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ABSTRACT: Explainable and interpretable unsupervised machine
learning helps one to understand the underlying structure of data.
We introduce an ensemble analysis of machine learning models to
consolidate their interpretation. Its application shows that restricted
Boltzmann machines compress consistently into a few bits the
information stored in a sequence of five amino acids at the start or
end of α-helices or β-sheets. The weights learned by the machines
reveal unexpected properties of the amino acids and the secondary
structure of proteins: (i) His and Thr have a negligible contribution
to the amphiphilic pattern of α-helices; (ii) there is a class of α-
helices particularly rich in Ala at their end; (iii) Pro occupies most often slots otherwise occupied by polar or charged amino acids,
and its presence at the start of helices is relevant; (iv) Glu and especially Asp on one side and Val, Leu, Iso, and Phe on the other
display the strongest tendency to mark amphiphilic patterns, i.e., extreme values of an ef fective hydrophobicity, though they are not the
most powerful (non)hydrophobic amino acids.

1. INTRODUCTION
Various machine learning (ML) methods are applied to
proteins.1−25 For example, outstanding advancements have
shown how ML can boost the prediction of protein native
states13−15 and complexes16,17 based only on amino acid
sequences. However, the aim of several approaches is not to
achieve a reliable (black box) tool for protein structure
prediction but to get informative knowledge from the big data
available for protein sequences and structures.
Interpretable ML26,27 focuses on understanding the cause of

a model’s decision and enhancing human capability to
consistently predict the model’s result. Interpretable ML
versions are more complex and informative than standard
statistical analysis and can improve our understanding of
proteins.1,2,4−10 In particular, they might detect patterns not
emerging naturally from studying the abundance and
correlations of amino acids in secondary structures. Among
the well-known patterns, for instance, there is the amphiphilic
structure of several α-helices and β-sheets,28,29 which are
mostly (charged or) polar ( ) on one side and nonpolar ( )
on the other side. In an α-helix, with pitch of ∼3.6 residues, the
typical (non)polarity switch occurs every two residues. On the
other hand, in a β-sheet, the three-dimensional alternation of
the side chains takes place at every step. Hence, an amphiphilic
sequence would be, for example, .
In this work, we use a simple form of interpretable

unsupervised ML, restricted Boltzmann machines
(RBMs),30−40 which allow extraction of deep, nontrivial
insight without losing the most transparent information on

data statistics encoded in local biases. Conveniently, the
weights and biases learned by RBMs can be visualized and
easily interpreted. This established approach has already
revealed correlated amino acids within protein families,1

drug−target interactions,2 and correlations within DNA
sequences.41,42

A novelty of our work is a statistical ensemble approach to
unsupervised ML, which improves the robustness of the
findings. By training RBMs of the same size but with different
weight initializations, we checked whether they all converge to
the same final set of learned weights. The maximally complex
RBMs preserving this ensemble coherence are optimal, as they
perform encoding of the correlations within data samples while
providing stable and transparent information on the data.
We show that our optimal RBMs perform extreme

information compression to two or three bits, encoding the
essential correlations between amino acids at the beginning or
end of α-helices and β-sheets. In addition to recovering the
expected amphiphilic structures, this approach (i) discovers
more subtle yet relevant amino acid patterns in each portion of
the secondary structure and (ii) provides evidence of similarity
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between amino acids’ roles in these structures, including some
surprising ones.
RBMs distinguish two classes of amino acids, which we map

to and , as shown in Table 1. Contrary to standard

classification,43 but similar to some partitionings (see
references collected by Stephenson and Freeland44), Tyr
belongs to the class of hydrophobic amino acids. Pro is
mostly , as discussed in detail below. Some surprising
subclasses emerge, especially by looking at the results in α-
helices, where it turns out that Thr and His play a similar weak
role in the amphiphilic patterns. RBMs classify Asp and Glu on
the one side and Val, Leu, Iso, and Phe on the other as the
most diverse amino acids. However, Trp has the highest
experimental hydrophobicity, while Arg and Lys have the
lowest values.45 To explain this finding, we argue that RBMs
detect a kind of ef fective hydrophobicity, emphasizing how
deeply amino acids play a hydrophobic or hydrophilic role in
the amphiphilic alternation in α-helices and β-sheets. These
findings only partially overlap with those expressed by known
diagrams of consensus amino acid similarity.44

2. METHODS
Here we describe the datasets and the methods used to analyze
them. Some more technical details are reported in Supporting
Information (SI) section S1.

