovaginal secretions of women whose vaginas are dominated by L. crispatus have low 

levels of pro-inflammatory cytokines[60,61,62].

Metronidazole has been the standard treatment for BV with four-week cure rates 

approaching 85%. However, BV will recur in almost 60% of treated women within one 

year[58]. After BV treatment, women are likely to have their vaginal microbiota become 

dominated by L. iners suggesting that L. iners-dominant flora are at risk for loss of 

lactobacillus domination and progression of BV pathogenesis. Innovative treatment and 

prevention strategies are currently being explored, including the replenishment of L. 
crispatus following BV treatment via vaginal administration of live L crispatus strain 

CTV-05 (LACTIN-V[63,64**]. Though the use of LACTIN-V is experimental and not 

approved for treatment of any condition at this time, short-lived changes in vaginal flora 
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after LACTIN-V provides an important proof-of-principle that the vaginal microbiota 

may be modifiable. The use of vaginal probiotics comes with both pitfalls and hope for 

addressing the problem of recurrent BV[65,66].

Sexual transmission of genital dysbiosis

Evolving evidence suggests that this is a possibility both within heterosexual partnerships 

and among women that have sex with women (WSW)[21,22,23,24], though confounders exist: 

BV has been observed in sexually-experienced but self-reported abstinent women[67,68] 

and treating the male partners for BV has not improved female BV outcomes, though 

partner treatment studies had many limitations[69]. Specific microbes consistently identified 

in women with dysbiotic communities have also been associated with male urethritis[34]. 

Although vulvovaginal Candida is not considered sexually transmitted, male partners are 

more likely to be colonized with the same Candida strain[70,71]. Notably, the penile 

microbiome accurately predicts incidence of cervicovaginal dysbiosis in females who did 

not have it at baseline[72], suggesting the male niche may be a reservoir for microbes typical 

of female genital dysbiotic communities. Importantly, medical male circumcision offsets 

some of this risk[18] suggesting that anatomy (the foreskin) is likely the most important 

determinant of male genital microbial communities. Evidence in support of this hypothesis 

is summarized in Table 1.

Dysbiotic genital microbial communities are associated with sexually transmitted 
infections

Substantial published research shows that the composition of the cervicovaginal flora 

associates with STI risk. Flora dominated by L. iners or depleted in the other lactobacilli 

generally positively correlates with STIs, whereas flora dominated by non-iners lactobacilli 

negatively correlates with STIs. These findings come from numerous observational 

human studies, including longitudinal studies, some of which are prospective in design 

(Table 1). These observed associations have at least three possible explanations: i) non-

lactobacillus dominant genital microbiota are simply a biomarker of host factors that 

promote susceptibility to STI pathogens or are promoted during the pathogenesis of 

STIs; ii) non-lactobacillus dominant genital microbiota could promote STI pathogenesis 

or symptomatology, therefore bringing asymptomatic STIs that might normally go 

unrecognized to clinical attention and therefore diagnosis; iii) non-lactobacillus dominant 

genital microbiota could promote acquisition of STI by impacts on host or directly on STI 

pathogens. We explore evidence for these possibilities below.

The cervicovaginal microbiota as a non-specific biomarker of STI 
susceptibility or STIs—Dysbiotic cervicovaginal microbiota in the absence of genital 

symptoms is common[85] and treatment of BV does not consistently lead to a reduced risk of 

STIs[86,87,88]. Studies that included BV treatment followed by a prospective follow-up for N. 
gonorrhoeae, C. trachomatis and Mycoplasma genitalium have shown mixed results[86,87,88]. 

Two of the three trials showed a reduced risk[86,87], while one trial of home screening and 

oral metronidazole did not[88], though differences in drug, route of administration, treatment 

duration and specimen collection must be noted. It is known that treatment of BV with 

metronidazole or other antibiotics reduces clinical symptoms but does not consistently 
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result in a change in genital microbiota to low risk, lactobacillus predominant flora. 

Despite a strong epidemiological link between HIV-1 acquisition and dysbiotic microbial 

communities, one longitudinal study of HIV-1/HSV co-infected women before and after 

antiretroviral therapy has shown that even when HIV viral load is suppressed the dysbiotic 

microbial communities persisted[89]. Similarly, despite strong observational evidence that 

the genital microbiota may influence HPV acquisition, recent studies have reported the 

opposite relationship, whereby HPV infections (albeit not all infections or genotypes) alter 

the vaginal microbiome by downregulation the secretion of host antimicrobial peptides at the 

genital mucosa via the production of HPV oncoproteins[90].

