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ABSTRACT
Magnetic Drug Targeting (MDT) is of particular interest to researchers because of its good loading 
efficiency, targeting accuracy, and versatile use in vivo. Cardiovascular Disease (CVD) is a global 
chronic disease with a high mortality rate, and the development of more precise and effective 
treatments is imminent. A growing number of studies have begun to explore the feasibility of MDT 
in CVD, but an up-to-date systematic summary is still lacking. This review discusses the current 
research status of MDT from guiding magnetic fields, magnetic nanocarriers, delivery channels, 
drug release control, and safety assessment. The current application status of MDT in CVD is also 
critically introduced. On this basis, new insights into the existing problems and future optimization 
directions of MDT are further highlighted.

GRAPHICAL ABSTRACT (BY FIGDRAW.)

Magnetic Drug Targeting (MDT) is a drug-targeted delivery 
method that has recently received much attention from 
researchers. The idea of guiding the accumulation of drugs at 
specific sites in the body through magnetic targeting was 
first proposed by Freeman in 1960 [1]. Compared with tradi-
tional drug delivery methods, MDT can achieve more drug 
aggregation at the target site, reduce free drug in circulation 
[2], achieve more precise and efficient drug delivery, and 
reduce the required drug dose as well as possible toxic side 
effects [3]. On the other hand, MDT also enables the targeted 
delivery of therapeutic "cargo" such as cells [4], genes [5], 
and exosomes [6] in the vasculature. For decades, magnetic 
targeting research has focused on oncology for imaging [7], 

thermal therapy [8], and drug delivery [9]. In the following, 
we present the current status of MDT research in five aspects: 
guiding magnetic fields, magnetic nanocarriers, delivery 
channels, drug release control, and safety assessment, and 
provide new insights into the existing problems and future 
directions of MDT optimization.

Part I. Main ideas of MDT and the current status of 
research

The main idea of MDT is to inject magnetic nanoparticles 
(MNPs) or other magnetic carriers bound to the drug/cargo 
into the body circulation, set up the magnetic field source at 
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a specific location, use the magnetic force to make the mag-
netic carriers overcome the blood flow resistance, aggregate 
at the target site, and leak from the blood vessel into the 
tissue to complete the drug/cargo release at the specific site 
(Figure 1). Therefore, MDT focuses on guiding magnetic fields, 
magnetic nanocarriers, delivery channels, drug release con-
trol, and safety assessment.

Guiding magnetic field

The magnetic field is the main driving force to guide the direc-
tional motion of magnetic carriers. Magnet systems for drug 
targeting are mainly divided into static magnetic field magnet 
systems, which are simple and easy to use for clinical purposes 
but have a single magnetic field force, and variable magnetic 
field magnet systems, which are complex to build but have a 
controlled magnetic field force and higher accuracy [10].

Assuming that the magnetic field is large enough to mag-
netize MNPs completely, the magnetic force on MNPs in the 
field can be expressed as follows [11]: 

	
 

F M V B
m sat
= ∇( )	 Formula 1

In the above formulation, Msat is the magnetization 
strength, V is the volume of the material, and ∇



B refers to 
the magnetic field gradient. The magnetic force is positively 
correlated with the magnetic field strength as well as the 
magnetic field gradient. The larger the magnetic field strength 
and gradient, the better the targeting effect of the same 
magnetic nanocarrier. The Halbach array is the best magnet 
arrangement that maximizes the magnetic field strength [12, 
13]. The tip-top design can also increase the magnetic field 
strength and gradient [14]. Magnetic nanocarriers tend to be 
attracted toward the guiding magnet, which is often set on 
the skin surface, so how to target deep tissue has always 
been a research challenge.

Researchers have come up with new solutions that rely 
on the combination of two magnets to "push" particles into 
the deeper tissue [15, 16], and the magnetic field formed by 
two magnets seems to be more uniform than that of a sin-
gle magnet [17]. Alternatively, the surgical construction of a 
magnet device at the site of the lesion is a solution, for 
example, in combination with endoscopic techniques [18]. 
MRI is a variable magnetic field magnet system based on 
superconducting coils that allow precise control of mag-
netic field gradients. Since it also has an imaging function, 
it has unique advantages in targeting and monitoring mag-
netic carriers, which helps implement precise targeting [19–
21]. However, the weak magnetic fields and small magnetic 
field gradients generated by current commercial MRI instru-
ments are not satisfactory for driving magnetic nanocarriers 
at the nanoscale [22]. Possible solutions include using spe-
cialized gradient inserts to obtain larger magnetic field gra-
dients and better particle drive capabilities [23, 24]. It is 
important to note that the magnetic field strength is not 
the greater, the better. Shen et  al. found that the 0.3 T 
group was the most effective in treating ischemic myocar-
dium when comparing the effects of magnetically targeted 
mesenchymal stem cell transplantation in the 0.15 T, 0.3 T, 
and 0.6 T groups. In contrast, the 0.6 T group showed  
higher cell retention but may have had micro embolism, 
resulting in a less effective overall treatment than the 0.3 T 
group [25].

