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Abstract

A central challenge in biology is obtaining high-content, high-resolution information while 

analyzing tissue samples at volumes relevant to disease progression. We address this here with 

CODA, a method to reconstruct exceptionally large (up to multi centimeter cube) tissues at 

subcellular resolution using serially sectioned hematoxylin and eosin-stained tissue sections. 

Here we demonstrate CODA’s ability to reconstruct in 3D distinct microanatomical structures in 

pancreas, skin, lung, and liver tissues. Importantly, CODA allows creation of readily quantifiable 

tissue volumes amenable to biological research. As a testbed, we assess the microanatomy of the 

human pancreas during tumorigenesis within the branching pancreatic ductal system, labelling 

ten distinct structures to examine heterogeneity and structural transformation during neoplastic 

progression. We show that pancreatic precancerous lesions develop into distinct 3D morphological 

phenotypes and that pancreatic cancer tends to spread far from the bulk tumor along collagen 

fibers that are highly aligned to the 3D curves of ductal, lobular, vascular, and neural structures. 

CODA establishes a means to transform broadly the structural study of human diseases through 

exploration of exhaustively labelled 3D microarchitecture.

One Sentence Summary:

Here we introduce and validate CODA, a powerful tool for 3D quantification of serially sectioned 

tissue, through reconstruction of human and murine tissues.

The growth of invasive cancer and its spread into microenvironments containing complex 

vascular, neural, stromal, and ductal structures is best understood through accurate three 

dimensional (3D) representations1,2
. Pancreatic ductal adenocarcinoma (PDAC) is one of 

the deadliest forms of cancer, with a 5-year survival rate of only 10%3,4. PDAC arises 

from well-characterized precursor lesions in the pancreatic ducts and has a propensity for 

metastasis to the liver, lymph nodes, and retroperitoneum, often facilitated by vascular and 

neural invasion5–7. These phenomena are classically studied in two dimensions (2D) via 

tissue sectioning and histological staining, where 3D information such as connectivity, 

morphology, and spatial relationships are lost. While many surrogates for studying 

tumorigenesis have been developed in vitro and in vivo8–12, quantitative 3D study of 

naturally occurring cancers in human tissues, or cancer in situ, is generally lacking.

Recent advances in tissue clearing techniques have been employed to explore human 

diseases in 3D13–19. Clearing of human pancreatic samples has been used to study the 

expression of a limited number of proteins in cancer cells as they invade into blood vessels2 

and to enumerate the density of islets of Langerhans20. However, poor antibody penetration 

into dense tissues such as PDAC’s desmoplastic stroma requiring processing times of days 

to weeks, a trade-off between reconstruction of large volumes and number of structures 

labelled, and longstanding challenges in quantifying complex 3D images hinder the power 
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of tissue clearing techniques15,18,21. Reconstruction of serial hematoxylin and eosin (H&E) 

stained sections using image registration approaches has also been used to study disease 

in 3D22–27. While utilization of thinly stained sections avoids the issue of poor antibody 

penetration seen in study of intact tissues, time-consuming manual annotations and costly 

immunohistochemical (IHC) labeling and mass spectrometry have been required to identify 

components in serially sectioned specimens23,24.

Here, we introduce CODA: a novel method for effective 3D reconstruction of large tissues 

from serially sectioned H&E images. We present the first fully integrated pipeline for 

labelled, 3D reconstruction of serial tissue images at single cell resolution with detailed 

comparison to existing methodologies. While previous techniques exist for registration25,26, 

cell detection28,29, and tissue multi-labelling in H&E images30,31, we show that our 

integrated approach allows rapid, consistent reconstruction of serial samples from organs 

such as pancreas, skin, lung, and liver.

To demonstrate CODA’s utility in microanatomical research, we explore 3D modes 

of pancreas tumorigenesis. We analyzed 4,114 H&E sections to reconstruct thirteen 

samples of up to 3.5cm3 comprising normal, precancerous, and cancerous human 

pancreas at subcellular resolution. With deep learning semantic segmentation, we label 

ten distinct cell and tissue types without incorporation of additional stains. The power of 

CODA is demonstrated through visualization of complex pancreatic ductal morphology; 

characterization of the extent, 3D structure, and cellularity of pancreatic precursors; 

quantification of fiber alignment in a 3D landscape; and exploration of structures utilized by 

pancreatic cancer to invade far from the bulk tumor.

Results

CODA: 3D reconstruction of serial histological sections

To develop CODA, a method for the 3D reconstruction of serially sectioned tissue, we 

identified fourteen human pancreas samples (designated samples P0 – P13) containing 

normal pancreatic parenchyma, pancreatic parenchyma with precancerous lesions, and 

untreated invasive pancreatic cancer, as detailed in Table S1. Sample P0 contains 101 

serial images sampled 4μm apart and was used only to optimize the workflow. Thick 

formalin-fixed paraffin-embedded samples were sectioned, stained with H&E, and digitized 

at 20x magnification, providing x and y (lateral) resolution of 0.5μm and z (axial) resolution 

of 4μm (Fig 1a).

First, the independent serial images were mapped to a common coordinate system using 

a novel image registration approach (Fig 1b). Images were coarsely aligned using whole 

field rigid-body registration, followed by an elastic registration approach to account for local 

tissue warping, similar to previously developed workflows23–25,32–34. The method serially 

aligned the 101 serial histological sections in P0 in 30 minutes (Extended Data Fig 1, 

detailed processing time estimates in Table S2). Importantly, to limit accumulation of error 

due to imperfect tissue sectioning, our algorithm is designed to discard registration to badly 

deformed tissues (containing large regions of splitting or folding).
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Next, we established a high throughput H&E cell detection workflow based on color 

deconvolution and normalization and a previously established algorithm for particle 

tracking35 intended for rapid cell detection in large serially sectioned samples without the 

need for training or manual annotations. CODA cell detection delivers a processing time of 

approximately 90 seconds per whole slide image (Fig 1c, Extended Data Fig 2).