The genital microbiome influences STI symptoms and pathogenesis—The 

cervicovaginal microbiota may alter STI symptomatology, particularly the presence of 

vaginal discharge and discomfort, or in the case of HPV, viral persistence or development of 

pre-neoplastic lesions within the genital tract [91**](reviewed in[92]). These symptoms may 

bias towards STI test seeking behavior, at least for certain STI pathogens, since symptoms of 

localized inflammation in the genital tract are typical of both cervicovaginal dysbiosis (e.g., 

BV) and pathogens like N. gonorrhoeae, C. trachomatis, M. genitalium, and Trichomonas 
vaginalis. These STI pathogens are all well known to also cause asymptomatic infection, 

especially in women[93,94,95], so it is possible that BV could prompt testing in individuals 

who might have had what would otherwise have been an unrecognized, asymptomatic 

infection.

Further, dysbiotic communities could potentiate the inflammatory response in the setting 

of another STI, precipitating symptoms and converting asymptomatic infections into 

recognized symptomatic infections. A small cross-sectional using sequencing examined the 

cervicovaginal microbial communities in women presenting with N. gonorrhoeae infection 

to a local STI clinic[96]. . The microbial composition was compared between women 

who presented to clinic reporting symptoms attributable to gonorrhea and those without 

symptoms[96]. Asymptomatic women had L. iners-dominant genital communities, while 

symptomatic women had diverse microbial communities without predominant lactobacilli. 

Vaginal microbiotas dominated by L. crispatus and/or L. gasseri have been associated with 

a decreased risk of HPV CIN3 progression[78,80] and persistence[79,81]. Prevotella has been 

implicated in persistence of high-risk HPV types and associated with higher expression of 

oncogenic and inflammatory markers[91**].

Genital microbiota influence STI acquisition—Several prospective studies of incident 

STIs and female genital microbiota (Table 2) indicate that genital communities influence 

STI acquisition risk. To our knowledge, Treponema pallidum has not been formally assessed 

in this context. By meta-analysis, microbiotas low in lactobacilli (by Nugent score, or 

sequencing, or inferred by Amsel criteria based BV diagnosis,) are associated with increased 

risk of HIV-1[97**,98,99], HPV[100**,101] and C. trachomatis[100**] by 1.5-fold and of T. 
vaginalis by almost 2-fold[102]. The evidence for N. gonorrhoeae and M. genitalium remains 

mixed[100**]. Only three studies exist that investigate how male genital microbiota associates 

with STIs and have focused on HIV-1 and HPV[16,21,35]. Studies of other STIs investigated 

the link between genital flora and STI risk indirectly by exploring protective effects of 
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medical male circumcision against syphilis, chlamydia, gonorrhea or trichomoniasis, with 

mixed results[79,103,104]. Partner studies, however, have shown that that uninfected male 

partners of women with BV are also more likely to be diagnosed with an HIV vs. 

controls [105] by three-fold, even when accounting for other known factors of HIV risk 

and irrespective of female viral load[106]. Other studies have indicated that the male genital 

microbiota is a significant risk factor for the female partner to be diagnosed with HSV-2, 

HIV, or BV[14,15,17,21,35] and medical male circumcision is associated with reduced risk of 

both BV and STIs in the female partner[33,79,80,81,82,83,84], further supporting the idea that 

dysbiotic genital flora is sexually transmitted.

There are mechanistic data to support the biological plausibility that the genital microbiota 

influences STI acquisition. The more the vaginal microbiota shifts towards dysbiosis 

and loss of non-iners lactobacilli, the more marked the genital inflammation[30**,107,108]. 

Elevated genital inflammation is an independent risk factor for HIV-1 acquisition[109,110]. 

Host inflammation likely ensues in genital dysbiosis in response to a compromised 

epithelial barrier and/or increased pH[111]. Upregulation of pro-inflammatory cytokines, 

which when present in measurable quantities in cervicovaginal fluid, is associated with 

an over 3-fold increased risk of HIV acquisition in women[109,112]. Pro-inflammatory 

cytokines remain low in HIV-1 exposed seronegative women[113]. A plausible mechanistic 

explanation is that a pro-inflammatory milieu is associated with increased levels of 

endocervical CD4+ T cells[54,114,115], which facilitates local viral replication[116]. An 

inflamed vaginal microenvironment, as determined by quantification of pro-inflammatory 

cytokines, also lowered the efficacy of topical tenofovir to protect against HIV acquisition, 

even with high study participant adherence[117]. Further, specific microbes (Gemella 
asaccharolytica, Sneathia spp, Prevotella bivia, Megasphaera sp. type 2, Mycoplasma 
hominis, Parvimonas spp. type 2, Prevotella timonensis) have been found to directly 

affect HIV-1 acquisition[31**,97**,118], some in a dose dependent manner[118]. Further, 

