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Abstract

The approval of ketamine for treatment-resistant depression has created a model for a novel 

class of rapid-acting glutamatergic antidepressants. Recent research into other novel rapid-acting 

antidepressants – most notably serotonergic psychedelics (SPs) – has also proven promising. 

Presently, the mechanisms of action of these substances are under investigation to improve these 

novel treatments, which also exhibit considerable side effects such as dissociation. This chapter 

lays out the historical development of ketamine as an antidepressant, outlines its efficacy and 

safety profile, reviews the evidence for ketamine’s molecular mechanism of action, and compares 

it to the proposed mechanism of SPs. The evidence suggests that although ketamine and SPs act 

on distinct primary targets, both may lead to rapid restoration of synaptic deficits and downstream 

network reconfiguration. In both classes of drugs, a glutamate surge activates α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) throughput and increases in 

brain-derived neurotrophic factor (BDNF) levels. Taken together, these novel antidepressant 

mechanisms may serve as a framework to explain the rapid and sustained antidepressant effects 
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of ketamine and may be crucial for developing new rapid-acting antidepressants with an improved 

side effect profile.
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1 Introduction

1.1 Clinical Studies Leading to the Approval of Esketamine as an Antidepressant: A 
Historical Overview

Since it was first approved by the US Food and Drug Administration (FDA) in 1970, 

ketamine1 has become a crucial and versatile drug and is listed as an essential medicine by 

the World Health Organization (World Health Organization 2019). Originally developed 

as a derivative of phencyclidine (PCP) by the pharmaceutical company Parke Davis, 

ketamine has been used for decades as an anesthetic and analgesic agent; more recently, 

esketamine (racemic ketamine’s (S)-stereoisomer) received FDA approval for treatment-

resistant depression (TRD) for adults with major depressive disorder (MDD) as well as with 

acute suicidal ideation or behavior. TRD is commonly defined by nonresponse to at least two 

adequate antidepressant trials.

PCP was first trialed in humans as an anesthetic, but researchers soon realized that its 

unpleasant side effect profile – which included loss of feeling in limbs and prolonged 

sensory deprivation post-treatment – precluded its clinical use. Short-acting PCP derivatives 

were subsequently synthesized. After pharmacological testing, ketamine – which has similar 

anesthetic potential to PCP but a more favorable side-effect profile – was selected for human 

trials. Though ketamine and PCP are both noncompetitive N-methyl-D-aspartate receptor 

(NMDAR) inhibitors, notable pharmacological differences exist. For example, PCP has 

pro-convulsive effects while ketamine does not, and ketamine has a faster induction rate of 

anesthesia than PCP but a shorter duration of action (McCarthy et al. 1965). At the time 

of its development as an anesthetic, PCP’s sensory deprivation effects led researchers to 

investigate it in a model of schizophrenia (Cohen et al. 1959; Rosenbaum 1959); indeed, 

a study of nine schizophrenic and nine non-schizophrenic patients showed that PCP had 

psychotomimetic effects in both groups (Rosenbaum 1959). As a result, such effects were 

assessed during ketamine’s development. Though both drugs exerted psychotomimetic 

effects, ketamine’s were less intense, and of shorter duration, than PCP’s (Domino et al. 

1965). Nonetheless, Parke Davis worried that ketamine’s classification as a psychotomimetic 

drug would hinder its development and thus employed an internal psychiatrist to observe 

patients after application of ketamine anesthesia.

In recent decades, our understanding of mood disorders and depression has evolved, 

and researchers realized that the pathophysiology of mood disorders extends beyond 

1Unless otherwise specified, the term ketamine refers to racemic (R,S)-ketamine.
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monoaminergic neurotransmission. By the 1990s, emerging preclinical work supported 

the hypothesis that glutamate and its ionotropic NMDAR might be involved in the 

pathophysiology of affective disorders and, commensurately, that its study might lead to 

the development of new classes of antidepressants (Skolnick et al. 1996). Within the context 

of this preclinical evidence, as well as a broad understanding of ketamine’s mechanism 

of action, Berman and colleagues were the first to administer ketamine to individuals 

with depression in a placebo-controlled, double-blind trial (Berman et al. 2000). The trial 

included seven participants with major depression who were treated intravenously with a 

subanesthetic dose of 0.5 mg/kg ketamine hydrochloride or a saline solution on 2 days 

1 week apart. The results showed that ketamine infusion had rapid-acting antidepressant 

effects, as assessed by its ability to significantly improve depression rating scale scores 

within hours. Moreover, these antidepressant effects continued for at least 3 days after 

ketamine’s acute dissociative effects had faded.

In retrospect, these results marked a milestone. However, they did not attract lasting interest 

after publication (Gallagher et al. 2021). Explanations included skepticism that the robust 

and rapid antidepressant effects observed were due to the drug rather than its intravenous 

application, as previous work had similarly demonstrated rapid response to an intravenously 

administered tricyclic antidepressant (Berman et al. 2000; Malhotra and Santosh 1996; 

Sallee et al. 1997). Another factor was the low number of participants enrolled in the trial. 

Finally, Berman and colleagues had mentioned that a potential limitation associated with 

clinical applications for ketamine would be its abuse potential and its well-established 

psychotomimetic profile, suggesting that these properties would need to be eliminated 

before further testing could be conducted. Nevertheless, due to persistent interest in 

ketamine’s potential antidepressant effects, in 2006 Zarate and colleagues replicated the 

findings of the original trial by Berman and colleagues in a randomized, double-blind, 

placebo-controlled study of 18 patients with TRD (Zarate et al. 2006).