2.1. Data. To each protein sequence stored in the reduced
CATH ensemble of 31 884 natural proteins,46 we apply the
DSSP algorithm47,48 to determine the secondary structure to
which every amino acid belongs (see SI section S2 for
comparison with results obtained with the STRIDE
algorithm49). Then we collect all sequences within α-helices
and β-sheets long enough to contain Γ = 5 amino acids. We
then build four sets: one with the first Γ = 5 amino acids in α-
helices (following the standard orientation from the N
terminus to the C terminus of the protein), one with the last
Γ amino acids in α-helices, and the same for two more sets at
the start and end of β-sheets. The two sets referring to the first
and last Γ = 5 amino acids in α-helices contain 129300 samples
each, while the other two sets, concerning the start and end of
β-sheets, include 101 382 sequences each.
We used one-hot encoding to represent amino acids. That is,

the kth amino acid is stored as a sequence vk = (−1, −1, ..., +1,
..., −1, −1) of 20 integers where only a +1 element is present at
position k. This encoding is how an RBM reads the amino acid
in a portion of its visible units. A sequence of Γ amino acids
(k1, ..., kΓ) is thus translated into one-hot encoding stacked as

=v v v v( , , ... )k k k
1 2

1 2 giving a total of Nv = 20Γ digits in a data
sample.
To monitor the training of each RBM, we randomly split the

data into a training set (80%) and a validation set (20%). The
training set is used to optimize the RBM parameters and
compute the pseudo-log-likelihood (PLL) function, which
measures the quality of data reconstruction by RBMs.50 The
PLL of the validation set is then used to check the performance
of the RBM in reproducing the statistics of new data. Note that
in principle this procedure could cause differences in the
results. However, the cases we find in the ensemble of RBMs,
as explained below, reveal when variability is small and
highlight general patterns.

2.2. Restricted Boltzmann Machines. The RBM is an
unsupervised machine learning method based on a simple
neural network architecture. It aims to reproduce the empirical
distribution of data samples by encoding the correlations
between their elements, the visible units vi (1 ≤ i ≤ Nv). This
encoding uses a set of parameters and a layer of hidden (or
latent) variables, hj (1 ≤ j ≤ Nh). The parameters defining the
method are the weights wij in an Nv × Nh matrix connecting
visible to hidden units and the local biases that act on both the
visible (ai) and hidden (bj) units. Figure 1 shows a sketch of an
RBM. The statistical weight of a (v, h) configuration is given
by
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It resembles a Boltzmann weight with energy E(v, h), for
which we will use “spin” variables vi = ±1, hj = ±1. Since this
version generates a finite number of hidden states (2Nh), it
facilitates an interpretation of the structure of weights between
hidden and visible units and of local biases. Initially, weights
and biases of untrained RBMs are drawn randomly from
chosen distributions.

Table 1. RBM-Based Classification of Amino Acidsa

aThe first column labels which amino acids can be classified as polar/
hydrophilic ( ) and nonpolar/hydrophobic ( ) according to the
weights of our RBMs. The second column shows the textbook
classification of amino acids.43 According to RBMs, Tyr behaves as a
nonpolar amino acid, Pro behaves mostly as a polar one ( ), and
Ala is slightly only in β-sheets. Gly is neither clearly nor . The
color of each amino acid symbol in the last column (and the offset)
follows the subgrouping we introduce based on the weights learned by
the RBMs applied to α-helices.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00383
J. Chem. Theory Comput. 2023, 19, 6011−6022

6012

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00383/suppl_file/ct3c00383_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00383/suppl_file/ct3c00383_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00383/suppl_file/ct3c00383_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00383?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00383?fig=tbl1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00383?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The bipartite structure of the RBM allows easy generation of
h from v. This step should encode the correlations within data
sequences in Nh hidden units for a trained RBM. When Nh ≪
Nv, the RBM acts as an information bottleneck enforcing such a
simple model, with its small resources, to capture the crucial
properties of the analyzed data. The v → h step selects each hi
independently with probability
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Similarly, one generates v if h is known through v ∼ p(v|h).
Each of the Γ blocks vγ is generated independently. The
indices i ∈ I(γ) of the 20 weights wij pointing to segment vγ are
those relevant for its sampling. By remapping these indices i to
the interval k = 1, ..., 20, we pick an amino acid k with
probability

|p k h( ) e h2 ( )k (3)

with
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=
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j

N

kj j
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h
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where φk(h) is the local field on the site k.
The core of the training of an RBM consists of sampling

values in visible and hidden units through an algorithm termed
contrastive divergence with n Monte Carlo steps (CD-n) .51,52

We alternatively sample from conditional distributions, starting
from a data sample v0 at t = 0 up to t = n steps: ht+1 ∼ p(h|vt)
and vt+1 ∼ p(v|ht+1). The statistics of the sampled
configurations allow the estimation of the gradient of the
data log-likelihood according to the Boltzmann weight (eq 1)
in the directions of all parameters wij, ai, and bj. Then we apply
a standard gradient ascent algorithm (in our case, Adam52). In
addition to CD-n, we use persistent CD-n (PCD-n), a variant
that should better sample the configurational space.52,53

Once trained, the same sampling procedure may generate
realistic amino acid sequences (k1, ..., kΓ). Through eq 3, an
RBM decides how to decode the hidden units h and generate a
sequence.