We established a deep learning workflow for semantic segmentation of histological features 

and used it to identify nine pancreatic cell and tissue components in H&E: normal ductal 

epithelium, pancreatic cancer precursors, PDAC, smooth muscle, acini, fat, collagen, islets 

of Langerhans, and lymph nodes (Fig 1d, Extended Data Fig 3). The pipeline used DeepLab 

semantic segmentation and a pretrained ResNet50 network36, achieved class precision and 

recall of >90% per sample (Extended Data Fig 4a), and labelled images to a resolution of 

2μm/pixel in under three minutes each (computer specifications in Table S2). Our workflow 

allows segmentation of more pancreas tissues than previously developed methods31 and 

is amenable to rapid (~1 day) generation of functional models. As sample collection was 

staggered, individual deep learning models were created for each sample. To demonstrate 

the ability of CODA to label additional structures in samples after creation of the first 

model, a second model was trained on all thirteen samples to identify nerves in the pancreas, 

with precision and recall >90% (Extended Data Fig 4b).

Validation of CODA methodology

We compared our registration approach to seven other methods using data in a previously 

published comparative analysis of tissue registration algorithms34 and found that CODA 

registration outperforms the other techniques particularly in limiting the accumulation of 

error across large samples and maintains higher pixel correlation between images (Fig 2a).

To validate cell detection accuracy and compare to pre-existing techniques, five randomly 

selected 1.5 mm2 image tiles were manually annotated by two researchers. Manual 

annotations were compared to CODA cell detection as well as two commonly used 

approaches.28,29 CODA cell detection achieved the highest overall accuracy of the 

three techniques assessed with >90% precision and recall (Extended Data Fig 4c), and, 

importantly for assessment of samples containing many serial samples, CODA cell detection 

was on average 3-fold faster than the other techniques (Extended Data Fig S2a). In situ 
diameters of each cell type were measured and incorporated to extrapolate 3D cell counts 

from cell counts on serial 2D images (Extended Data Fig S2b).

We additionally assessed the effect of reducing the z-resolution of the samples by registering 

a subset of serial images. We found that registration performed with 95% similarity between 

consecutive sections or sections up to five axial planes apart (Fig 2b). Further, we found that 

we maintained 96% accuracy in estimation of cell count and tissue content by interpolating 

3D cell count and deep learning labels from sections up to three axial planes apart (Fig 2c, 

2d). This allowed us to improve workflow throughput by processing only one in three serial 

images in samples P1-P13 for an axial resolution of 12μm. We next confirmed the quality 

of 3D renderings by creating visualizations of a region of the pancreatic ductal architecture 

from sample P0 at z-resolutions of 4, 12, 48, and 96μm (Fig. 2e).
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Finally, to demonstrate the ability of CODA to reconstruct non-pancreatic structures, we 

assessed samples of human scalp (Fig. 3a), murine lung (Fig. 3b), and murine liver (Fig 3c). 

CODA was used to label six structures in skin, five structures in lung, and four structures in 

liver, and to create detailed renderings of a range of tissue microanatomy.

Exploration of pancreas tumorigenesis in 3D

To demonstrate the utility of CODA for biological research, we created multi-labeled 3D 

maps of thirteen resected pancreas tissue samples of volumes up to 3.5cm3 and containing 

up to 1.6 billion cells (Fig 4a). Eight of the samples assessed contained regions of grossly 

normal pancreatic parenchyma (sample P1 — P4, P6 — P9), nine contained pancreatic 

precursor lesions (sample P2 — P10), and eight contained regions of invasive pancreatic 

cancer (sample P6 — P13). We created multi-scale renderings that demonstrate the complex, 

curved architecture of the normal pancreatic ducts and periductal collagen, the surrounding 

acinar lobules, islets of Langerhans, fat, and blood vessels (Movies S1–S6).

Through quantification of tissue volume and cell count, we investigated the compositional 

changes to the pancreas during tumorigenesis. We compared the volume and cell 

composition of tissue components in the samples (Table S3). Our results revealed an average 

2.3 fold decrease in cell density between healthy regions and invasive cancer regions in the 

pancreas with a p-value of <10−4 using the Wilcoxon rank sum test (Fig 4b). At the extreme 

end, we found zero acinar tissue and an astonishing 87% collagen composition in sample 

P11, a 14-fold increase from normal pancreas architecture, emphasizing the scale of atrophy, 

dense desmoplastic stroma, and tissue reorganization brought with pancreatic cancer.

Microarchitectural properties of pancreatic precancers

Following bulk assessment of the samples, we utilized CODA to enumerate architectural 

patterns of pancreatic precursor lesions in 3D. Of the thirteen samples analyzed, eight 

contained pancreatic intraepithelial neoplasia (PanIN) and one contained intraductal 

papillary mucinous neoplasms (IPMNs). PanIN are clinically defined as mucin-producing 

epithelial neoplasms residing in ducts <0.5cm, with larger neoplasms typically denoted 

as IPMNs and both involve the complex tubular branches of the pancreatic ducts and 

“bunches of grape-like” acinar lobules37. It is currently not possible to noninvasively detect 

the smallest of these lesions in the clinic38–40. Here we present insights into pancreatic 

precancers of volumes that are undetectable using clinical approaches (0.0005 – 30 mm3) 

that may inform the design of novel detection tests.

We found that precursors occupy a range of volumes, can be simple or highly branched, 

and may be densely packed yet unconnected in 3D. Using the 3D reconstruction of the 

ductal system of sample P2, we identified 43 spatially independent precancers in a 2.3cm3 

sample (Fig 5a, Movie S7). In one section, a large precursor was identified in multiple ducts 

separated by nearly 1cm and surrounded by multiple, smaller precursors exemplifying how 

connectivity is difficult to interpret from 2D alone. In the nine samples containing precursors 

(samples P2-P10), we compared the number of distinct precursors per section with and 

without considering 3D connectivity and found that 2D lesion number over-counted the 

true 3D tumor number per section by as much as a factor of 40, exemplifying the complex 
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3D connectivity of pancreatic precancers (Fig 5b). This measurement yielded an average 

12.3-fold overcounting in 2D vs 3D with a p-value of <10−5 using a Wilcoxon rank sum test.