Since then, research into ketamine’s mechanism of action has sought to understand the 

results of these initial clinical trials and the possible connection between the glutamatergic 

system and the underlying pathophysiology of depression and other stress-related disorders. 

Notably, the surge of interest in ketamine’s antidepressant effects did not occur until 

independent, placebo-controlled studies substantiated the results of these initial trials 

underscoring the importance of funding replication studies. Indeed, a recent study that 

compared publications that were initially highly cited with their replication rate found that 

nearly half of these publications were not replicated in the following 10 years (Aarts et al. 

2015).

Despite ketamine’s potential as a rapid-acting antidepressant, the impracticalities of 

intravenous application in outpatient clinics and private settings led investigators to 

research alternative routes of administration. Lapidus and colleagues conducted the first 

trial of intranasally-delivered ketamine and found that this application led to sufficiently 

high plasma concentrations of the agent to induce antidepressant effects (Lapidus et al. 

2014). In combination with positive clinical trials, these findings led to a patent for the 

intranasal administration of esketamine and culminated in the FDA approval of esketamine 

in 2019 for adults with TRD and in 2020 for adults with acute suicidal ideation and 
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behavior. Esketamine showed roughly four-fold higher NMDAR binding affinity than the 

R(+)enantiomer but retained ketamine’s anesthetic and dissociative properties (Fukumoto et 

al. 2017; Zhang et al. 2014).

Results of the initial clinical trials with ketamine also led to a surge in research to 

uncover or develop agents with similar rapid-acting antidepressant properties but fewer 

psychotomimetic side effects. This effort has, to date, been unsuccessful, suggesting that 

ketamine might have unique pharmacological characteristics. Nonetheless, the search for 

new and similar substances continues, as do efforts to improve ketamine’s own side effect 

profile (Kadriu et al. 2020).

1.2 The Need for Rapid-Acting Antidepressants

First-line antidepressant medications such as selective serotonin reuptake inhibitors (SSRIs) 

target the monoaminergic system. Despite their positive safety profile, these agents have 

some key limitations. First, SSRIs exhibit response rates in first-line trials of about 30–

60%, underscoring that a significant number of patients with major depression do not 

respond to these agents. The large NIMH-funded Sequenced Treatment Alternatives to 

Relieve Depression (STAR*D) study found that, in a group of approximately 4,000 patients 

with MDD who received as many as four different psychotropic treatment combinations, 

about 33% did not respond to any of the standard medications (Gaynes et al. 2009). Such 

treatment-resistant patients are vulnerable to disease-associated debilitating impairments 

in psychosocial functioning, personal relationships, working capacity, and general well-

being, and are at particularly high risk for suicidal behavior (Whiteford et al. 2013). 

Second, even when they will ultimately prove successful, standard antidepressant treatments 

have a lag time of several weeks before symptom alleviation; this long delay to reach 

full therapeutic potential makes them relatively ineffective for immediate treatment of 

emergencies, including suicidal behavior and acute relief of depressive symptoms. Third, 

side effects, genetic polymorphisms, and other related factors may all critically affect 

drug efficacy and general drug adherence; interactions with other drugs also remain a key 

consideration (Goethe et al. 2007). As an example, side effects such as nausea might occur 

before the onset of antidepressant response given the significant lag time associated with 

standard antidepressants.

In this context, the discovery of a rapid-acting antidepressant like ketamine was a major 

paradigm shift in the development of novel antidepressants and the treatment of patients 

with depression. The potential to treat previous non-responders, including individuals with 

TRD who experience unremitting depressive episodes is a major advantage, especially 

considering the high prevalence of depression in community settings. However, it should be 

noted that, compared with standard antidepressant agents, ketamine’s long-term side effects 

require further research because most of this research has been conducted only in short-term 

ketamine trials.

1.3 Safety of Ketamine as an Antidepressant

Given that ketamine is one of the most commonly used anesthetics, safety data on single use 

applications of anesthetic doses were more readily available than for newly developed drugs. 
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Nevertheless, given that anesthetic and antidepressant ketamine doses are quite different, 

ketamine’s antidepressant side effect profile needed to be considered separately.

A systematic assessment of ketamine’s side effects across five separate studies (n = 188) 

found that single-dose IV ketamine (0.5 mg/kg) was associated with several, mostly 

transient, side effects compared to placebo (Acevedo-Diaz et al. 2020). Dissociative side 

effects were most commonly reported (e.g., feeling strange (80%), a feeling of floating 

(>50%), and visual distortion (>50%)). Less common side effects included difficulty 

speaking (>50%), numbness (>40%), confusion (>40%), euphoria (>20%), and blurred 

vision (>20%) (Acevedo-Diaz et al. 2020). Side effects that occurred in fewer than 20% 

of patients included hypertension, dry mouth, tingling, difficulty concentrating, changes in 

body temperature, hallucinations, headaches, and gastrointestinal problems. As noted above, 

most of these side effects were transient, resolving after 2 h and peaking within an hour 

of ketamine administration. No significant cognitive or memory deficits or long-lasting side 

effects were observed in association with a single-dose infusion (Acevedo-Diaz et al. 2020).