2.3. Ensemble of RBMs. A novelty of this work is using a
statistical ensemble analysis of machine learning. As a trade-off
between computational costs and statistical relevance, we run
R = 30 independent realizations of RBMs with the same size

Nv, Nh and the same number of training epochs (we found that
typically 50 or 100 epochs are enough to train the model).
Note that each realization differs by the initialization of the
weights and the random splitting of the data into training and
validation sets.
From now on, let us assume that each hidden unit j in a

single RBM is characterized by its set of weights wij (1 ≤ i ≤
Nv). All hidden units from RBM realizations are then collected
in an ensemble of hidden units to study their properties and
check whether common patterns exist. For every pair of hidden
units j, m, the Euclidean distance = | |d w wjm i ij im

2

estimates their similarity. When used in a clustering algorithm,
it identifies groups of hidden units (see SI section S1 for more
details).
By averaging the weights wij within each group and the

biases ai and bj of each RBM, we build their average RBM
(aRBM): this is supposed to represent the best summary of the
relevant information learned by the ensemble. First, we use the
aRBM to compute the probability of the 2Nh possible hidden
states given that v are all points in a dataset (eq 2). Then, from
hidden states weighted with their probabilities, we use eq 3 to
verify the ability of the aRBM to faithfully reproduce the
statistics of the original dataset in the visible space.

2.4. Selecting the Number of Hidden Units. The main
aim is to find simple patterns representative of the redundant,
generic correlations in amino acid sequences (at the start of α-
helices, etc.) while neglecting specific patterns of single
sequences with RBMs. The key to achieving this goal is the
information bottleneck obtained by setting a small number of
hidden units Nh.
We monitor how many groups of hidden units emerge by

increasing Nh (Figure 2a for the CD-1 training of RBMs and
Figure 2b for PCD-10). Generally, the ratio of groups to
hidden units stays maximal up to Nh = 3 for α-helices and Nh =
2 for β-sheets. For these values of Nh, almost all RBM
realizations have the same palette of hidden units. Only in a
few cases does the clustering algorithm (see SI section S1)
classify units as noise due to their significant diversity from all
other ones. Note that beyond these values of Nh, there is no
clear one-to-one correspondence between hidden units in an
RBM and groups, and uniformity in the ensemble of RBMs is
lost.
To evaluate the performance of the RBMs, we compute the

PLL as a function of Nh (see Figure 3). From Nh = 1, for CD-1
and PCD-10, the PLL quickly reaches a plateau around Nh ≈ 3.
By adding more hidden units (Nh > 3), one does not
significantly improve the performance of the RBM. Moreover,
for CD-1 we can go up to Nh = 30, finding a decreasing trend
of the PLL for large Nh values in all cases. Hence, more
complex RBMs are heterogeneous and suboptimally trained by
the oversimplified CD-1 algorithm.
All considered, we show the results for Nh = 3 for α-helices

and Nh = 2 for β-sheets. From now on, we will discuss only the
results from PCD-10. Those from CD-1 are similar.

3. RESULTS
3.1. How to Read Weight Patterns. We summarize the

properties of the ensemble of RBMs via a set of plots, as
reported, for instance, in Figure 4 for the starting strand of α-
helices. We average the values for weights in a group or biases
from all RMBs in the ensemble. Thus, the displayed values
represent the aRBM.

Figure 1. Sketch of an RBM with Nv = 12 visible units (black circles,
where data are given as an input) and Nh = 3 hidden units (white
circles). Red and blue shadings indicate positive and negative values
of single weights (plotted as lines joining units in the two layers) and
biases (boxes next to units).
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Figure 4a reports the table of distances between any two
hidden units of the ensemble of RBMs. The units are sorted
and collected into the groups (colored squares with light
internal colors along the diagonal) detected by the clustering
algorithm. Some units, marked as “noise”, are not assigned to
any group.
Figure 4b shows the visible bias ai of the aRBM, reshaped to

a 20 × Γ matrix for better readability. The exponential of this
bias is a good indicator of the mean probability of finding an
amino acid at a specific position in the sequence. For instance,
it shows that Glu (E) has a high chance of appearing at
positions 2 and 3. For each of the groups, we show in Figure
4c−e the weights wij of the corresponding hidden units in the
aRBM. In addition, the Nh biases bj of the aRBM are specified
in the caption.
A table such as the one reported in Figure 4c may be read as