While assessing 3D connectivity of the precursors, we identified three distinct 3D structural 

phenotypes which we term tubular, lobular, and dilated (Fig 5c, Movie S8). Tubular 

precancers appeared as ductal, branching structures, dilated precancers appeared as large 

ballooning of the duct connected to ducts of much smaller diameters, and lobular precancers 

appeared as “bunches of grape-like,” connected locules forming a nodule. Review of the 

corresponding H&E sections by pancreatic pathologists revealed that tubular PanINs resided 

within pancreatic ducts, dilated PanINs resided within regions of dilated pancreatic ducts, 

and lobular PanINs resided at the terminal junctions of ducts and acinar lobules, involving 

areas of acinar to ductal metaplasia (ADM)41,42. These phenotypes appear similar to 

pancreatic precancer phenotypes identified in mice43. Notably, 174 of the 265 identified 

precursors (66%) contained both ductal and lobular morphology, suggesting that extension 

of precursors between dilated/nondilated pancreatic ducts and acinar lobules is a relatively 

common occurrence (Extended Data Fig 4d).

The role of fiber alignment in pancreatic cancer invasion

Next, we investigated the morphology of invasive pancreatic cancer and the tumor 

microenvironment in eight large samples. We first focused on the morphology of PDAC at 

the interface of invasive cancer and adjacent normal tissue in sample P7 to identify patterns 

of invasion, then enumerated the occurrence of these patterns in all tissues.

The mass consisted of a region of invasive carcinoma with three prominent protrusions 

extending into surrounding normal pancreatic tissue (Fig 6a). The first of these protrusions 

was invasive cancer extending within the lumen of a vein for at least 4mm. The second 

of the protrusions was a >3mm region of cancer extension along periductal stroma. The 

third protrusion was a >1mm focus of perineural invasion. We quantified the occurrence of 

these phenomena in all eight samples, revealing that all samples (100%) contained regions 

of venous invasion, seven (87%) contained perineural or neural invasion, and five (63%) 

contained invasion along periductal, perivascular, or perilobular stroma. As CODA allows 

confirmation of 3D findings in high-resolution H&E images, all foci of invasion were further 

validated via examination of the histology (Extended Data Figs 5, 6, 7).

Finally, we investigated 3D stromal properties at the pancreatic vasculature, ducts, and 

nerves. The alignment of collagen fibers in histological samples of PDAC has been 

negatively correlated with prognosis44–46. However, in previous work utilizing 2D samples 

of many patients, collagen alignment in the ductal submucosa of normal pancreatic ducts 

was reported to be low45,47. We sought to repeat this measurement to account for the angle 

of sectioning of the ducts.

Using our 3D renderings, we identified coordinates where the ducts, blood vessels, 

and nerves were cut at two extremes: perpendicular to the long axis of the structure 

(axially sectioned), and parallel to the long axis of the structure (longitudinally sectioned) 

and isolated these regions in H&E (Fig 6b) to quantify collagen fiber alignment. Our 

measurements of fiber alignment therefore account for the varying appearance of fibers 
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relative to their orientation to the sectioning blade, allowing more accurate calculation than 

can be computed from the random plane in a 2D histological section alone. As validation 

of our fiber alignment measure, we compare our results to measures of alignment of nerve 

fibers, which are known to be highly aligned in the longitudinal direction48–50.

Quantification51 revealed significantly higher (using the Wilcoxon rank sum test) collagen 

and nerve fiber alignment and nuclear aspect ratio in longitudinally compared to axially 

sectioned structures (Fig 6c). For nuclear aspect ratio, we measure a 2.1-, 2.3- and 2.5-fold 

change between longitudinally and axially sectioned images for periductal, perivascular, and 

perineural collagen, respectively (all p values <10−5). For fiber alignment, we measure a 

2.5-, 2.4-, 2.2-, and 2.2-fold change between longitudinally and axially sectioned images for 

periductal collagen, perivascular collagen, perineural collagen, and nerve fibers, respectively 

(all p values <10−5). Contrary to previous works in 2D, these results suggest that collagen 

fibers are highly aligned along the longitudinal direction of structures they surround, 

including ducts, blood vessels, and nerves. This is the same direction of alignment as that of 

the observed cancer protrusions.

Discussion

Here we show that CODA is a powerful complement to tissue clearing and current serial 

sectioning techniques used to study 3D tissue microarchitecture. Tissue clearing is the 

most popular current approach to study 3D tissues, wherein intact samples are rendered 

semi-transparent, labeled, and imaged using confocal or light-sheet microscopy, and have 

been used to conduct landmark scientific research13–18,52,53. However, long wait times of 

days to weeks between protocol steps, inconsistent antibody penetration, limits on the size 

of tissues that can be cleared, the number of labels that can be used, and longstanding 

complications in quantification of the rendered 3D datasets represent key challenges in 

clearing research21. Current serial sectioning methods bypass some of the shortcomings 

of tissue clearing, albeit through introduction of new challenges. The sectioning of tissue 

causes unpredictable warping, requiring sophisticated registration techniques. Additionally, 

many serial sectioning methods rely on expensive techniques for labeling including IHC 

labeling, mass spectrometry, and manual annotation23,24,33. Though expensive, these 2D 

labels are easier to quantify than 3D data generated by clearing techniques, as they can take 

advantage of a plethora of previously developed 2D computational approaches54–56.

CODA is a powerful tool that has potential to integrate many current tissue imaging 

techniques. It incorporates nonlinear image registration and deep learning techniques to 

create multi-labelled tissue volumes using H&E images, which is a relatively inexpensive 

histological technique. As our results demonstrate that CODA can derive quality 3D 

reconstructions while skipping at least two intervening sections, future addition of IHC 

labeling, spatial ‘omics’, and gene expression imaging to the intervening sections will 

increase the number of labels beyond what is currently achievable. The number of tissue and 

molecular phenotypes that CODA can label in the pancreas, skin, liver, and lungs has the 

potential to unlock previously unknown insights into human tissue, health, and disease.
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In our analysis of pancreatic tumor progression, we identify several findings which are both 

novel and only possible through 3D analysis. We find that many anatomically separate 

precursor lesions can develop in small or large ducts, and that individual precursors 

commonly present both in the pancreatic ducts and in foci of ADM in the acinar lobules. We 

find invasive cancer cells extending from the central tumor along existing structures such as 

veins, nerves and peri- ductal, vascular, lobular, and neural collagen. Together with previous 

work which found highly aligned collagen to be a negative prognostic factor in PDAC46, 

our identification of cancer cells protruding along aligned fibers suggests that pancreatic 

cancer cells in-situ may invade more easily in regions of aligned collagen and nerve fibers. 