Currently, the magnets used in the clinical application of 
magnetic targeting technology are mainly permanent mag-
nets [10]. The remaining various magnet systems have not 
been validated in clinical studies, and efforts should be made 
to promote more clinical studies of different types of magnet 
systems in the future [10]. In addition, optimizing the mag-
netic field source should consider the actual disease situa-
tion, taking into account safety, efficiency, convenience, and 
energy saving as much as possible.

Figure 1.  Design concept of MDT (by Figdraw.).
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Magnetic nanocarrier

Magnetic nanocarriers are nanoscale materials with magnetic 
properties that can be freely loaded/unloaded with other 
micro and nano substances. Commonly used magnetic nano-
carriers are magnetic nanoparticles, magnetic nanowires, 
magnetic nanorings, magnetic nanotubes, and other shaped 
magnetic nanodevices, which can be used for loading drugs, 
magnetic targeting, magnetic thermotherapy, and magnetic 
resonance imaging [26–28]. The typical magnetic nanocarriers 
are composite nanoparticles formed by Fe3O4, γ-Fe2O3, or 
other substances with special treatment, which have proper-
ties such as superparamagnetism, large surface area to vol-
ume ratio, good biocompatibility and biodegradability, as 
well as high drug loading efficiency and strong dispersion 
ability [22]. Drugs/cargoes are usually physically or chemically 
loaded onto the particles. The widely used methods for syn-
thesizing MNPs are co-precipitation and thermal decomposi-
tion, of which the former is suitable for large-scale synthesis, 
and the latter can control the distribution of nanocrystal 
sizes [26]. As Formula 1, the force on a magnetic particle in 
a magnetic field is positively related to its volume. Since the 
blood flow drag force is proportional to the diameter, and 
thus the magnetic force increases faster than the drag force 
as the particle size increases [27], researchers want to increase 
the particle size as much as possible to achieve the ideal 
magnetic navigation. However, large particles cause physical 
irritation and small vessel embolism and have a low circulat-
ing half-life, so the ideal size of magnetic carriers for applica-
tion in the vasculature should usually not exceed 200 nm [22].

Suitable hydrophilic coatings allow MNPs to maintain a 
stable dispersion in aqueous solutions. Polyethylene glycol 
(PEG), which has the lowest immunogenicity and high bio-
compatibility, is currently the coating of choice [29]. It is 
worth mentioning that whether magnetic particles were 
delivered to the target tissue also depends on the interaction 
between the surface of the particles and the tissue, and the 
antibody functionalization strategy, which gives the particles 
dual targeting ability of antibody and magnetic field, is a 
promising direction to enhance the targeting effect of MNPs 
[30]. In addition, MNPs can gain some other advantages 
when combined with other carriers. For example, combining 
MNPs with liposomes to form magnetic liposomes can reduce 
drug toxicity [31, 32], and with microbubbles to form mag-
netic microbubbles can obtain ultrasound sensitivity [33].

Magnetic robots with good reconfigurability and program-
mability, including (quasi-)spherical robots, helical robots, 
flexible robots, wirelike robots, and biohybrid robots, are a 
class of magnetic carriers at the nanometer to micron level 
that have attracted much attention in recent years and have 
unique advantages over conventional MNPs [34]. Drive 
sources for magnetic robots include magnetic fields [35], 
light [36], and sound [37]. Different types of magnetic robots 
have different structures. The most suitable for complex 
human environments are soft robots, whose components 
include propulsion structures and feedback control systems 
[38]. In addition, some materials are stimulus-responsive, 
which can modulate the magnetic robot’s morphological 
motion and the targeted release of loads in response to 

specific stimuli, such as temperature [39]. Stimulus-responsive 
systems are discussed further in the "Drug release control" 
section below.

Magnetic robotic designs often mimic the unique func-
tions of living organisms, such as the magnetic responsive-
ness of magnetotactic bacteria, the walking function of 
spiders, the balance of torpedo tubes, and the light-sensitive 
navigation ability of beetles, and have broad research poten-
tial [34]. Algae are also attractive to researchers due to their 
smaller size and good biodegradability. Gong et  al. devel-
oped a Chlorella-based microrobot with low cytotoxicity, high 
drug delivery efficiency, and pH responsiveness [40]. Li et  al. 
used Thalassiosira Weissflogii as a template to develop a 
micro-robot with high specific surface area, strong stability, 
and pH responsiveness to replace artificial mesoporous silica 
carriers with complicated preparation processes. By loading 
doxorubicin (DOX) and accomplishing magnetic targeting 
drug release, cancer cell viability was reduced by 11.16% [41]. 
Compared to hard robots, soft robots have greater deforma-
bility and higher spatial flexibility [42] but are less susceptible 
to cellular uptake [43]. Zhu et  al. considered these issues and 
designed an ameboid nanorobot using polyphosphoester 
and PEG, and modified the tumor acidity-sensitive transacti-
vator of transcription peptide on the surface of the robot to 
enhance its uptake by tumor cells uptake by tumor cells. The 
MNPs and DOX were encapsulated in the nucleus. Ultimately, 
the robot successfully targeted 92.3% of triple-negative 
breast cancer cells and achieved 96.1% tumor growth inhibi-
tion after drug release [44]. In addition, the "camouflage" of 
magnetic carriers with red blood cell membranes can extend 
their half-life and improve biocompatibility and biodegrad-
ability [45]. This micromotor has good cycling stability, mag-
netic targeting, and imaging capabilities.