follows: a hidden unit in group 1 “pushes” a random pattern of
amino acids biased by the weights toward a particular
sequence, depending on its stored value, h1 = ±1. According
to eqs 3 and 4, h1 = 1 raises the probability of picking amino
acids with weights wi1 to a value significantly larger than zero
(red shades). For instance, one can notice that D is chosen
more frequently at position 3 and I, L, V, and F at positions 1
and 5. The opposite happens if h1 = −1.
All other random choices are possible with a gradually lower

probability. The unit does not (de)select any particular amino
acid when weights have values close to zero (light colors in the
table). Instead, another unit may be the one that drives the
sequence selection at that position. For instance, in Figure 4c,d
we see that units in group 1 and group 2 have a strong set of
weights at positions 1, 3, and 5, which are complementary to
those of group 3 (stronger at positions 2 and 4; see Figure 4e).
Therefore, the units in different groups may take care of
different alternating slots in the sequence.

Figure 2. For (a) CD-1 and (b) PCD-10, we show the number and
relative size of groups emerging from clustering hidden units in the
ensemble of RBMs for every position of the secondary structure that
we study. In both cases, we conclude the following: for α-helices, Nh =
3 is the optimal number of hidden units, while for β-sheets it is Nh =
2. These are the maximum values where the number of groups
matches the number of hidden units and the noise is still tiny, i.e.,
where each RBM in the ensemble has learned the same set of hidden
units.

Figure 3. Pseudo-log-likelihood as a function of the number of hidden units for RBMs trained with (a) CD-1 and (b) PCD-10, shown for each of
the four segments of secondary structure that we study. The PLLs for the training and validation sets are compatible, showing that the RBMs have
achieved robust training.
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The first 2Nh = 8 panels in Figure 4f represent probabilities
(eq 3) to choose amino acids at every slot γ ≤ Γ (normalized
in columns at fixed γ) if the aRBM is in a given state h. With eq
2, we compute the probability of each of the 2Nh = 8 hidden
states h from the biases bj, weights wij, and v in the dataset.
This is indicated below each panel in Figure 4f (e.g., 0.18).
After this, we also specify the state h (e.g., (1 −1 −1)) and a
chosen label (e.g., α-S1). We rank the h states in Figure 4f
from the most frequent to the least likely.
Each of the first 2Nh panels of Figure 4f thus displays a typical

correlation of probabilities followed by the aRBM to build a
sequence of amino acids. The last two panels are the average of
the first 2Nh panels, weighted with their frequencies, and the
empirical average in the dataset.
In the following, we specify the discussion of the four

regions of the secondary structure analyzed in this work.
3.2. Start of α-Helices. The first training set we study

contains stretches of the first Γ = 5 positions in all (long
enough) α-helices in proteins of the CATH database. The

corresponding set of trained RBMs with Nh = 3 yields three
significant groups of hidden units (see Figure 4a). For Nh = 1,
2, 3, we see groups 1, 3, and finally 2, respectively. By including
additional hidden units, we continue to observe these three
groups, confirming that RBMs encode the main patterns within
the analyzed sequences with three hidden units.
Figure 4b shows the bias ai of the aRBM. It is quite

structured compared to other cases, shown later as the end of
α-helices and β-sheets. This structure denotes a tendency of
amino acids to appear more frequently at specific positions.
Notice the pattern of Pro, with high intensity (red) at the first
position, which sensibly decreases in the next positions (the
black color means that ai is below the lower level of the scale),
in agreement with the known abundance of Pro at the start of
helices.54 Notably, at position γ = 4, there stands out a peculiar
behavior: a high intensity for nonpolar amino acids (in
particular Val (V), Leu (L), and Iso (I)) aligns with a low
intensity for polar amino acids (especially Asp (D), Glu (E),
and Asn (N)). Consistently, an average depletion of a polar

Figure 4. For the start of α-helices, with Nh = 3 hidden units: (a) Matrix with gray shade indicating the distance djm between the weights wij and wim
of different hidden units j and m; the colored boxes highlight the groups found by the DBSCAN clustering. (b) Average biases ai learned by the
ensemble of RBMs, reshaped from an array with 20Γ = 100 entries to a 20 × Γ table, in which each column corresponds to a given encoding vγ and
each row to a given amino acid (a similar scheme is used in (c−e)). Values more negative than the lower threshold in the scale are marked with
black squares (in this case for Cys and Pro, which essentially leads to the negligible probability of finding these amino acids in those positions). (c−
e) Average weights of units in groups 1, 2, and 3. (f) The shade of each slot in each panel shows the probability of picking a specific amino acid at a
given position. Hence columns are normalized to 1. The first 2Nh = 8 panels show the probabilities for every hidden state (the sequence of ±1’s in
the parentheses at the bottom, where it follows the value of its empirical frequency). Hidden states are labeled and ranked with decreasing
frequency; e.g., α-S1 is the most probable hidden state at the start of α-helices. The last two panels show the average of RBM α-S states weighted
according to their frequency and the actual probability of amino acids at the Γ = 5 initial positions of α-helices. In practice, the prescription of the
RBM for reconstructing meaningful sequences would be (i) to pick a hidden state at random according to its frequency and (ii) according to
probabilities in its table, for every position γ ≤ Γ, to pick an amino acid at random. The values of the hidden bias in the aRBM for each group are b1
= −1.129, b2 = 1.270, and b3 = −1.496.
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amino acid at position γ = 4 at the start of α-helices is visible in
the empirical statistics, shown in the last panel of Figure 4f.
In addition to the average trend dictated by the bias, the