As mentioned previously, most randomized clinical trials have monitored ketamine’s short-

term side effects, with relatively fewer data available regarding the safety of frequent or 

long-term use (Short et al. 2018). However, clinical trials surged (Bahr et al. 2019) with 

the development and FDA approval of the esketamine nasal spray, raising potential safety 

concerns about repeat- dose applications. Few studies have systematically assessed the side 

effects of long-term, repeat-dose ketamine and, to date, no clinical trials have monitored 

patients receiving ketamine for longer than one year. The extant data, however, suggest that 

ketamine’s dissociative side effects remain transient and seem to decrease with repeated 

dosing; in addition, side effects such as dizziness and nausea vary depending on dose (Bahr 

et al. 2019). Interestingly, some data have come from substance abuse disorder studies of 

recreational ketamine users; while such data are not directly comparable to intravenously 

administered, antidepressant-dose ketamine administered in controlled settings, they do 

provide information regarding the risks and side effects associated with long-term ketamine 

use. Most notably, these data suggest a risk for ulcerative cystitis in chronic ketamine 

users (Jhang et al. 2015), though a recent study found that neither single nor repeat-dose 

esketamine led to urothelial toxicity (Findeis et al. 2020). Long-term recreational ketamine 

use has also been associated with impaired cognitive functioning, including episodic and 

semantic memory (Curran et al. 2001) as well as cognitive processing speed and verbal 

learning (Chan et al. 2013); these deficits persisted after matching with polydrug controls. 

Researchers have suggested that these effects may be at least partially explained by the 

observed upregulation of D1 receptors in the dorsolateral prefrontal cortex of long-term 

ketamine users (Narendran et al. 2005). Studies in rodents have also suggested that repeated 

subanesthetic administration of ketamine may have neurotoxic effects (Li et al. 2017; 

McIntyre et al. 2021).

With regard to esketamine in particular, one Phase 3 long-term study of over 800 enrolled 

patients assessed the long-term safety and efficacy of esketamine nasal spray plus a novel 

oral antidepressant for a year. The most common side effects were dizziness (32,9%), 

dissociation (27,6%), nausea (25,1%), and headache (24,9%). Cognitive function increased 

or remained stable at baseline throughout the study. Most side effects were mild or 
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moderate, occurred on dosing day, and resolved on the same day; dissociative symptoms 

typically resolved 1.5 h after dosing (Wajs et al. 2020). Although some patients reported 

urinary tract side effects (17%), symptoms were mild to moderate and resolved after two 

weeks despite continued esketamine treatment. After discontinuation, the most common 

(>20%) new or worsening “withdrawal” symptoms were fatigue-lethargy/lack of energy and 

insomnia (Wajs et al. 2020). Intranasal esketamine also holds a risk for abuse and misuse as 

well as an increased risk of suicidal ideation and behavior in adolescents and children (Bahr 

et al. 2019); however, it is important to note that no abuse has been reported to date, and 

no patients requested an increase in dosing frequency in long-term studies of adults (Wajs et 

al. 2020). Recent findings also suggest that esketamine nasal spray appears to have neither 

short-term nor long-term adverse effects on nasal tolerability or olfactory function (Doty et 

al. 2021). However, cardiovascular and cerebrovascular conditions sensitive to increases in 

blood pressure should be treated as a contraindication or caution, as esketamine can increase 

blood pressure and heart rate.

2 Pharmacodynamics of Ketamine as Antidepressant

2.1 Central Mechanisms of Action

Ketamine’s main pharmacological target is use-dependent antagonism of the ionotropic 

NMDAR and eventual decrease of calcium ion influx (Fig. 1). Crucially, the block is 

closely linked to prior α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 

(AMPAR)-linked depolarization of the post-synapse and the removal of Mg2+ ions that 

block the channel pore (Hansen et al. 2018). At subanesthetic, antidepressant doses, 

ketamine facilitates glutamate release in the medial prefrontal cortex (mPFC), while higher 

doses decrease glutamate release (Moghaddam et al. 1997). This process occurs via the 

selective inhibition of NMDARs on gamma-aminobutyric acid (GABA)-ergic interneurons, 

which in turn disinhibits glutamatergic neurotransmission of pyramidal neurons in the 

mPFC (Duman et al. 2019; Miller et al. 2016). This hypothesis is supported by the 

finding that knockdown of the GluN2B subunit of NMDARs on GABAergic interneurons 

produced antidepressant effects in rodent models (Gerhard et al. 2020). The same effect was 

also found for somatostatin- and parvalbumin-expressing subtypes, but not glutamatergic 

pyramidal (CAMK2a) neurons (Gerhard et al. 2020).

An alternative hypothesis states that ketamine’s rapid antidepressant effects are due to 

direct blocking of postsynaptic NMDAR activity in glutamatergic pyramidal neurons of the 

hippocampus and mPFC (Autry et al. 2011; Miller et al. 2016; Monteggia et al. 2013). 

This block, in turn, suppresses eukaryotic elongation factor 2 kinase (eEF2K), reducing 

the amount of phosphorylated elongation factor 2 (eEF2) and thus increasing brain-derived 

neurotrophic factor (BDNF) (Autry et al. 2011). This hypothesis is supported by evidence 

demonstrating that selective eEF2K inhibition in mice increased BDNF levels and led to 

subsequent antidepressant-like effects. Inhibition of protein synthesis – and, thus, BDNF 

synthesis – via anisomycin prevented ketamine-mediated rapid behavioral response (Autry et 

al. 2011).