Prevotela timonensis, a BV-associated bacterium previously shown to be associated with 

an increased risk of HIV-1 acquisition[31**,97**], subverts the protective role of Langerhans 

cells (LCs) to enhance HIV-1 uptake into LCs, which then deliver virus to HIV-1 target 

cells[119**]. Under typical conditions, LCs are protective because they destroy HIV-1 upon 

capture. Vaginal microbiotas dominated by L. crispatus and/or L. gasseri are associated 

with a decreased risk of HIV[69,73] and HPV[76,77,78,79,120]whereas vaginal microbiomes 

dominated by L. iners have been associated with increased risk of acquiring HIV[69,82,83] 

and C. trachomatis[84,85**]. It is likely that the acidic milieu, presence of glycogen, and 

an integral epithelial barrier of the Lactobacillus-rich environment are not conducive to 

pathogen colonization[9,10,11,121,122,123]. D-lactic acid produced by non-iners lactobacilli 

has been associated with in vitro growth inhibition of several bacteria[38,39] ,including N. 
gonorrhoeae[39]). The biofilm produced during BV pathogenesis may be a favorable landing 

spot for non-viral STI pathogens, akin to the opportunistic secondary bacterial colonizers of 

the BV biofilm.

Different explanations may apply to different STI pathogens. For example, both 

observational data and mechanistic data suggest that there is a high likelihood that the 

genital microbiota plays a key role in the acquisition of HIV-1, but its influence on 

HIV pathogenesis may be minimal, as there is no available evidence to show that the 
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genital microbiota is associated with progression to AIDS. In the case of HPV, the genital 

microbiota may influence pathogenesis (i.e., progression to CIN3 or persistence) or be a 

biomarker of HPV pathogenesis in a genotype-dependent manner, but it is unclear whether it 

increases risk of HPV acquisition. In the case of non-viral STIs, the microbiota likely plays 

dual roles in pathogenesis and acquisition, though this is difficult to disentangle because 

of limitations of prospective studies of non-viral STI studies conducted to date. These 

limitations include: asymptomatic screening has not always been part of the study design; 

genital microbiota has not always been evaluated before, during and after an STI infection 

(self-sampling strategies have recently been proposed to achieve higher sampling frequency 

because they are concordant to clinician-collected specimens[66]); finally, the number of 

available prospective studies, especially those that utilize molecular tools, varies among 

STIs, with N. gonorrhoeae, M. genitalium and T. vaginalis lagging behind HIV-1, HPV and 

C. trachomatis

Conclusions

STIs and the genital microbiota are interconnected both within individuals at the genital 

mucosa and within communities due to their overlapping epidemiologies. Multiomic 

approaches (genomics, proteomics, metabolomics) continue to expand our understanding of 

microbiota composition and function, especially when applied to prospective longitudinal 

studies in humans, since robust animal models are lacking. Both observational and 

mechanistic data exist to support that genital microbiota influences the acquisition and 

pathogenesis of STIs, but the exact nature of these relationships likely differ by STI 

pathogen. Overall, deciphering how STIs and the genital microbiota intersect would greatly 

benefit from prospective studies of acquisition with asymptomatic STI screening and 

molecular assessment of genital flora. Ideally, these studies would not be limited to females.
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Key points

• Epidemiological evidence suggests there is a strong correlation between 

prevalent and incident STIs pathogen detection (HIV-1, HPV, C. trachomatis, 

T. vaginalis, N. gonorrhoeae, M. genitalium) and the cervicovaginal 

microbiota. Mechanistic data support these correlation, though lack of 

appropriate animal models that recapitulate the complex human genital 

microenvironment has made this difficult to study. Evolving evidence 

suggests this correlation may also hold true for males as well, though this 

field is still nascent.

• It is plausible that different STI pathogens are influenced by the genital 

flora in different ways, either at the level of acquisition/transmission or 

pathogenesis.

• Genital dysbiosis is likely sexually transmitted
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Table 1.

Evidence in support of sexual transmission of genital microbial dysbiosis

Key finding References

Overlapping microbiota between concurrent heterosexual or lesbian partners, suggesting microbiota may be sexually 
exchanged

[14,33,73,74,75]

BV is not commonly observed among women who report no or minimal history of penile-vaginal intercourse [76,77]

Sexual intercourse is a risk factor for BV and BV recurrence [20,23,38,78]

Specific microbes consistently detected in females with BV also colonize the penis, including the distal urethra [15,16,17,18,19,33,34,35,36]

Following medical male circumcision, there is a reduction of anaerobic bacteria among the penile microbiota, 
including BV-associated bacteria

[15,17,18,19,20]

Medical male circumcision is protective against BV in female partners [33,79,80,81,82,83,84]

The penile microbiome accurately predicts BV incidence in Kenyan females who did not have BV at baseline and 
circumcision may offset some of this risk

[18,72]

Even though candidiasis is not considered an STI, male partners of females with vulvovaginal Candida albicans are 
more likely to be colonized with the same C. albicans strain

[70]

By meta-analysis, new and multiple concurrent male sexual partners increased the risk of BV by 1.6-fold (CI95%=1.5–
1.8), while a history of female sexual partners increased the risk of BV by 2-fold (CI95%=1.7–2.3).

[38]

Protective role of condom use against BV and conversely inconsistent condom use increase BV risk [20,38]
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