aRBM, thanks to the hidden units, can modulate the
correlations among amino acids in single sequences. Hidden
units in group 1 (Figure 4c) address anticorrelations between
and amino acids at positions γ = 1, 3, 5. For instance, h1 =

1 promotes the pattern - - while h1 = −1 promotes - - .
Group 3 (Figure 4e) instead mainly encodes the correlations
among amino acids at positions γ = 2, 4. Group 2 (Figure 4d)
is similar to group 1 but also displays a set of large weights for
Pro. This set adds significant insight into the correlations
between Pro as a starter of helices and its following amino
acids (the bias did not show such a rich structure): for
example, weights in group 2 suggest that P, E, and D are
interchangeable at the position γ = 1 and that they are strongly
correlated with D and E at γ = 5 and anticorrelated with P at γ
= 3.
Given the aRBM, we check the states in the hidden space in

Figure 4f, allowing us to merge the information from biases
and weights. Different configurations appear, but almost all
show a repeated scheme with polar and nonpolar amino acid
alternation with blocks of about two elements, consistent with
an amphiphilic structure in α-helices. More interestingly, states
α-S1, α-S3, α-S5, and α-S8 (sharing h2 = −1 that promotes Pro
in group 2) include the activation of Pro at the start of the
sequence, paired with Glu in the second position (for this
subset of α-helices, we notice that Glu’s activation is not fixed
only at the second position but is active also at the first or third
position). This pattern provides two main classes of amino acid

alternation: (Pro) or (Pro) . In this context, Pro
behaves as polar, with a higher frequency (α-S1, α-S3), or as
nonpolar, with a lower frequency (α-S5, α-S8).
We have thus shown that training led the RBMs to

automatically detect and decompose the start of α-helices
into eight nontrivial modes. The reverse, trivial process of
averaging their probabilities leads to the average behavior
shown in the second-to-last panel of Figure 4f, which matches
the empirical probabilities (last panel). Notably, the RBM
decomposition would not be accessible a priori by standard
statistical tools. Moreover, the discovered heterogeneous eight
modes generate synthetic sequences, each with its own
probabilistic pattern.

3.3. End of α-Helices. The results from RBMs with Nh = 3
for the last Γ = 5 amino acids of the α-helices are displayed in
Figure 5. Again, three groups of hidden units emerge from
clustering their weights. For Nh = 4, the values would remain
the same. However, by increasing Nh from Nh = 1, we note that
groups 1 and 2 are represented by their averaged version for Nh
≤ 2, while they split for Nh = 3. This splitting is convincing:
indeed, the PLL slightly increases in the Nh = 2 → 3 step
(Figure 3), and above all, the division into separate groups by
the clustering is clear (see Figure 5a).
Groups 1 and 2 determine the alternation of and at

positions γ = 1, 3, 5. What distinguishes them is the weight
pattern of Ala, which flips its sign from one group to the other
(see Figure 5c,d. Group 3 instead fixes the alternation of and
at positions γ = 2, 4.
The visible bias in Figure 5b shows that amino acids

distribute almost uniformly at different positions at the end of

Figure 5. For the end of α-helices with three hidden units, the same scheme as in Figure 4. Hidden bias: b1 = 0.541, b2 = −0.410, and b3 = −0.191.
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α-helices, with a significantly high bias toward Leu (L) and Ala
(A). However, some slight deviations from the general
behavior are visible. For example, at the last position of the
helix (γ = 5), some polar amino acids are more probable (see
N, S, and T), while some nonpolar ones become less likely (see
V, I). Note also the low bias of Gly at the next-to-last position
(γ = 4).
In the hidden space, the aRBM reproduces, on average, the