In addition to its ability to modulate glutamate, ketamine affects a range of other 

neurotransmitter systems, including the GABAergic, dopaminergic, and serotonergic 
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systems. With regard to GABAergic neurotransmission, ketamine was found to reverse 

reductions in GABA-synthesizing enzymes, proteins, and co-expressed neuropeptides due to 

chronic stress (Ghosal et al. 2017, 2020; Ren et al. 2016). In rats, a single intraperitoneal 

dose of ketamine led to a dose-dependent increase in GABA, glutamate, and glutamine 

cycling (Chowdhury et al. 2017). In addition, in mice, the prophylactic administration of 

ketamine prior to stress exposure was associated with an increase in precursors to inhibitory 

neurotransmitters and a decrease in precursors to excitatory neurotransmitters in response to 

a stressor (McGowan et al. 2018). This change in precursors did not occur when no stressor 

was presented, suggesting that ketamine might selectively enhance resilience to stressful 

events.

Ketamine’s positive effects on motivation may be at least partially explained by its effect 

on the dopaminergic reward circuit (Abdallah et al. 2017; Mkrtchian et al. 2020). In 

rodents, ketamine increased activity in dopaminergic neurons in the ventral tegmental 

area (VTA) as well as extracellular dopamine in the nucleus accumbens and prefrontal 

cortex (PFC) (Witkin et al. 2016). The mediating role of AMPARs is underscored by 

the fact that the AMPAR antagonist NBQX (1,2,3,4-tetrahydro-6-nitro-2,3-dioxo- (9CI)-

benzo[f]quinoxaline-7-sulfonamide) abolished both increased dopaminergic activity and 

antidepressant-like behavioral effects. Because activation of the D1 receptor increases 

expression and excitability of NMDARs and AMPARs (Gao and Wolf 2008; Lavin and 

Grace 2001; Sun et al. 2005) as well as excitatory input to the PFC (Björkholm et al. 

2017; Gonzalez-Islas and Hablitz 2003; Gurden et al. 2000), this effect might explain 

ketamine’s impact on synaptogenesis and synaptic potentiation via increased BDNF and, 

thus, stimulation of the mechanistic target of rapamycin complex 1 (mTORC1). With regard 

to the behavioral effects of D1 receptor activity, repeated stress was found to reduce D1 

receptor expression in the rodent mPFC, which in turn led to depression-related behaviors 

(Shinohara et al. 2018). Along these lines, D1 receptor-expressing pyramidal cells in the 

rodent mPFC produced a rapid antidepressant and anxiolytic response, while disruption 

of D1 receptor activity via the D1 receptor antagonist SCH39166 blocked ketamine’s 

antidepressant-like effects (Hare et al. 2019).

Recent studies further suggest that serotonergic neurotransmission may be involved in 

ketamine’s antidepressant effects. In rodents, subcutaneous ketamine injection increased 

prefrontal serotonin levels (Nishitani et al. 2014). This effect seemed to be mediated by 

AMPARs, given that injection of an AMPAR antagonist into the dorsal raphe nucleus 

(DRN) attenuated this effect while administration of an AMPAR agonist increased prefrontal 

serotonin. In addition, the prior infusion of a tryptophan hydroxylase inhibitor depleted 

serotonin levels, and direct application of the 5-HT1A antagonist WAY100635 into the 

mPFC abolished ketamine’s antidepressant effects (Fukumoto et al. 2016, 2018; Gigliucci 

et al. 2013). Conversely, administration of the 5-HT1A agonist 8-OH-DPAT into the rodent 

mPFC mimicked the rapid antidepressant effects of ketamine and increased BDNF and 

subsequent mTORC1 signaling, ultimately increasing synaptic protein levels (Fukumoto 

et al. 2020). However, binding of the serotonin transporter (SERT) – as seen with 

SSRIs – is unlikely, given that positron emission tomography (PET) studies using the 

radioligand [11C]N,N-dimethyl-2-(2-amino-4- cyanophenylthio)-benzylamine ([11C]DASB) 
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to measure SERT binding showed no measurable occupancy of the SERT after administering 

subanesthetic-dose ketamine (Spies et al. 2018).

Ketamine may also decrease the activity of extrasynaptic GluN2B containing NMDARs, 

which directly increases mTOR phosphorylation. Miller and colleagues demonstrated that 

deletion of GluN2B from principal cortical neurons abolished ketamine’s antidepressant 

effects in mice (Miller et al. 2014). In addition, preclinical evidence suggests that ketamine’s 

enantiomers are metabolically active. For instance, (2R,6R)-hydroxynorketamine (HNK) 

appears to have antidepressant-like and neuroplastic effects in animal models but lack 

ketamine’s dissociative effects. Fewer dissociative side effects would be clinically beneficial 

and facilitate more widespread ketamine use. Interestingly, (2R,6R)-HNK’s effects also 

seem to rely on AMPAR transmission, given that (2R,6R)-HNK administration led to both 

increased frequency and amplitude of AMPAR-mediated excitatory potentials and that its 

antidepressant effects were abolished by administering an AMPAR antagonist (Zanos et 

al. 2016). Increased glutamate release via presynaptic metabotropic glutamate receptor 2 

(mGluR2) blockade by (2R,6R)-HNK further increased AMPAR transmission (Zanos et 

al. 2019). Additional evidence also suggests that (2R,6R)-HNK and ketamine – as well 

as traditional antidepressants – bind directly to tropomyosin receptor kinase B (TrkB), 

facilitating activation via BDNF and, thus, synaptic plasticity (Casarotto et al. 2021).