Overall, there is a need in cancer research for 3D reconstruction techniques which enable 

the collection of large, quantifiable tissue datasets. We demonstrate that CODA is one such 

powerful technique.

Online Methods:

Data availability

Data is available upon request from the corresponding author.

Code availability

Code is available on the following GitHub page: https://github.com/ashleylk/CODA

Tissue acquisition and scanning

This retrospective study was approved by the Johns Hopkins School of Medicine 

institutional review board. Formalin-fixed, paraffin-embedded samples were sectioned every 

4μm. Every third tissue section was stained using hematoxylin and eosin (H&E), with two 

sections every three held out. All tissues of sample P0 were scanned for validation that 

skipping two sections maintained registration and reconstruction accuracy. Tissues were 

scanned at x20 using a Hammamatsu Nanozoomer. These studies were approved by the 

Institutional Review Board of The Johns Hopkins Hospital.

Image registration

Cases contained series of tissue images scanned at 20x, corresponding to approximately 

0.5μm/pixel. Openslide software was used to save reduced size copies of each image, 

corresponding to 8μm/pixel using nearest neighbor interpolation1. For each sample, the 

center image was identified as the point of reference (imagen), and global and elastic 

registration was calculated for all other images in the sample.

We performed registration on greyscale, Gaussian-filtered, down sampled (80μm/pixel 

resolution) versions of the high-resolution histological sections. Global registration 

transformations for a pair of preprocessed tissue images were found through iterative 

calculation of registration angle and translation via maximization of cross-correlation. 

Radon transforms of the images taken at discrete angles between 0 and 359 degrees were 

calculated. The maximum of the cross correlation of radon transforms of the images yielded 

registration angle, and the maximum of the cross correlation of the rotated tissue images 

yielded translation. Elastic registration was obtained by calculating rigid registration of 
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cropped image tiles at 1.5-mm intervals across the globally registered images at 8μm/pixel 

resolution. The resulting local, rigid registration fields were interpolated to the size of 

the 8μm/pixel resolution images. Finally, the registration fields were smoothed using a 

Gaussian filter with standard deviation of 2 pixels to produce a nonlinear, elastic registration 

transformation.

In order to account for images with large regions of tissue splitting or folding, rigid global 

registration was performed to sequentially register each imagen+/−m to the three next closest 

images to center, imagen+/−(m+1) imagen+/−(m+2), and imagen+/−(m+3). Quality of each of the 

three global registrations was assessed by comparing pixel-to-pixel correlation between the 

moving and each reference image. The registration with the best result was kept and the 

other two discarded. Thus, if imagen+/−(m+1) contained large defects such as tissue splitting 

or folding, then imagen+/−(m+2) would be used as the reference for rigid registration to avoid 

compound errors. Following global registration, elastic registration was employed between 

the moving image and chosen reference image to create a nonlinear displacement map. 

This process was repeated for all images in a sample such that all images were elastically 

registered to the coordinate system of the center imagen.

Assessment of image registration quality

Quality of image registration within the pancreas image datasets was calculated using pixel-

wise Spearman correlation. ‘True’ biological pixel variation was calculated by correlating 

pixel intensity along the x and y dimensions of single images (longitudinal correlation). 

It was assumed that ‘perfect’ registration would result in a similar z-direction (down the 

image stack) correlation to the xy correlation, as the xy correlation represents the variation 

in pixel intensity in intact tissue. Axial pixel correlation was calculated by correlating pixel 

intensity along the z dimension of serial images. Unregistered z-correlation was compared 

to post-global registration correlation and post-elastic registration correlation to determine 

improvements to intensity continuity following registration, and post-elastic registration was 

compared to longitudinal correlation to determine how closely our registration results could 

emulate the true intensity variation between connected tissue.

For each correlation calculation (along the xy direction, unregistered z-dimension, global 

registered z-dimension, and elastic registered z-dimension) Spearman correlation was 

calculated for pixels at 4μm intervals starting at 0 micron apart. Correlation of pixels 0 

micron apart is correlation of each pixel to itself (equal to 1). Correlation of pixels 4μm 

corresponds to two pixels 4μm apart in a single image (for the xy calculation) or one 

image apart (for the z calculation). This process was repeated for distances up to 0.3 mm. 

Additionally, this process was repeated for registration of all images in sample P0, and 

registration of one in two, one in three, one in four, and one in five images in P0 to prove 

that we maintain >95% correlation when sampling one in every three images per tissue 

sample.

Comparison of image registration to existing techniques

CODA registration was applied to a publicly available serial histological sample of 

260 mouse prostate images, which was part of a previously published paper comparing 
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the performance of seven registration techniques.2 The image dataset contained manual 

annotation of two cells per image each from two different researchers. Performance metrics 

included pairwise target registration error (TRE): average distance between pairs of fiducial 

markers; accumulated target registration error (ATRE): estimation of accumulated distortion 

throughout the stack; root mean squared error (RMSE): pairwise comparison of pixel 

intensities across the stack; Jaccard Index (J): pairwise area overlap of consecutive images; 

and (dA): change in area of the tissue slides pre- and post- registration. CODA performed 

similarly to competing techniques in TRE, J, and dA. Importantly, CODA outperformed all 

other techniques in ATRE and RMSE, suggesting CODA registration of this sample resulted 

in less accumulated error than other techniques.

Raw performance metrics are listed in the source data file for figure 2A. As the magnitude of 

various performance metrics varied widely, normalized performance metrics were calculated 

such that a single graph could concisely express a wide variety of performance parameters. 