The magnetic microwheel is a magnetic carrier for throm-
bolysis, which can greatly improve the efficiency of thrombus 
lysis and the speed of blood flow restoration [46, 47]. 
Disharoon et  al. prepared magnetic mesoporous silica parti-
cles from iron oxide nanoparticles, immobilized them on the 
surface of colloidal particles to form studded beads, and 
modified the studded beads with tissue-type fibrinogen acti-
vator and fibrinogen. Under a rotating magnetic field, the 
studded beads also rotated, resulting in a microwheel struc-
ture. These microwheels can roll at high speed in the vascu-
lature and target the thrombus site, lysing the thrombus 
beyond the biochemical speed limit [46]. In addition, this 
wheel-like structure is also used in drug-carrying robots to 
improve propulsion performance [40].

Delivery channel (vasculature)

For MDT, the movement of magnetic carriers in the delivery 
channel (vasculature) is crucial. By using theoretical modeling 
to analyze the intravascular motion of magnetic carriers, the 
parameters of the magnetic field and magnetic carriers can 
be accurately predicted and set according to the actual situ-
ation, thus saving resources for animal and clinical experi-
ments. Three dimensionless values, Magnetic-Richardson 
number, Mass Pe’clet number, and the Renkin reduced 
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diffusion coefficient, are introduced by Nacev et al. to improve 
the computational efficiency, and then the classical normal-
ized equation is established [48]. By calculating the particle 
concentration profile in the cross-section, the model predicts 
the particle motion behavior in the blood vessel well, and 
the results match previously published results from in vitro 
and in vivo experiments and explain behaviors that were not 
once understood. However, the model assumes that blood is 
a Newtonian fluid while blood is a very complex 
non-Newtonian fluid. Moreover, the model is two-dimensional, 
ignoring the possible vortices and turbulence in the 
three-dimensional blood vessels.

The improved model at this stage uses the Carreau 
non-Newtonian fluid viscosity model, based on the analysis 
of specific shapes of 3D vessels to adapt to specific drug 
delivery contexts. Hewlin et  al. developed the Willis arterial 
ring model to analyze the kinetic behavior of particles using 
the Euler-Lagrange technique [49]. Superparamagnetic par-
ticles also have good capture efficiency in weak fields with 
intensities less than 4 T, where 100 nm particles are signifi-
cantly better than 10 nm particles. However, the viscosity 
predicted by the Carreau model is higher than the actual 
plasma viscosity, and the capture efficiency may be under-
estimated [49]. In addition, significant vortex phenomena 
were formed in the curved and bifurcated regions of the 
vessels, and nanoparticles in these regions were difficult to 
trap. Sodagar et  al. developed a 90° curved vessel model to 
investigate the particle trapping efficiency in the presence 
of different degrees of atherosclerosis [50]. They used a tur-
bulent flow model of blood as well as a discrete-phase 
model to study for the first time the effect of vascular tran-
sitive motion brought about by cardiac systole and diastole 
on magnetic particle trapping. The results showed that ath-
erosclerosis and transitive motion might lead to blood flow 
perturbations that increase the probability of collision of 
magnetic particles with the vessel wall, thus increasing the 
capture rate of 1–5 μm magnetic particles. In addition, 
Manshadi et  al. developed the first four-layer structural 
model of arterial tissue, making it possible to probe the 
interaction of particles with the arterial wall [51]. The results 
suggest that increasing the particle size and magnetic field 
strength helps to obtain more tissue retention. In conclu-
sion, these model calculations further demonstrate the fea-
sibility of applying MDT in CVD, and the delivery effects in 
specific contexts need to be further validated by in vivo 
experiments in conjunction with the theoretical model-
ing scheme.

Drug release control

Drug release is the last part of MDT. Designing a reasonable 
drug release method can help improve the accuracy of tar-
geted drug release and reduce drug damage to healthy tis-
sues. Controlling the rate of drug release can prolong the 
duration of drug action, thus reducing the drug dose as well 
as the associated side effects. Nanocarriers can achieve pre-
cise drug release by responding to external stimuli such as 
temperature, ultrasound, light, electric and magnetic fields, 
and internal stimuli such as pH, redox potential, and enzymes 

[52]. Magnetic nanocarriers are essentially nanocarriers, and 
their drug-release control modes are also focused on these 
aspects.