Beyond HNK, several trials have investigated novel glutamatergic compounds that might 

exhibit similar antidepressant effects to ketamine while avoiding its dissociative effects. 

Ketamine also possesses a glycine binding site in addition to its main NMDAR binding 

site, which presents a possible antidepressant target. In rats, GLYX-13, a partial glycine site 

agonist, was found to have antidepressant effects 24 h and seven days after administration 

(Burgdorf et al. 2013, 2015). However, recent trials with AV-101, a prodrug of 7-

chlorokynurenic acid (a glycine site antagonist) failed to demonstrate antidepressant effects 

for patients with TRD (Park et al. 2020) or as adjunctive treatment in MDD (VistaGen 

Therapeutics 2019).

2.2 Ketamine’s Central and Peripheral Actions Beyond Glutamate

Increasing evidence suggests that ketamine’s biological effects transcend the glutamatergic 

synapse and affect other relevant neuropathological pathways, including neuroinflammatory 

pathways. One example is the kynurenine (KYN) pathway (Kadriu et al. 2019) (Fig. 2). 

In particular, overactivation of the neurotoxic branch of this pathway has been associated 

with mood disorders (Birner et al. 2017). Proinflammatory cytokines (e.g., interleukin-6 

(IL-6) and quinolinic acid (QA), a key metabolite of the neurotoxic branch, were also 

found to be elevated in the cerebrospinal fluid of suicidal patients (Bay-Richter et al. 

2015). Conversely, kynurenic acid (KYNA), a metabolite of the neuroprotective branch, was 

negatively associated with depressive symptoms (Bay-Richter et al. 2015).

More specifically, depression and psychological stress are hypothesized to lead to an 

increased immune response (e.g., IL-6, tumor necrosis factor alpha (TNF-α)), activating 

the enzyme indoleamine 2,3-dioxygenase (IDO) and thereby increasing the conversion of 

tryptophan (TRP) into KYN (Heisler and O’Connor 2015). In the neuroprotective branch of 

the KYN pathway, KYN is processed by astrocytes into KYNA, which acts as an NMDAR 
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and α7nAChR antagonist and thus has positive effects on synaptic plasticity and neuronal 

protection, possibly via anti-inflammatory processes (Moroni et al. 2012) and the prevention 

of glutamate spill-over (Haroon et al. 2016; Vécsei et al. 2013). In the neurotoxic branch of 

the KYN pathway, KYN is processed by activated microglia into metabolites such as QA, 

which acts as a potent NMDAR agonist promoting excitotoxicity and neuronal apoptosis 

(Birner et al. 2017; Heyes et al. 1992).

Regarding ketamine, some evidence suggests that a single ketamine infusion may reduce 

circulating levels of proinflammatory cytokines in the blood of patients with TRD within 

hours of administration (Kiraly et al. 2017). Furthermore, in mice, a low dose of 

intraperitoneally-administered ketamine abolished depressive behaviors usually induced by 

lipopolysaccharide (LPS) via QA production (Walker et al. 2013). Similarly, in humans, 

a double-blind, placebo-controlled study of TRD patients found that KYN levels and 

the KYN/TRP ratio were decreased in ketamine responders 4 h post-ketamine infusion 

(Moaddel et al. 2018). Further corroborating this finding, Kadriu and colleagues found that 

KYNA levels were increased and IDO levels were decreased after a single ketamine infusion 

in patients with treatment-resistant bipolar disorder (Kadriu et al. 2019).

In addition, Kadriu et al. (2018) showed that ketamine also reduces markers of bone 

inflammation usually found in patients with long-term MDD. The study demonstrated that 

ketamine normalized an abnormal osteoprotegerin/RANKL ratio and plasma osteoprotegerin 

levels, possibly counteracting the loss of bone mineral density found in patients with MDD.

2.3 Common Downstream Mechanisms Engaged by Rapid-Acting Antidepressants

Spurred by the paradigm-shifting nature of ketamine research, investigators have examined 

other candidate drugs with potentially rapid antidepressant effects, including serotonergic 

psychedelics (SPs). These substances – most prominently psilocybin, lysergic acid 

diethylamide (LSD), and N,N-dimethyltryptamine (DMT) – have been shown to be 

potentially effective in treating conditions ranging from substance dependence (Johnson et 

al. 2014) to terminal cancer anxiety (Grob et al. 2011) as well as depression (Palhano-Fontes 

et al. 2019).