Mean performance metrics were normalized using the following formulas such that they lay 

within the range of 0 – 1 and such that higher numbers indicate better performance:

TRENormalized = 1 − TREmean/max TREmean

ATRENormalized = 1 − ATREmean/max ATREmean

RMSENormalized = 1 − RMSEmean/max RMSEmean

RMSENormalized = 1 − RMSEmean/max RMSEmean

Jnormalized = Jmean/min Jmean − 1

dANormalized = 1 − dAmean /max dAmean where x denotes absolute value of x]

Identification of cells in histological samples

First, the hematoxylin channel of all H&E images was extracted using color deconvolution. 

Openslide software was used to save reduced size copies of all tissue images, corresponding 

to 2μm/pixel using nearest neighbor interpolation. For each image, the tissue region of the 

image was identified by finding regions of the image with low green channel intensity and 

high red-green-blue (rgb) standard deviation. Next, rgb channels were converted to optical 

density. Using kmeans clustering analysis, 100 clusters were identified to represent the 

optical densities of the image. The most common, blue-favored optical density was chosen 

to represent the hematoxylin channel, and the most common, red-favored optical density 

was chosen to represent the eosin channel. The background optical density was fixed as the 
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inverse of the average of the hematoxylin and eosin optical densities. These three optical 

densities were used to deconvolve the rgb image into hematoxylin, eosin, and background 

channel images. Using methods described in ref3, the hematoxylin channel images were 

smoothed, and 2D intensity minima of a designated size and distance from each other were 

identified as nuclei.

Validation of cell detection algorithm and comparison to existing techniques

A total of five 1.5mm2 regions were randomly extracted from the serial images for 

validation. For each region, two researchers manually annotated cells using an annotation 

function built in MATLAB 2021b. Next, CODA cell detection and two popular cell detection 

algorithms (Hovernet and QuPath)4,5 were applied to the validation images to automatically 

generate nuclear coordinates. Automatically generated coordinates were termed true 

positives if they were within 2μm of a manually generated coordinate (that was not already 

paired with another automatically generated coordinate). 2μm was selected as the radius 

as this was determined to be the average radius of nuclei in the images. Automatically 

generated coordinates were termed false positives if they were not within 2μm of a manually 

generated coordinate (that was not already paired with another automatically generated 

coordinate). Finally, manually annotated coordinates with no corresponding automatically 

generated coordinate were termed false negatives. From the true positives, false positives, 

and false negatives, precision and recall were calculated to compare each of the three 

techniques to both sets of manual annotations.

Deep learning tissue multi-labelling

A deep learning model was created for each case using manual tissue annotations of that 

sample. Openslide software was used to save reduced size copies of all tissue images, 

corresponding to 2μm/pixel using nearest neighbor interpolation1. Seven tissue images 

equally spaced within each sample were extracted. For each of the seven images, we 

manually annotated 50 examples of each identified tissue subtype using Aperio ImageScope, 

creating .xml files of annotation coordinates. Annotation coordinates were loaded into 

MATLAB 2021b using publicly available software and were downsampled to correctly 

overlay on the 2μm/pixel tissue images6.

In order to reduce the heterogeneity of the H&E images, the H&E stain of all tissue images 

in each case were normalized. Using the hematoxylin and eosin channel images created for 

the cell counting analysis and the optical density calculated for a reference H&E image from 

the same case, we reconstructed rgb images of each tissue type to a chosen optical density. 

Incorporation of image color normalization allowed us to avoid catastrophic failure of the 

semantic segmentation on unannotated images with drastically different staining patterns.

Bounding boxes of all annotations were identified and each annotated rgb image region was 

extracted and saved as a separate image file. A matrix was used to keep track of which 

bounding box images contained which annotation tissue types. Training images were built 

through creation of a 9000 × 9000 × 3, zero-value rgb image tile. Annotation bounding 

boxes containing the least represented deep learning class were randomly overlaid on the 

blank image tile until the tile was >65% full of annotations and such that the number of 
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pixels of each deep learning class was approximately equal. Annotation bounding boxes 

were randomly augmented via rotation, scaling by a random factor between 0.8–1.2, and hue 

augmentation by a factor of 0.8–1.2 in each rgb color channel. The 9000 × 9000 × 3 image 

tile was then cut into 324 500 × 500 × 3 images. 20 such large images were built, half with 

augmentation, to create 6480 training images, and 5 additional images were built to create 

1620 validation images. 324 testing images were created using manual annotations from an 

image not used for training or validation. This data generation pipeline including the size 

of the image tile, size of the training tiles, and levels of data augmentation was chosen as it 

gave highest performance during pilot classification of sample P0.

Following dataset creation, a resnet50 network was adapted for DeepLab v3+ semantic 

segmentation35 and trained to a validation patience of 5. If 90% tissue subtype precision and 

recall was not obtained, additional manual annotations were added to the training and testing 

images and the process was repeated until desired accuracy was reached. We determined that 

>90% precision and recall resulted in classified models that generally matched pathological 

annotation of diseased tissues. Once a satisfactory deep learning model was trained, all 

tissue images in the sample were semantically segmented to create labelled tissue images 

with a pixel resolution of 2μm/pixel.

Addition of nerve labels to previously deep learning-labelled tissue images

The model design explained above was utilized to add nerves to the previously labelled 

pancreas histological images. First, 50 nerve annotations per image were collected on 

the images used for training of the previous deep learning model. Next, collagen, blood 

vessel, and whitespace annotations from all previous annotation datasets were pooled. All 

other tissue components (islets, normal ductal epithelium, acini, precancers, cancer, and 

lymph node) were pooled to a fifth class termed ‘other tissue’. Collagen and blood vessel 

annotations were kept as separate classes as the eosin-rich staining on these structures 

closely resembles the staining pattern on nerves. It was found through training of a tri-class 

model (nerves, whitespace, other tissue only) that nerves would often be confused with 

collagen and vascular structures. The five annotation classes were pooled into training 

tiles as is described above and a semantic segmentation network with >90% precision 

and recall per class was trained across all thirteen pancreas samples. It was calculated 

that >97% of pixels replaced by the nerve label were previously classified (using the 

semantic segmentation network that did not contain nerves as a label) as either collagen or 

vasculature. As this network classified both nerves and ‘other tissue components’, the nerve 

classification in this trained model was assumed to supersede the previous classification 

(thus all pixels labelled as nerves replaced the label for that pixel generated by the previous, 

10-class model).