The principle of temperature-sensitive drug release sys-
tems is the rapid property change of thermosensitive materi-
als in response to changes in temperature. The current 
applications of thermosensitive systems are mainly focused 
on magnetic liposomes. Due to hysteresis loss and Néel relax-
ation, MNPs generate heat when placed in an alternating 
magnetic field, which raises the temperature of the lipid 
membrane and increases its permeability [53]. Nitica et  al. 
developed a simple and rapid method for the synthesis of 
thermosensitive magnetic liposomes, including two core 
steps of synthesizing the lipid gel and driving the drug incor-
poration [54]. The 300 nm magnetoliposomes prepared by 
this method had good physical properties, and DOX release 
resulted in the death of more than 90% of A549 cancer cells 
when placed in an alternating magnetic field of 20–30 kA/m, 
355 kHz for 30 min.

Ultrasound can enable remote drug release through 
mechanical and thermal effects. Magnetic microbubbles have 
the unique advantage of being ultrasound-sensitive and 
magnetic field-sensitive simultaneously [33, 55]. Chertok et  al. 
functionalized MNPs and microbubbles with heparin and pro-
tamine, respectively, and then complexed heparin and prota-
mine to prepare an ideal magnetic microbubble that stabilizes 
circulation and reduces lung clearance in the tumor vascula-
ture and remotely collapses at specific sites, thereby accom-
plishing drug release [33]. Beguin et  al. constructed the 
magnetic-acoustic device, which is also essentially a magnetic 
microbubble. This delivery method obtained higher tumor 
retention and better therapeutic efficacy of the drug [55]. In 
addition, porous structures can also increase sensitivity to 
ultrasound. Park et  al. developed a magnetically driven 
porous degradable microrobot loaded with 5-fluorouracil 
with good ultrasound responsiveness as well as cancer cell 
inhibition [56].

The photosensitive release system is a convenient, nonin-
vasive stimulus-responsive drug release system. Near-infrared 
light is the most popular source replacing ultraviolet light for 
its excellent tissue penetration capability and higher safety. 
The main principles of photosensitive drug release are the 
photoisomerization of hydrogels and photochemical and 
photothermal reactions [57]. Song et al. prepared DOX-loaded 
three-bead azo micro-robots with good drug release, photo-
thermal effect, and in vitro cancer cell-killing ability under 
NIR light irradiation [58]. Copper sulfide nanoparticles are 
capable of both photothermal and photodynamic therapy 
when excited by near-infrared light. Wang et  al. constructed 
tumor-targeted photosensitive micromotors with biological 
and optical therapeutic efficacy by chemically loading the 
photosensitizer chlorin e6 and the magnetized photosensitiz-
ing bacterium AMB-1 [59]. Hollow mesoporous copper sulfide 
nanoparticles loaded with DOX and wrapped with superpara-
magnetic iron oxide nanoparticles (SPIONs) were prepared by 
Feng et  al. [60]. This drug delivery vehicle achieves the syn-
ergy of controlled drug release and photochemotherapy and 
has demonstrated sound anti-tumor effects in both in vivo 
and in vitro experiments.
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Electric field-based drug release control systems are mainly 
realized by electro-responsive materials such as carbon nano-
tubes and conductive polymer hydrogels [61, 62]. The pres-
ence of an electric current alters the magnetic field, and thus 
there are no examples of the use of electrical stimulation 
alone in magnetic carriers to release drugs. The magnetic 
field itself can also be used to "extrude" the drug from the 
carrier by mechanical force [52]. In addition, controlled drug 
release from magnetic carriers through alternating magnetic 
fields combined with thermal effects, as described above, is 
the main application of electromagnetic binding at pres-
ent [54].

PH-regulated drug release is mainly achieved by designing 
polymers containing ionizable groups or acid-sensitive bonds 
to encapsulate the drug or by designing pH-sensitive shells 
to encapsulate specific ligands. This modulation type is suit-
able for targeting sites with abnormal pH, especially for acidic 
regions such as inflammation and tumors. With pH sensitivity, 
adhesion, biocompatibility, and degradability advantages, chi-
tosan is widely used to prepare pH-sensitive magnetic nano-
carriers [63]. Liu et  al. prepared magnetic nanocarriers loaded 
with doxorubicin hydrochloride using carboxymethyl chitosan 
and aminated lignin sulfonate, which showed good respon-
siveness to the acidic environment and inhibitory effect on 
cancer cells [64].