The exact underlying mechanisms of SPs are under investigation, but agonism of the 5-

HT2a receptor has been proposed as a central mechanism underlying the efficacy of these 

compounds. For instance, administering the 5-HT2a receptor blocker ketanserin diminished 

the subjective psychedelic effects of LSD (Preller et al. 2017) and psilocybin (Vollenweider 

et al. 1998) in humans, as well as drug discrimination in animal models (Appel and Callahan 

1989; Cunningham and Appel 1987). A blockade of the effects of DMT administered 

as ayahuasca proved only partially effective (Valle et al. 2016). This may be due to the 

additional monoamine oxidase (MAO) inhibition as well as beta-carboline alkaloids, which 

have been shown to interact with a variety of molecular targets (Deecher et al. 1992; 

Husbands et al. 2001). 5-HT2a receptors are expressed in a variety of brain regions, most 

notably the neocortex, amygdala, striatum, mammillary nucleus, and claustrum (Pasqualetti 

et al. 1996; Pazos et al. 1985; Weber and Andrade 2010). 5-HT2a agonism has been 

proposed to lead to the desynchronization of brain areas and, more specifically, the default 

mode network, leading to the psychedelic effects of these compounds (Carhart-Harris et al. 
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2014). However, recent evidence has also questioned the contribution of 5-HT2a receptors 

to the antidepressant effect of SPs, suggesting instead that 5-HT2a receptor-independent 

mechanisms such as induction of neuronal plasticity may play a role by directly binding to 

TrkB (Casarotto et al. 2021; Hesselgrave et al. 2021).

Another notable advance in clinical research regarding psychoactive substances is a 

recent Phase 3 study demonstrating the efficacy of 3,4-Methylenedioxymethamphetamine 

(MDMA)-assisted therapy in post-traumatic stress disorder (Mitchell et al. 2021). However, 

the mechanism of action and consequent effects of MDMA are distinct; this agent is 

thought to act primarily by increasing serotonin levels via binding of presynaptic serotonin 

transporters (Rudnick and Wall 1992). Given the monoamine hypothesis, this mechanism 

suggests a putative usefulness of MDMA for treating MDD, although little evidence for this 

indication presently exists (see Patel and Titheradge 2015 for a review).

SPs typically produce similarly rapid antidepressant effects despite possessing 

mechanistically and pharmacodynamically distinct properties (Muttoni et al. 2019). In 

particular, research on the molecular mechanisms that mediate rapid antidepressant effects 

expand our understanding of antidepressant mechanisms, with the ultimate goal of 

identifying future drug targets with similar or better rapid antidepressant effects than 

ketamine and a better side-effect profile. In this context, investigating the downstream 

mechanisms of other rapid-acting drugs could provide valuable insights. While common 

downstream mechanisms of action between ketamine and drugs such as SPs remain largely 

speculative, several mechanisms, discussed below, have been proposed that may account for 

the rapid antidepressant effects of both substance classes.

2.3.1 Rapid Restoration of Synaptic Deficits Due to Stress—Considerable 

evidence suggests that chronic stress and depression are associated with a decrease in 

dendritic spines, spine synapse connections, and activity in regions implicated in depression, 

such as the hippocampus and the PFC (Duman et al. 2016; Kang et al. 2012; McEwen et 

al. 2015; McEwen and Morrison 2013). One mechanism proposed to account for rapid 

antidepressant effects is the rapid and selective restoration of stress-induced neuronal 

deficits. In a mouse model, ketamine infusions reversed stress-related loss of dendritic spines 

(Moda-Sava et al. 2019). This effect was associated with a change in neuronal systems in 

the PFC two days post-treatment as well as more delayed antidepressant effects. Another 

study detected reversal of apical dendritic spine deficits in the hippocampal CA1 region 

of Flinders sensitive rats 60 min after ketamine treatment (Treccani et al. 2019). Höflich 

and colleagues similarly found changes in hippocampal subfield volumes after ketamine 

infusion in healthy controls, with peaking effects in CA1 (Höflich et al. 2021). These effects 

may be mediated by the aforementioned BDNF-dependent activation of mTORC1 and the 

consequent neuroplastic effects.

2.3.2 Rapid Glutamate Release—Both ketamine and SPs lead to rapid glutamate 

release post-administration (Razoux et al. 2007; Vollenweider and Kometer 2010). With 

regard to SPs, rodent studies found that both LSD and 2,5-Dimethoxy-4-iodoamphetamine 

(DOI) increased glutamate levels in the prefrontal and somatosensory cortices, an effect 

that was abolished by blocking the 5-HT2A receptor (Muschamp et al. 2004; Scruggs et 
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al. 2003). Martin and Nichols (2016) further showed that DOI administration increased 

early-activation genes and the indicator for neuronal activity cFos, especially in cerebral 

regions with a high density of glutamate-releasing pyramidal neurons.

It should be noted that ketamine’s ability to increase glutamate levels has been directly 

confirmed using carbon-13 magnetic resonance spectroscopy (Abdallah et al. 2018), but less 

evidence exists for SPs. However, one study found that, compared to placebo, psilocybin 

increased glutamate levels in the PFC (Mason et al. 2020).

2.3.3 Rapid Stimulation of AMPA Throughput—In the case of ketamine, the 

glutamate surge is known to stimulate AMPAR throughput, which mediates BDNF release 

and the downstream activation of mTORC1 (Duman 2018; Olson 2018). Administration of 

an AMPAR antagonist again abolished ketamine’s rapid antidepressant effects and mTORC1 

activation (Maeng et al. 2008; Moghaddam et al. 1997). While this link is less clear with 

SPs, in rodents DOI induced behavioral effects like head shakes that were subsequently 

blocked by administration of AMPAR antagonists (C. Zhang and Marek 2008).