3D reconstruction of samples

Multi-labelled images created by the deep learning portion of the CODA pipeline were 

consolidated into a 3D matrix using the H&E image registration results. Similarly, cellular 

coordinates counted on the unregistered histological sections were consolidated into a 3D 

cell matrix using the H&E image registration results. 3D renderings of the labelled tissue 

regions were visualized using the “patch” and “isosurface” commands in MATLAB 2021b 
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and using a color scheme with a unique rgb triplet for each tissue subtype. Dimensions of 

rendered tissues were calculated in xy using the pixel resolution of the original x20 scanned 

histological sections (approximately 0.5μm/pixel) and using the tissue section spacing (4μm) 

in z. The resolution of the 3D renderings was 2μm/pixel in xy, the resolution used for image 

semantic segmentation, and 12μm/pixel in z, as only one in three tissue sections were used 

in the analysis. Single cells were visualized within the 3D renderings using the “scatter3” 

command in MATLAB 2021b. For all calculations performed on the 3D labelled matrices of 

the tissues, the 3D matrix was subsampled using nearest neighbor interpolation from original 

voxel dimensions of 2 × 2 × 12μm3/voxel to an isotropic 12 × 12 × 12μm3/voxel.

Calculation of tissue content, bulk cell density, and local cell density

Tissue composition was calculated by counting the total number of voxels in the isotropic 

3D matrix corresponding to each tissue subtype and dividing those numbers by the total 

number of voxels in the tissue region of the 3D matrix. These tissue compositions were 

formatted into a matrix in MATLAB 2021b and visualized as a heatmap.

Cell density of each tissue subtype was calculated by combining the tissue subtype data in 

the multi labelled 3D matrix with cell coordinate data in the cell 3D matrix. Cells at each 

voxel in the cell 3D matrix corresponded to the tissue subtype label in the multi labelled 

3D matrix (for example, a cell is labelled an epithelial cell if the nuclear coordinate was 

identified in a region labelled as epithelium by the deep learning pipeline). Measurements 

of nuclear diameter were used to estimate true 3D cell counts from the 2D cell coordinates. 

Using Aperio ImageScope, 100 nuclei of each tissue subtype were measured for each case. 

The estimated 3D cell count (C3D) of cells 715 counted on serial sections analyzed every 

three sections was calculated using the formula:

C3D = ∑
images

∑
subtypes

Cimage
3T

T + Dsubtype

where Cimage is the cell count for a given tissue image, T is the thickness of the histological 

section, and Dsubtype is the measured diameter of a nucleus for a tissue subtype. For each tissue 

subtype, bulk 3D cell density was calculated by dividing the 3D extrapolated cell count of 

a particular subtype divided by the total volume of the tissue. Local 3D cell density was 

calculated by dividing the 3D extrapolated cell count of a particular subtype divided by the 

volume of that particular tissue subtype.

Determination of spatially distinct precursor lesions

The 3D multi labelled matrices were used to determine tissue connectivity. Following 

classification, all objects labelled as pancreatic precancers lesions were visually verified 

to be precancers through creation of bounding box serial sections. Independent precursors 

were identified in the 3D multi labelled matrix using the “bwlabeln” command in MATLAB 

2021b. “Bwlabeln” identifies and labels spatially distinct objects in matrices. We calculated 

connectivity on both the precancers alone and the precancers plus the normal ductal 

epithelium. Distinct precancers and cancers identified using “bwlabeln” could then be 

quantitatively analyzed or 3D rendered independently from other precancers.

Kiemen et al. Page 13

Nat Methods. Author manuscript; available in PMC 2023 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Independent precursor coordinates were used to automatically annotate connected lesions 

on H&E images of 2μm/pixel resolution. First, each precursor was assigned a distinct RGB 

color. Next, for each registered H&E image in the serial sections, the number of distinct 

precursors appearing on that section was determined. For each independent precursor on the 

section, voxels defining the precursor in the volume matrix were located. The pixels were 

dilated and only the outline kept, then rescaled to match the 2μm/pixel H&E images such 

that the annotated precursor mask was reformatted to appear as a thick outline overlayed on 

the precursor region of the H&E section. The outline was overlayed on H&E and the pixels 

in the H&E image corresponding to the outline were recolored to match the color defining 

that independent precancer. This was repeated for all precancers in the sample. The same 

coloring scheme for each precancer was then used in a 3D reconstruction of the sample, 

allowing users to match precancer histology to the correct 3D reconstructed precancer.

To create the graph in Fig. 5B, the number of precursors present in each sample was 

calculated. First, we determined the number of lesions present on each 2D section (not 

considering 3D connectivity). Next, we determined the true number of precursors present 

on each section when considering 3D connectivity. For each section in which at least one 

precursor was present, the number of (distinct in 2D space) precursor-classified objects was 

normalized by the number of (distinct in 3D space) precursor-classified objects that were 

present on the section. The average and standard deviation of this ratio for each sample was 

calculated and plotted.

Finally, metrics were performed on each independent precancer to determine 3D 

morphology. Using the 3D reconstructions and serial bounding boxes of each precancer, 

we determined 3D phenotype by assessing 3D presentation as well as the location of 

the precancer in the pancreatic ducts or pancreatic acinar lobules. Next, cell count was 

determined by counting the number of cells located in the same voxel coordinates as each 

defined precursor lesions and corrected using the 3D cell conversion equation listed above. 

Precursor volume was calculated by summing the number of voxels defining each precancer 

and converting from voxel to mm3 units (1 voxel = 12*12*12*10−9 mm3). Precursor cell 

density was calculated by dividing cell number per precursor by precursor volume. Precursor 

primary axis length was determined using the function “regionprops3” in MATLAB2021b.