Similar to pH-responsive magnetic carriers that require a 
specific pH at the target site, redox-responsive magnetic car-
riers require a specific redox potential change at the target 
site. For example, glutathione is a reducing agent that is 
found in higher levels within tumor cells than outside the 
cells in some malignant tumors. Therefore, polymeric struc-
tures containing disulfide bonds can be designed to allow 
magnetic carriers to respond to the reducing environment 
and break the disulfide bonds when targeted to certain 
tumor tissues, thereby releasing the drug. Based on this prin-
ciple, Wang et  al. designed redox-responsive polymeric mag-
netosomes loaded with DOX that can be monitored by MRI, 
and these magnetosomes have sound photothermal effects 
under near-infrared light irradiation, which can combine che-
motherapy with tumor ablation therapy [65]. Notably, thione 
bond-containing nanoparticles are reactive oxygen respon-
sive and are an ideal carrier for drug release at targets with 
inflammation [66–68].

Besides, increased levels of specific enzymes in the patho-
logical environment can be used for the localized release of 
the drug. Xiong et  al. designed a lipase-responsive nanocar-
rier to accomplish vancomycin release in the presence of 
Staphylococcus aureus only [69]. Notably, this approach 
requires an explicit enzyme expression profile characteristic 
of the target site to avoid drug release at other locations.

In summary, for the application of MDT in CVD, the most 
feasible and universal drug release system is the 
temperature-sensitive system. The thermal effect of MNPs can 
be stimulated by alternating magnetic fields, near-infrared 
light, and ultrasound, which in turn accomplishes drug 
release. Ultrasound-responsive magnetic microbubbles are 
another viable drug release system that requires constant 
attention for the stability of the drug-loaded magnetic micro-
bubbles for transport in the vasculature. For pH, redox, and 

enzyme concentration responsive systems, which are suscep-
tible to environmental conditions, can be used as adjunctive 
release means in specific diseases. In addition, it was possible 
to figure out the optimal drug release rate by setting the 
parameter gradient of the controlled release source. The 
advantages and disadvantages of these magnetic carrier drug 
release modalities are summarized in Table 1.

Part II. Safety assessment of MDT

Safety assessment is a vital aspect of all therapeutic tools 
before their introduction into clinical applications, and the in 
vivo safety studies of magnetic carriers are crucial as they are 
in close contact with blood and tissues. The current safety 
issues of magnetic nanocarriers are mainly in nanotoxicity, 
protein corona, and vascular embolism (Figure 2).

An exhaustive summary of the toxicity profile of SPIONs 
was presented by Vakili-Ghartavol et  al. [70]. Perhaps since 
living organisms have some ability to self-regulate, the in 
vivo experiments do not match the results of the cellular 
experiments [71]. In vivo tests in mice appear to show only 
mild toxicity, and this does not necessarily occur in humans, 
where the single injection dose is small [72]. The toxicity of 
MNPs is mainly manifested in terms of oxidative stress, cellu-
lar perturbation, and chronic organ toxicity, depending on 
factors such as size, surface modification, tissue concentra-
tion, and target cell type [70]. The formation of reactive oxy-
gen species (ROS) is the most critical factor in the toxicity 
caused by MNPs. Metals can generate ROS through corrosion, 
catalysis, and photoexcitation, leading to oxidative stress 
events such as apoptosis, protein and lipid peroxidation, and 
DNA damage [73]. This case can be solved by treating the 
carrier surface to reduce ROS production and equipping it 
with ROS scavenging groups [74].

40- and 50-nm particles significantly affect cell signaling 
function [75]. Han et  al. used proteomics for the first time to 

Table 1.  Drug release stimulation modalities and their characteristics.

Modalities Advantages Disadvantages
Relevant 

references

Temperature 
sensitive 
system

State-of-the-art 
stimulus-response 
system for rapid, 
quantitative drug 
release

High requirements 
for the safety 
and sensitivity 
of materials

[53], [54]

Ultrasound 
System

Noninvasive, 
penetrating

High stability 
requirements 
for magnetic 
microbubbles

[33], [55], 
[56]

Photosensitive 
system

Noninvasive and 
convenient

High penetration 
requirements; 
safety to be 
specified

[57], [58], 
[59], [60]

Electrical and 
magnetic field 
systems

Sensitive and 
controllable; can 
realize the potential 
of magnetic carriers

Difficult to apply 
alone; high 
technical 
requirements of 
the device

[61], [62]; 
[52], [54]

PH, redox, and 
enzyme 
response 
systems

Responsive to subtle 
environmental 
changes

Can only target 
specific sites; 
challenging to 
apply in 
complex 
environments

[63], [64]; 
[65], [66], 
[67], [68]; 
[69]
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analyze cellular signaling potentially perturbed by toxicity 
and identified 197 up-regulated proteins and 75 
down-regulated proteins, as well as the AKT/mTOR/TFEB 
pathway in splenic macrophages as the major activated sig-
naling pathway [76]. Chrishtop et  al. indicated that the ner-
vous system, heart, lung, thyroid, mononuclear phagocytic 
system, and reproductive system are the main sites of chronic 
toxicity from MNPs [77], and they concluded that there is a 
need to further study the effects of nanotoxicity based on 
chronic disease models. In addition, positively charged sur-
faces and tissue concentrations above 100 g/ml result in 
higher toxicity, while surface functionalization decreases the 
toxicity of MNPs [70]. However, what exactly the nanotoxicity 
of MNPs will do to humans, and how to counteract it remains 
to be studied in further clinical trials.