visible statistics (see Figure 5f). As observed at the start of α-
helices, some states (α-E1, α-E2, α-E3, and α-E4) report the
polar and nonpolar alternation with period ∼2. More
interestingly, in states α-E6 and α-E8, the behavior of Ala
spikes with a high probability in every position. As known, Ala
is a strong helix stabilizer.55,56 Consistently, Ala has a high bias
ai in the RBM and thus can act as a wild card: its placement in
a typical sequence at the end of an α-helix is relatively free, and
it fits even at the specific positions of charged and polar amino
acids. This high bias was also visible at the start of α-helices
(Figure 4b), where no weight pattern induces the splitting of
hidden units into separate groups based on Ala. The boosted
probability of Ala in states α-E6 and α-E8 reveals a subclass of
α-helix endings (15% of the cases) richer in Ala than typical α-
helices. We have verified a posteriori that AAAAA is among the
10 most frequent sequences at the end of α-helices. Hence,
polyalanine56 is a characterizing feature of the terminal part of
α-helices.
Finally, note that the patterns of the states α-E1, α-E2, α-E3,

and α-E4 are similar but somehow shifted. Our explanation is
that α-helices may end with different “phases” for exposure to
the solvent. In some cases, it is convenient for the last amino

acids of a helix to be polar; in others, it is the opposite.
Patterns in α-E5, α-E6, α-E7, and α-E8 show shifts of polarity
that satisfy different needs.

3.4. Start of β-Sheets. An alternating sequence ... of
polar and nonpolar amino acids may allow β-sheets to expose
side chains of the same kind at each of their two sides, making
them amphiphilic. For Nh = 1, we find that the single hidden
unit has weights of alternating signs with γ and opposite
polarity for and , which would often lead to generating
amphiphilic sequences. However, not all β-sheet stretches
follow this simple amphiphilic scheme. For Nh = 2, two groups
emerge from clustering. The three hidden unit groups
emerging for Nh = 3 instead invalidate the analysis based on
the aRBM for two reasons. First, many units are considered
noise by the clustering algorithm; second, within single RBMs,
we find high heterogeneity in the combination of groups.
Therefore, we choose Nh = 2 as the optimal number of hidden
units leading to the most consistent yet complex aRBM. In
support of this choice, note that the most significant increase in
the PLL occurs from Nh = 1 to Nh = 2 (Figure 3).
The weights of the two groups preserve the alternation

only at the beginning (group 1, Figure 6c) or at the end (group
2, Figure 6d). These will yield a hidden state h compatible with
the amphiphilic pattern of weights if combined with the proper
signs of h1 and h2: the probability of amino acids for mode β-
S1 (Figure 6e) promotes the alternation, while that
for mode β-S2 promotes the pattern. They cover 55%
of the cases.
However, the remaining 45% of combinations of hidden

states suppress the alternation, and β segments

Figure 6. For the start of β-sheets with two hidden units, the same scheme as in Figure 4. Hidden bias: b1 = 0.458 and b2 = −0.002.
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(mode β-S3) and (β-S4) are more likely to be
generated by RBMs. In particular, β-S4 shows a strong
activation of polar amino acids in the first position of β-sheets
in comparison to the aliphatic ones, which are instead very
favored in the next four positions.
The weighted average of probabilities for β-S1···4, as before

for α-helices, matches the empirical distributions (last panels of
Figure 6e). The RBM-learned decomposition thus splits the
start of β-sheets into four modes: the first two modes promote
amphiphilic patterns, and the last two modes favor uniform
stretches of four ’s (mostly I, L, V) capped by a different type
of amino acid. This decomposition somewhat joins previous
results in which the amphiphilic alternation of β-sheets was
seen by different works, with more straightforward statistical
tools, either over-represented57 or under-represented.58

The bias ai at the start of the β-sheets shows a uniform
distribution of amino acids at different positions of the chain
(see Figure 6b). For instance, aliphatic amino acids show a
high bias. However, for a small subset of amino acids, there
emerges variability. For example, Arg (R) and Lys (K) have a
decreasing bias from the first position in the β strand to the
following ones. Perhaps the most interesting behavior is
observed for Gly, with a high bias except at the second position
(γ = 2), suggesting that Gly is not likely to appear there.

3.5. End of β-Sheets. Generally, the analysis of the end of
β-sheets retraces the start of β-sheets. Thus, on average, the
ensemble of RBMs can capture only patterns of little
complexity in β-sheets compared with those of α-helices. We
take Nh = 2 also for the end of β-sheets, and again we observe

two groups similar to those at the start of β-sheets (Figure
7c,d).
Visible biases (Figure 7b) show a uniform distribution of

amino acids at different positions close to the ends of β-sheets.
However, there is a significant increase in the bias at the last
position (γ = 5) for many small amino acids. Furthermore,
many of these are polar (Asp (D), Asn (N), Ser (S), Thr (T)),
and there is also Pro (P). In the next section, we will stress that
Pro is often positively correlated with polar amino acids. The
biases shown in Figure 7b are different from those found at the
start of β-sheets (Figure 6b). As a consequence, the
probabilities in Figure 7e diverge slightly from those in Figure
6e. In particular, mode β-E3 promotes sequences such as

, (Pro), or (Gly).
One may notice some similarity between modes β-S in

Figure 6e and modes β-E in Figure 7e. This is due to an
overlap of 20% of sequences between the two datasets
corresponding to β-sheets with five residues. This is not seen
for α-helices, which are on average longer, with only 3% having
a length of five residues.