Calculation of collagen and nerve fiber alignment and nuclear aspect ratio

Using the 3D renderings, we identified three coordinates of axial sectioning and three 

coordinates of longitudinal sectioning around pancreatic ductal epithelium, blood vessels, 

and nerves for seven samples containing large regions of normal pancreatic parenchyma (for 

42 total images of ducts, nerves, and blood vessels each). We located the 2D histological 

sections using 3D coordinates of the identified regions and cropped the region of interest 

from the corresponding x20 H&E images. We applied the color deconvolution method 

described above to the cropped 20x H&E image to separate the hematoxylin and eosin 

channels. We calculated fiber alignment within selected 2500 μm2 windows in the eosin 

channel images using a previously developed method7. By measuring fiber alignment within 

collagen or nerve regions in images of axial or longitudinal sectioning, we can compare the 

degree of collagen and nerve fiber alignment in axially and longitudinally sectioned regions 
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of the ducts, blood vessels, and nerves. An alignment index of one represents completely 

aligned matrix of fibers and an alignment index of zero represents an isotropic matrix of 

fibers. We measured the alignment index at two locations of each cropped image.

We next manually measured nuclear aspect ratio of cells within the peri-ductal/vascular/

neural space using a script written in MATLAB 2021b. To confirm the accuracy of the 

measurements, two scientists measured five randomly selected cells in each image, for 

a total of 1260 cells measured. The nuclear aspect ratio measurements between the two 

researchers were compared in Extended Data Fig. 4E and the differences were shown to be 

statistically insignificant. Violin plots were constructed from data using code available in the 

provided reference8.

Construction of z-projections

The 3D labelled matrices of each sample were used to construct z-projections of each tissue 

subtype. For each subtype, the pixels of the 3D matrix corresponding to that subtype were 

summed in the z-dimension, creating a projection of the volume on a plane perpendicular 

to the xy axes. The projections were normalized by their maximum and visualized using 

the imagesc command in MATLAB 2021b using the same color scheme created for 

visualization of the 3D tissues.

Analysis of normal and atrophic pancreatic lobules

For sample P7, the 3D model revealed a large region of acinar atrophy. Using an annotation 

pipeline written in MATLAB 2021b, registered, serial H&E images were rapidly displayed 

and manually annotated. In each image, the boundaries of the atrophic lobule and a 

nearby normal lobule were segmented. These regions were 3D reconstructed and tissue 

compositions were calculated using the methods described above.

Confusion Matrices

Quality of the deep learning models was visualized using construction of confusion 

matrices. For each datapoint in the testing dataset, the ‘true’ label (as manually annotated in 

H&E) was determined and matched with the ‘determined’ label (as classified by the deep 

learning model. A table was constructed to display the number of datapoints corresponding 

to each true label and their corresponding determined labels, as well as per-class precision 

and recall and overall model accuracy.

Statistics & Reproducibility

No statistical method was used to predetermine sample size. No data were excluded from 

the analyses. All statistical analyses were performed using the Wilcoxon rank sum test. All 

results may be duplicated from the available source data files or the 3D datasets.
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Extended Data

Extended Data Fig 1. Histological image registration sample workflow.
(a)Tissue cases registered with reference at center z-height of sample. Example fixed and 

moving images shown. Global registration performed with rotational reference at center 

of fixed image. Fixed and moving images smoothed by conversion to greyscale, removal 

of non-tissue objects in image, intensity complementing, and Gaussian filtering to reduce 

pixel-level noise in images. Radon transforms calculated filtered fixed and moving for 
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discrete degrees 0–360. Maximum of 2D cross correlation of radon transforms yields 

registration angle. Maximum of 2D cross correlation of filtered images yields registration 

translation. Local registration performed at discrete intervals across fixed image. For each 

reference point, tiles are cropped from fixed and moving images and coarse registration is 

performed on tiles. Results from all tiles are interpolated on 2D grids to create nonlinear 

whole-image displacement fields. Sample overlays of pre and post registration. (b) Sample 

validation image from ref33 . with overlayed fiducial points. Normalized performance 

metrics (explained in further detail in supplementary materials).

Extended Data Fig 2. Validation of cell count and 2D to 3D cell count extrapolation.
(a) Sample histological section and corresponding color deconvolved hematoxylin channel 

of image. All cells in five validation images were manually annotated by two persons. 

Annotations were compared to CODA outputs and outputs from two existing cell counting 

methods27,28. (b) Cell diameters of each tissue subtype were measured using Aperio 
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ImageScope. 2D cell counts were extrapolated to 3D using the formula listed. It was 

assumed that cells could be detected by the algorithm if any part of the nucleus touched 

the tissue section. Therefore, effective tissue section thickness equals true tissue section 

thickness plus the diameter of the cell. 3D cell counts were estimated by multiplying 2D cell 

counts by the true thickness of the tissue section, multiplied by three because two sections 

were skipped during scanning, divided by the effective thickness of the section.

Extended Data Fig 3. Overview of semantic segmentation workflow and training data design.
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(a) For each case, a minimum of seven images were extracted from for manual annotation. 

For each extracted image, minimum 50 examples of each tissue type were annotated, and 

the annotations cropped from the larger image. (b) To construct training and validation sets, 

cropped annotations were overlayed on a large image until the image was >65% full and 

such that the number of annotations of each type was roughly equal. (c) These large tiles 

were cut into smaller tiles for training and validation. Additional tiles were created for the 

testing set where the annotation was not cropped from the image. Testing accuracy was 

assessed as the percentage of the annotated area of the tile classified correctly. Following 

model training, the serial images were cropped into tiles and semantically segmented.
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Extended Data Fig 4. Sample deep learning accuracy and multi-patient model.
(a) Sample predicted vs. true outcomes for deep learning models for sample PI (left) and 

P8 (right). (b) Workflow for creation of multi-patient semantic segmentation of nerves. 

Nerve annotations collected from thirteen pancreas samples. Original tissue annotations 

reformatted to: l . smooth muscle, 2. collagen, 3. other tissue (islets, normal ducts, acini, 

precursor, lymph, PDAC), 4. white (whitespace, fat). Nerve annotations combined with 

original annotations to create a dataset for nerve recognition in H&E images. (c) Predicted 

vs. true outcomes for multi-patient nerve detection model.
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Extended Data Fig 5. Additional methodological supplemental.
(a) Quantification of loss in quality due to reducing the z-resolution of serial samples. 