Nanoparticles bind to serum proteins to form protein 
corona (PC). PC is thought to interfere with nanoparticle tar-
geting ability and induce immune responses [78]. In fact, the 
effect of PC presence on the transport of nanoparticles is 
not limited to harm but has two sides, which are summa-
rized and discussed in depth by Kim et  al. and proposed to 
"turn enemies into friends" [79]. PC has a positive or nega-
tive effect on the colloidal stability, cellular uptake, cytotox-
icity, and organ targeting of nanoparticles, the variability of 
which depends on the PC, the cell, the nanoparticle, the 
species, and the type of disease. For reducing PC formation, 
available tools include the use of "stealth polymers" such as 
PEG, poly(2-oxazoline)s, zwitterionic polymers, polyglycerols, 
hyaluronic acid, polyacrylamide-grafted guar gum, and chi-
tosan, to modify the NP surface, or to wrap the NPs with cell 
membranes. Additionally, the disruptive effects of PC can be 
countered by antibody/ligand functionalization strategies or 

by direct modification of the coating with albumin, apolipo-
protein, and CD47 protein. The main idea of "turning ene-
mies into friends" is to form targeted PCs by attracting 
specific proteins, such as albumin, apolipoprotein, and vitre-
ous binding proteins, to increase the accumulation of 
nanoparticles in specific organs [79]. It should be noted that 
the results of animal experiments may not be generalized to 
humans because of the different compositions of blood pro-
teins, and we need some clinical trials to explore the opti-
mal treatment of PC.

In general, embolism in blood vessels is formed due to 
the aggregation of larger magnetic units. Huang et  al. 
reported that MNPs-labeled mesenchymal stem cells form 
cell clusters due to a "magnetic aggregation cascade", which 
in turn causes coronary embolism [80]. The "magnetic aggre-
gation cascade" is because SPIONs may lose their superpara-
magnetism after aggregation and gain permanent 
magnetization, further attracting the surrounding SPIONs to 
agglomerate [81]. The embolic phenomenon brought about 
by magnetically targeted drug delivery is highly harmful to 
organisms, which requires strict control of the magnetic car-
rier and cargo/drug size in MDT design, setting up a precise 
and sensitive 3D magnetic field for navigation, and, more 
importantly, maintaining good intravascular colloid stability 
to avoid intravascular particle aggregation and embolism as 
much as possible [82–84]. Modifying polymer surface coat-
ings to control the particle interactions is the foremost 
approach to solving this problem [82]. In addition, this "mag-
netic aggregation cascade" seems to have good aspects, such 
as increasing the volume, which allows the magnetic force to 
increase faster than the resistance [48]. This embolic phe-
nomenon seems poorly reported in MDT studies so far, 

Figure 2.  Current safety issues of magnetic nanocarriers (by Figdraw.).
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focusing on large-size cell targeting and with some contra-
dictions [80]. Therefore, if the evidence at this stage is not 
sufficient to prove or solve this problem, perhaps efforts can 
be focused on real-time monitoring of the vasculature and 
probing the tolerance of the body’s vasculature to magnetic 
nanoparticles in preclinical and clinical trials to achieve the 
most direct safety assessment.

Part III. Application of MDT in CVD

Cardiovascular Disease (CVD) is the leading cause of death 
worldwide [85], and there is an urgent need to improve the 
outcome of CVD treatment. The introduction of MDT into the 
clinical treatment and medication of CVD will enable drugs 
with short half-lives to obtain sufficient blood circulation 
time, achieve drug accumulation at the target site, avoid 
dose-dependent side effects and decreased patient compli-
ance due to repeated drug administration, and will also 
enable the development and utilization of many restricted 
and innovative drugs, achieving twice the effect with half the 
effort. In addition, magnetic resonance imaging brought by 
magnetic nanocarriers into the cardiac system is expected to 
enable noninvasive real-time monitoring of the disease 
course. Thus, MDT may be an effective tool to improve CVD's 
efficacy. The intracellular magnetism of MNPs has been 
reported to disrupt the endothelial barrier at the target site 

and increase endothelial permeability, thereby enhancing 
site-specific drug delivery [86], making the application of 
MDT in CVD more promising. We will describe the application 
of MDT in CVD in the last five years in the following (Figure 
3). Detailed data from relevant animal experiments are sum-
marized in Table 2.