2.3.4 Release of Neurotrophins—In preclinical studies, ketamine, LSD, and DOI 

all increased BDNF levels in the hippocampus and other cortical areas (Autry et al. 

2011; Garcia et al. 2008; Silva Pereira et al. 2017; Ly et al. 2018). BDNF, in turn, 

is associated with neuronal growth and plasticity. Shifts in BDNF levels are known to 

increase both spinogenesis and neuritogenesis (Cohen-Cory et al. 2010). Conversely, in 

Val66Met knock-in mice, where BDNF messenger RNA transport is impaired, ketamine 

had neither synaptogenic nor antidepressant effects (Liu et al. 2012). Ly and colleagues 

further demonstrated that the TrkB antagonist ANA-12 abolished the neuroplastic effects 

of SPs (Ly et al. 2018). BDNF has a high affinity for binding TrkB, which in turn 

mediates neuronal plasticity via mTORC1 (Jaworski et al. 2005; Kumar et al. 2005). Thus, 

rapamycin administration – which inhibits mTORC1 – also abolished the neuroplastic 

effects of SPs (Ly et al. 2018). Finally, the selective 5-HT2A antagonist ketanserin 

also inhibited spinogenesis and neuritogenesis after SP administration, highlighting the 

importance of this receptor in initiating downstream effects. When directly compared to 

ketamine, some SPs proved to be more efficacious (e.g., MDMA) or potent (e.g., LSD) 

in promoting neuritogenesis, which may account for the prolonged antidepressant effect of 

these substances (Ly et al. 2018).

It should be noted, however, that the role of BDNF in rapidly decreasing depressive 

symptoms in humans is still under debate. Especially with regard to ketamine, the evidence 

has been mixed (Duncan et al. 2013; Haile et al. 2014; Machado-Vieira et al. 2009; Laje et 

al. 2012). Similarly mixed findings have also been found for SPs (de Almeida et al. 2019; 

Holze et al. 2020).

2.3.5 Stimulation of Intracellular Neuroplasticity Cascades—Both ketamine and 

SPs have been shown to increase neuroplasticity via dendritic growth and new synapse 

formation as well as strengthen preexisting synaptic connections (Kadriu et al. 2021). A 

single dose of ketamine increased levels of pre-and postsynaptic proteins such as PSD95, 

synapsin 1, and the AMPAR GluA subunit in the rodent PFC, which in turn was associated 
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with the increased number and function of synapses (Li et al. 2010). The increase in synaptic 

proteins was detected as soon as 2 h after ketamine administration and lasted for at least 

72 h, which may help explain ketamine’s rapid antidepressant effects. Neuroplasticity genes, 

including for Bdnf, Homer1a, and activity related cytoskeletal protein (Arc) have also been 

shown to be activated via glutamatergic signaling (Bagot et al. 2017; De Bartolomeis et al. 

2013).

In rodent models, both DOI and LSD administration similarly increased a wide array of 

neuroplasticity genes, including Bdnf, Arc, egr-1, Nor1, Ania3, sgk, C/EBP-β, and Iκβ-α 
(González-Maeso et al. 2007; Martin et al. 2014; Martin and Nichols 2016; Nichols et 

al. 2003; Nichols and Sanders-Bush 2002). However, in the case of SPs, gene expression 

is mediated via 5-HT2A receptor activation, which in turn affects neuroplasticity via G-

protein-coupled receptor pathways.

Considerable similarities between SPs and ketamine also exist with regard to neuritogenesis 

and spinogenesis. Like ketamine, LSD, DOI, psilocybin, DMT, and noribogaine (a 

metabolite of ibogaine) all increased dendritic arbor complexity in cultured cortical neurons 

in vitro, both in terms of increasing the total length of arbors and the number of dendritic 

branches (Ly et al. 2018). LSD, DOI, and DMT also increased the number of dendritic 

spines (Ly et al. 2018). In vivo, treating Drosophila larvae with LSD and DOI increased 

dendritic branching (Ly et al. 2018). In rats, the intraperitoneal administration of DMT 

rapidly increased dendritic spines on cortical pyramidal neurons in the PFC 24 h after 

administration, comparable to an equivalent dose of ketamine (Ly et al. 2018). Although 

these effects remain poorly understood, they seem to be mediated by mTORC1, TrkB, 

and 5-HT2A signaling pathways. Because the effects were demonstrated in vivo in both 

vertebrate and invertebrate models, they suggest an evolutionarily conserved mechanism. 

Interestingly, in rodents, alterations in synaptic plasticity and ketamine’s antidepressant 

effects have both been demonstrated to disappear when either mTORC1 or AMPARs are 

blocked (Li et al. 2010). Conversely, mTORC1 activation via NV-5138 produces rapid 

antidepressant effects in rodent models.