3.6. Amino Acid Similarities. The abundance or absence
of a given amino acid in α-helices or β-sheets is primarily
encoded in the visible biases ai. One can check that they
correlate with results from standard statistical analysis.59

However, these biases are not directly related to the polarity
or size of amino acids. Hence, they do not provide complete
information about the amino acid patterns in secondary
structures.
The refined information on amino acid similarities is given

by the weights shown in panels (c), (d), and eventually (e) of

Figure 7. For the end of β-sheets with two hidden units, the same scheme as in Figure 4. Hidden bias: b1 = −0.349 and b2 = −0.226.
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Figures 4−7. Each row in a panel shows the weights of a given
amino acid in that group. The similarity of amino acids in a
group emerges when their weights are interchangeable; i.e., the
Γ = 5 weights appearing in the row of a given amino acid can
be swapped with the other ones in a row of an equivalent
amino acid without a significant change in the whole set of
weights wij of the corresponding hidden unit j.
In our unsupervised machine learning approach, the salient

traits of amino acids’ similarity emerge from principal
component analysis (PCA). For each hidden unit, we compute
the PCA of the Γ = 5 weights associated with each amino acid.
Then, for all groups shown in Figures 4−7, we show these two
PCA components in Figure 8 to check amino acid similarities.
The number in each axis label represents the average variance

explained by each PCA component, measuring its relevance. In
all cases, the first component of PCA, PCA-1, explains the
major part of the variance and is related to the polarity of the
amino acids.
Families of interchangeable amino acids emerge, as high-

lighted in all panels of Figure 8. Let us discuss our
interpretation of these plots by collecting similar amino acids
in small coherent groups. We define this by looking primarily
at their PCA components in α-helices, where there is a clearer
subdivision. Our amino acid cataloging was anticipated in
Table 1.

Aspartic Acid (D) and Glutamic Acid (E). These negatively
charged amino acids are always at the left boundary of the
PCA-1 component. Looking at the general arrangement of

Figure 8. Principal component analysis of amino acid weights. Each panel shows the first two components of the PCA for each amino acid in a
hidden-unit group for a given part of the secondary structure. The numbers in the axis labels in the parentheses are the average explained variances.
Color-shaded ensembles and single amino acids are discussed in the text. (a−c) Groups at the start of α-helices, shown in Figure 4. (d−f) Groups
at the end of α-helices (Figure 5). (g, h) Groups at the start of β-sheets (Figure 6). (i, j) Groups at the end of β-sheets (Figure 7).
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amino acids in the panels of Figure 8, we interpret this as a
signal of a strong hydrophilic tendency that stands out even
among charged and polar amino acids. Indeed, in all cases, the
Pearson coefficient between PCA-1 and the hydrophobicity is
∼0.9. Although Asp and Glu seem mostly similar, for the end
of β-sheets, in Figure 8j, we observe that Asp (D) stands away
from other polar amino acids. This indicates that Asp has a
special role at the end of the β-sheets, which cannot be
implemented even by Glu.

Asparagine (N) and Serine (S). The PCA always shows
these two small polar amino acids very close to each other.
Moreover, they are placed between the pair of Asp and Glu
and the central part of the PCA-1 component. This should be
related to their lower hydrophilic tendency.

Lysine (K), Arginine (R), and Glutamine (Q). These amino
acids have positively charged (K, R) or polar (Q) long side
chains. They appear similar, and for them, we can retrace the
comments just made for Asn and Ser.

Histidine (H) and Threonine (T). Histidine is a weakly
positively charged, large (>150 Da) amino acid, while Thr is a
polar, small (<120 Da) amino acid. Thus, it is surprising to
find them very well paired in the PCA plots for α-helices,
where they sit in a middle region and are not very close to
those of other hydrophilic amino acids. Hence, His and Thr
display a similar weak tendency to contribute to the
amphiphilic pattern in α-helices. In β-sheets, instead, they
are not so correlated and are more overlapped with other polar
amino acids.

Tyrosine (Y), Tryptophan (W), Methionine (M), and
Cysteine (C). These amino acids always have very similar
PCA values on the right side of the panels. This quartet
comprises a duo of aromatic amino acids (Y, W) and a duo of
nonpolar amino acids with sulfur (M, C). In particular, Cys is a
small, unique amino acid that can form disulfide bonds. Yet,
the PCA correctly places it in the mild hydrophobic region
(i.e., with positive but not extreme PCA-1 values).