Ischemic stroke

Statistics for 2019 show that stroke is the second leading 
cause of death worldwide, with ischemic stroke being the 
leading type of stroke, accounting for 62.4% [98]. Currently 
available and being explored treatments for ischemic stroke 
include intravenous thrombolysis, thrombectomy, 
ultrasound-assisted thrombolysis, and neuroprotective agents 
[99]. Intravenous thrombolysis is the predominant treatment 
modality in clinical practice. Alteplase, a recombinant 
tissue-type fibrinogen activator (rt-PA), is the only thrombo-
lytic drug currently approved by the US Food and Drug 
Administration (FDA) for acute ischemic stroke but has many 
well-known drawbacks, such as slow and incomplete throm-
bolysis, a therapeutic time window of only 4.5 h, short drug 
half-life, hemorrhagic transformation, and neurotoxicity [100]. 
Applying thrombectomy is strictly conditioned, and difficult 
to avoid tissue trauma. Ultrasonic thrombolysis and neuro-
protective agents have not yet demonstrated verifiable 

Figure 3.  Application of MDT in CVD in the last five years (by Figdraw.).
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clinical benefits. The introduction of magnetic targeting into 
stroke treatment may be a helpful attempt to improve the 
thrombolytic efficiency and safety of drugs, expand the treat-
ment time window, and protect ischemic tissue.

In fact, the delivery of thrombolytic drugs is one of the 
current research hotspots in MDT, and a growing number 
of reports are highlighting the feasibility of magnetically 
targeted thrombolysis [101–106]. It is important to note 
that most current animal studies for thrombolysis use iliac 
or femoral vein thrombosis models [104, 107, 108]. This 
may be due to the complex structure of the brain and the 
fact that subtle trauma can produce significant dysfunction, 
making it challenging to advance the experiment. On the 
other hand, this demonstrates the potential of magnetically 
targeted thrombolysis for lower extremity deep vein 

thrombosis [109]. Nevertheless, we still collected three 
experiments based on stroke models within nearly five 
years. In 2018, Hu et  al. prepared porous magnetic iron 
oxide microrods loaded with t-PA and induced CD1-IGS 
male mice with FeCl3 to establish distal middle cerebral 
artery occlusion (dMCAO) models [87]. Both the drug and 
control solutions were injected into the mice from the right 
external carotid artery. A 0.24 T magnet was placed perpen-
dicular to the distal middle cerebral artery on the ischemic 
side to target the magnetic microrods to the thrombus site. 
After successful targeting, the magnet was removed, and a 
rotating magnetic field with a strength of 40 mT and a fre-
quency of 20 Hz was placed near the infarcted area of the 
mouse head for thrombolysis. Aided by the mechanical 
effect of the rotating magnetic field, the time of t-PA 

Table 2.  Detailed data from relevant animal experiments on MDT in CVD.

Complex
MNP size 

(nm) Complex size

Magnetic 
field 

strength 
(T) Concentration Function Main Results Model Ref.

Magnetic 
microrods 
loaded with 
t-PA

15 ± 3 Length 1.3 ± 0.2 μm, 
Diameter 
0.5 ± 0.1 μm

0.24 1mg/kg To enhance 
thrombolysis

Reduction in t-PA 
thrombolysis time 
by 2/3

dMCAO/mouse [87]

MNP loaded with 
rt-PA

\ \ \ 1mg/ml To enhance 
thrombolysis

Dramatic increase in 
thrombolytic 
efficiency

dMCAO/mouse [88]

PLGA-coated 
disc-shaped 
particles loaded 
with rt-PA and 
SPION

10.7 Pitch 973.8 nm, 
Diameter 
2.67 μm

0.42 2mg/kg To avoid 
hemorrhagic

transformation

Durable thrombolysis 
and avoidance of 
HT

Laser-induced 
thrombosis/
mouse

[89]

Platelet membrane 
mimetic 
magnetic 
nanocarriers 
loaded with 
L-arginine

27.94 ± 1.10 Diameter 200 nm 0.3 (1.41 ± 0.16)×108/
ml

To improve 
blood flow

Rapid targeting and 
successful 
reestablishment 
of blood flow

Cold light 
source-induced 
focal cerebral 
ischemia/mouse

[90]

Magnetic 
extracellular 
nano-vesicles

12 Diameter 
194.2 ± 44.5 nm

0.32 200μg in 300 μl of 
PBS

To repair 
infarcted 
tissue

Significant reduction 
in cerebral infarct 
volume

Transient MCAO/rat [91]

Silica-coated 
MNP-labeled 
endothelial 
progenitor cells

60 \ 0.39 1 × 106 in 100 μl of 
PBS

To enhance the 
targeting of 
EPCs

Enhanced 
aggregation of 
EPCs in the 
infarct border 
zone

LAD ligation/rat [92]