Calculation of pixel correlation across the z-axis (Left) shows that >95% correlation is 

maintained post-registration when skipping up to four serial sections, or 20μm, between each 

H&E collected. Calculation of % change in cell count (center) and tissue composition (right) 

reveals <5% error in 3D cell count and tissue composition extrapolation when skipping up to 

two serial sections, or 12μm, between each H&E collected). (b) Tissues labelled by CODA 

in H&E-stained tissue sections of human pancreas. (c) Comparison of nuclear aspect ratio 

measurements performed by person I and person 2 show nonsignificant differences between 

measurements.
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Extended Data Fig 6. 3D reconstruction of sample P1.
(a) Global reconstruction of and ducts. (b) 3D rendering of subregions, showing ducts, fat, 

acini, collagen, blood vessels, and islets of Langerhans. (c) Z-projections of labelled tissues 

(intensities enhanced for visibility).
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Extended Data Fig 7. 3D reconstruction of sample P2.
(a) Global reconstruction of H&E, ducts, and PanIN. (b) 3D rendering of subregions, 

showing PanIN, ducts, fat, acini, collagen, blood vessels, and islets of Langerhans. (c) 
Z-projections of labelled tissues (intensities enhanced for visibility).
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Extended Data Fig 8. 3D reconstruction of S05-PDAC.
(a) Global reconstruction of H&E, ducts, PanIN, and PDAC. (b) 3D rendering of subregions, 

showing PDAC, PanIN, ducts, fat, acini, collagen, blood vessels, and islets of Langerhans. 

(c) Z-projections of labelled tissues (intensities enhanced for visibility).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. CODA.
(a) Human pancreatic tissue was serially-sectioned, stained, and scanned. (b) Images 

were registered using a nonlinear approach to create a digital volume. (c) Cells were 

identified using the hematoxylin channel of the H&E images. (d) Deep learning semantic 

segmentation models were trained using randomly overlaid annotations of tissue types. 

Images are labelled to a resolution of 2μm. (e) 3D reconstruction of >1000 serially sectioned 

pancreas sections. 3D renderings are created at the cm, mm, and μm scale at tissue and 

single cell resolution.
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Fig. 2. Validation of CODA registration and ability to skip z-sections.
(a) Sample validation image (from an online dataset first published in ref 34) with 

overlayed fiducial points. Normalized performance metrics: target registration error (TRE); 

accumulated target registration error (ATRE); root mean squared error (RMSE); Jaccard 

Index (J); and pre/post registration change in area (dA). (b) Quantification of loss in quality 

due to reducing the z-resolution of serial samples. Calculation of pixel correlation across the 

z-axis (left) shows that >95% correlation is maintained post-registration when skipping up to 

four serial sections, or 20μm, between each H&E collected. (c) Calculation of % change in 

cell count and (d) tissue composition (right) reveals <5% error in 3D cell count and tissue 

Kiemen et al. Page 30

Nat Methods. Author manuscript; available in PMC 2023 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



composition extrapolation when skipping up to two serial sections, or 12μm, between each 

H&E collected). (e) Validation of 3D rendering quality due to reducing the z-resolution of 

serial samples. Tissues in this study are modeled using a spacing of 12 μm between sections 

(top-right rendering).
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Fig. 3. CODA processing of additional organs.
(a) 3D reconstruction of human scalp tissue. Sample H&E and semantically segmented 

image (far left), visualization of the H&E volume (topleft), epidermis, sweat glands, 

and oil glands (top right), external (bottom left) and internal (bottom right) views of 

epidermis, hair follicles and oil glands, and visualization of single cell resolution (far 

right). (b) 3D reconstruction of mouse lung tissue. Z-projections of all components together 

and individually (left) and 3D renderings of bronchioles (right-top) and vasculature and 

metastases (right-bottom). (c) 3D reconstruction of mouse liver tissue. Sample H&E and 
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semantically segmented image (far left), z-projection of vasculature and bile duct (middle-

top) and hepatocytes (middle-bottom) and 3D rendering of vasculature (far right).
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Fig. 4. Inter-patient pancreas analysis from cm-scale to single cell resolution.
(a) Thirteen samples of up to multi cm-scale containing normal, precancerous, and 

cancerous human pancreas were reconstructed. Tissue volumes, cell counts, and cell 

densities were calculated. (b) Bulk cell density decreases > 3-fold in N=7 cancerous human 

pancreas relative to N=8 grossly normal human pancreas. **** indicates a p-value<0.0001 

using the Wilcoxon rank sum test.
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Fig. 5. Microarchitectural patterns in pancreatic precancers.
(a) 43 Spatially independent precancers in sample P2 were color coded and labelled on 

H&E serial sections and a 3D reconstruction. (b) Number of precancers per 2D section 

normalized by true 3D precancer number was calculated for samples containing precancers. 

(c) 3D renderings and sample histology illustrate three 3D phenotypes of PanIN observed. 

Tubular PanIN preserve normal pancreatic ductal morphology, lobular PanIN resemble 

acinar lobules, and dilated PanIN reside in dilated ducts or lobules.
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Fig. 6. 3D Patterns in pancreatic cancer invasion.
(a) Occurrence of venous invasion, (peri)neural invasion, and invasion along collagen fibers 

identified in eight samples containing PDAC. Selected 3D reconstructions of pancreatic 

cancer invasion patterns: invasion along periductal collagen, venous invasion, and perineural 

invasion. (b) 3D reconstruction of normal ductal epithelium with identified coordinates 

of longitudinal and axial sectioning. H&E images extracted from coordinates and eosin 

channel isolated. (c) Nuclear aspect ratio and fiber anisotropy index, representing local fiber 

alignment, of 90 longitudinally and 90 axially sectioned ducts, blood vessels, and nerves 

from 10 patient samples. Nuclear elongation and fiber alignment were significantly higher 
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in longitudinal compared to axial sections. **** indicates a p-value < 0.0001 using the 

Wilcoxon rank sum test.
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