Valine (V), Leucine (L), Isoleucine (I), and Phenylalanine
(F). Three aliphatic amino acids (V, L, and I) and Phe are
always equivalently set on the rightmost side of the PCA-1
component. Our analysis with RBMs thus reveals that these
four amino acids should be regarded as the strongest
hydrophobic amino acids.

Alanine (A). Ala shows neither a clear hydrophobic
tendency nor a clear hydrophilic tendency in the PCA plots
of α-helices (Figure 8a−f). Nevertheless, we find a peculiar
isolation of Ala from the other amino acids in groups 1 and 2
of the end of α-helices (Figure 8d,e), with an opposite sign of
the PCA-2 component in the two cases. As discussed above,
this is related to the unique role of Ala in helices, in particular
at their end, where stretches of five Ala are not rare. However,
in β-sheets, Ala shows a mild tendency to cluster with the
group and thus behave as hydrophobic (Figure 8g−j).

Glycine (G). Even if Gly is a nonpolar amino acid, in α-
helices it is mainly found in the region populated by
hydrophilic amino acids. However, this is not the case in β-
sheets, where Gly is not affiliated with other groups.

Proline (P). Similarly to Gly, Pro is not polar but is often
aligned with polar amino acids along PCA-1. However, P
displays several extreme values of PCA-2, which isolate it from
the other amino acids. The most striking case is in group 2 at
the start of α-helices (Figure 8b), which RBMs use to highlight
the importance of Pro in this portion of the secondary
structure.

Before concluding, we note that our PCA plots are similar to
the embeddings learned by much more complex neural
networks using Transformers.12 That analysis showed that
the machine catalogs amino acids based on their biological
properties.

4. CONCLUSIONS
We introduce and showcase how an ensemble analysis of
(unsupervised) machine learning models, based on restricted
Boltzmann machines (RBMs) and with an information
bottleneck in encoding data correlations, offers a relatively
easy reading of precise yet unexpected similarities between
amino acids and emphasizes essential features for building
secondary structures. Besides recovering a way to promote the
frequent amphiphilic design of α-helices and β-sheets, RBMs
discover that there are relevant motifs that, to the best of our
knowledge, are not known.
The most diverse scenario is at the start of α-helices. RBMs

recover the known relative abundance of Pro in their first
positions and promote it to the role of a highly relevant feature
in addition to amphiphilicity. Moreover, RBMs add informa-
tion on correlations between Pro and other amino acids,
particularly Asp and Glu, which lead to two typical types of
helices starting with Pro. Our complete analysis reveals a
frequent alignment of Pro with polar amino acids.
At the end of α-helices, there emerges a particular behavior

of Ala, which is the distinguishing amino acid between two
otherwise similar amphiphilic patterns. This bimodality implies
that in nature there is a class of α-helices closed by stretches
richer in Ala than in typical helices.
Moreover, our analysis allows refining of the separation

between polar and nonpolar amino acids, highlighting
intriguing subclasses. The most unexpected is the coupling of
His and Thr in α-helices, where they do not contribute to the
amphiphilic patterns. Then, for instance, we found the
coupling of Phe with the aliphatic amino acids or the
alignment of Trp with Tyr, Met, and Cys.
The first component of our PCA (PCA-1) is strongly

correlated but does not precisely follow the hydrophobicity
ranking reported in the literature. Nevertheless, PCA-1
explains most of the fluctuations of weights in the RBM.
Hence, it is crucial to unveil its meaning. We conjecture that
PCA-1, the main feature learned by RBMs to reproduce
realistic alternations of polarity in secondary structures,
expresses a form of ef fective hydrophobicity. In other words, it
reveals how much an amino acid, in α-helices and β-sheets, is
mainly focused on the role of being either hydrophobic or
hydrophilic. For example, even if it is not the most hydrophilic
amino acid, Asp most often displays the strongest negative
PCA-1 value (and has a special role in closing β-sheets).
One may wonder whether results similar to ours could

emerge from a standard approach based, for instance, on two-
site correlations from the sequence data, which requires the
computation and parallel visualization of many matrices (see SI
section S3). This procedure makes recognizing and interpret-
ing some meaningful patterns possible but far from being
naturally summarized in a simple set of ranked-by-relevance
multisite correlations, as achieved by an analysis of RBM
weights with an increasing number of hidden units. Note,
moreover, that RBMs can generate sequences, which is not
possible with correlation matrices.
To conclude, the RBM is a simple unsupervised machine

learning method that retrieves known results and enriches
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previous knowledge. Moreover, the RBM’s architecture is
readable and, with some effort, interpretable, yielding non-
trivial information that is inaccessible by standard statistical
tools. For example, we have provided an interpretation of the
RBM weights in our study of amino acid patterns and
similarities in secondary structures. However, the richness of
the results may allow the reader to notice additional details of
the arrangement of amino acids in the secondary structures.
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