3 Conclusion

The evidence reviewed above describes the novel biochemical mechanisms of action that 

underlie ketamine’s antidepressant effects as well as those of SPs. It should be noted, 

however, that recent attempts to identify or develop glutamatergic drugs that mimic 

ketamine’s antidepressant qualities but lack its dissociative psychotomimetic effects have 

largely proven futile (Kadriu et al. 2020). Furthermore, while both the safety profile of 

ketamine and the lack of abuse potential associated with a single dose have been relatively 

well established (Acevedo-Diaz et al. 2020), only limited safety data exist regarding the 

long-term effects of repeated ketamine administration. Similarly, few data exist regarding 

the development of tolerance to chronic antidepressant ketamine use. Given that the 

recommended dosing regimen of esketamine for depression is one to three times a week 

for the first two months and once every week or every two weeks thereafter, such long-term 

data are crucially needed (Canuso et al. 2018).
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A key possible mechanism of action for the antidepressant effects of both ketamine and SPs 

is the ability of these compounds to increase neuroplasticity. Underscoring the plausibility 

of this hypothesis is that postmortem studies have demonstrated that individuals with 

depression have lower BDNF mRNA and protein levels (Castrén 2005; Thoenen 1995), 

serum BDNF protein levels (Sen et al. 2008; Shimizu et al. 2003) as well as decreased 

hippocampal volume (Sheline et al. 1996; Videbech and Ravnkilde 2004). However, neural 

plasticity may not be an exclusively beneficial state, regardless of the circumstances in 

which it occurs (Branchi 2011). For example, Belsky and colleagues demonstrated that 

polymorphisms of monoamine oxidase-A, dopamine receptor D4, or a 5-hydroxytryptamine-

linked polymorphic region were linked to either beneficial or adverse outcomes depending 

on the environment (Belsky et al. 2009). Indeed, at least in the case of SPs, the importance 

of context or even psychotherapeutic care appears to be key for the beneficial effect of the 

neuroplastic state produced by these compounds to manifest (Carhart-Harris et al. 2018). 

Similarly, Chiarotti and colleagues identified a dose-dependent interaction between the SSRI 

escitalopram and the environmental context of patients (Chiarotti et al. 2017).

It is interesting to note that the US Food and Drug Administration (FDA) recently approved 

the rapid-acting antidepressant brexanolone (SAGE-547), a positive allosteric GABAA 

receptor modulator, for use in postpartum depression (U.S. Food and Drug Administration 

2019). Research in mice further suggests that impairment of GABAARs can lead to 

depressive-like behaviors as well as downregulation of both AMPA and NMDA receptors 

and consequent glutamatergic transmission, which can be normalized by ketamine infusion 

(Ren et al. 2016). In rats, the administration of brexanolone prevented a decrease in BDNF 

levels and consequent impairment of hippocampal neurogenesis due to stress (Evans et al. 

2012).

The rapid-acting antidepressant effects of ketamine, SPs, and possibly also brexanolone/

zuranolone suggest that downstream commonalities on glutamatergic systems may underlie 

the mechanism of action of all three agents, even if their initial targets differ. The emergence 

of rapid-acting antidepressants as treatments for depression offers investigators new and 

potentially fruitful avenues for exploration, both in terms of identifying novel biochemical 

mechanisms underlying the mechanism of action of successful rapid-acting antidepressants 

and developing novel therapeutics. Together, such evidence can be used to investigate and 

develop alternate and possibly more rapid-acting antidepressant therapies with the goal of 

helping numerous patients who suffer from treatment-resistant forms of mood disorders.
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Fig. 1. 
Ketamine’s general mechanism of action. Ketamine blocks the N-methyl-D-aspartate 

glutamate receptor (NMDAR) on gamma-aminobutyric acid (GABA)-ergic interneurons, 

thereby disinhibiting glutamate release by pyramidal neurons. Glutamate in turn binds to 

postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) 

which mediates brain-derived neurotrophic factor (BDNF) release. BDNF binds primarily 

to tropomyosin-related kinase B (TrkB), leading to downstream activation of mammalian 

target of rapamycin complex 1 (mTORC1) and, consequently, neuroplastic effects. 

mTORC1 activation may, in turn, be associated with an increase in synaptic proteins 

such as postsynaptic density protein 95 (PSD95), synapsin 1, and the AMPAR subunit 

GluA, further increasing AMPAR throughput. Alternatively, ketamine may directly bind 

to postsynaptic NMDARs, reducing the amount of phosphorylated elongation factor 2 

(eEF2) that, in turn, increases BDNF translation. Evidence also suggests that ketamine 

activates mTORC1 via direct TrkB activation and antagonism of extrasynaptic NMDARs. 

Phosphorylation of mTORC1 may also be increased by agonists binding to the glycine 

site of NMDARs or directly via NV-5138. In addition, the ketamine metabolite (2R,6R)-

hydroxynorketamine (HNK) may increase downstream neuroplasticity by blocking mainly 
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presynaptic metabotropic glutamate receptor 2 (mGluR2), thereby increasing glutamate 

release. Created with biorender.com
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Fig. 2. 
The kynurenine pathway. The figure depicts the two branches of the kynurenine pathway. 

In the neuroprotective branch, mainly associated with astrocytes, kynurenine is transformed 

into kynurenic acid. Kynurenic acid acts as an N-methyl-D-aspartate glutamate receptor 

(NMDAR) and alpha 7 nicotinic acetylcholine receptor (α7nAChR) antagonist, thereby 

decreasing inflammation and excitotoxicity. In the neurotoxic pathway, mainly associated 

with microglia, kynurenine is metabolized into quinolinic acid, which acts as an NMDAR 

agonist, increasing excitotoxicity and neuronal apoptosis. Crucially, activation of rate-

limiting enzymes such as indoleamine 2,3-dioxygenase (IDO), which transforms tryptophan 

into kynurenine via inflammation or psychological stress shifts the pathway toward its 

neurotoxic branch
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