Magnetic 
extracellular 
nano-vesicles

25 \ \ 150μg per rat To repair 
infarcted 
tissue

Improvement in 
heart function

LAD ligation/rat [93]

MNP loaded with 
CD63 and MLC 
antibodies

200 \ 1.3 10mg/kg To capture 
circulating 
exosomes

Successful capture 
and aggregation 
of exosomes

LAD ligation/rat and 
rabbit

[6]

Peptide 
functionalized 
SPION loaded 
with melatonin

10 Diameter 
221 ± 13nm

0.6 \ To improve 
cardiac 
hypertrophy

Prolonged melatonin 
half-life and 
increased 
utilization

TAC/rat [94]

Fe3O4 
nanoparticles 
loaded with OM

45 Diameter 45 nm 0.3 4mg per rat To reduce side 
effects

118% cardiac 
efficacy achieved 
with 4% of 
previous dose

Heart failure/rat [95]

SPION-labeled 
mesenchymal 
stem cell

40 \ 0.3 2 × 106 in 0.5 ml of 
DMEM

To enhance 
tissue 
regeneration

Significant reduction 
in myocardial 
fibrosis

ISO subcutaneous 
injection/rat

[96]

PLGA-MNP loaded 
with CaCl2

213 ± 84 Diameter 
213 ± 84nm

0.26 1mg/ml To ablate the 
major atrial 
GP

Successful 
suppression of 
target GP 
function

RAP/dog [97]

Abbreviations: MNP: magnetic nanoparticle; PLGA: poly(lactic-co-glycolic acid); SPION: superparamagnetic iron oxide nanoparticle; OM: omecamtive mecarbil; 
DMEM: Dulbecco’s modified Eagle’s medium; EPCs: endothelial progenitor cells; GP: ganglionated plexi; HT: hemorrhagic transformation; (d)MCAO (distal): middle 
cerebral artery occlusion, LAD: left anterior descending artery; TAC: transverse aortic constriction; ISO: isoproterenol; RAP: rapid atrial pacing.
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thrombolysis was reduced by 2/3, and no re-embolization 
occurred within 24 hours. At the optimal dose (1 mg/kg), 
the magnetic microrods loaded with t-PA did not produce 
circulating embolism, cytotoxicity, or hepatorenal toxicity 
and were broken down into tiny particles that were 
excreted through the urine [87]. A similar study was 
reported in 2019. Huang et  al. established dMCAO models 
by FeCl3 induction in male C57/BL6 mice and prepared 
polyacrylic acid-coated MNPs cross-linked with rt-PA [88]. 
At a dose of 1 mg/ml, magnetic field rotation resulted in a 
substantial increase in thrombus lysis efficiency and a sig-
nificant reduction in cerebral infarct size. However, the 
strength of the magnetic field, the size of the particles, and 
the safety were not described. In 2022, a complete study 
was presented by Choi et  al. [89]. They synthesized SPIONs 
by pyrolysis and assembled poly(lactic-co-glycolic acid) 
(PLGA), rtPA, and SPIONs into disc-shaped particles with a 
diameter of approximately 3 μm using a top-down approach. 
A 532 nm green dot laser was used to induce ischemic 
stroke models in male BALB/C mice. A saline solution of 
the particles at a dose of 2 mg/kg was injected into the 
mice from the tail vein, and a 0.42 T magnet was placed on 
the skull surface of the right hemisphere of the mouse 
brain. A 1.5 MHz focused transducer was used for in vivo 
magnetoacoustic thrombolysis, and near-infrared carbocy-
anine fluorescent was used to monitor the targeting of the 
particles. The results showed that the particles under the 
action of the magnetic field could reach the target within 
20 minutes, and ultrasound could control the accelerated 
release of rt-PA from the particles. Even if the conventional 
treatment time window of rtPA is exceeded, the particles 
still have considerable thrombolytic efficiency. More impor-
tantly, they did not produce any hemorrhagic transforma-
tion after thrombolysis, the safety was good, and the 
mouse models obtained the recovery of motor function. 
However, the efficacy of this magnetoacoustic device did 
not differ much from that of rtPA alone, which may be its 
limitation [89]. Nevertheless, all three experiments provided 
encouraging results demonstrating the potential of mag-
netic targeting for thrombolytic therapy of ischemic stroke.

Nitric oxide (NO) is an important signaling molecule that 
can diastole blood vessels and reduce platelet (PLT) aggrega-
tion, with the potential to expand the therapeutic time win-
dow for ischemic stroke. However, NO is challenging to target 
the stroke region in an aerobic environment. Li et  al. devel-
oped a PLT membrane and magnetic field dual-targeting 
L-Arginine delivery device [90]. L-Arginine is an NO donor 
that promotes NO production by endothelial cells. They used 
the membrane-extrusive method to assemble PLT membrane 
vesicles, L-Arginine, and γ-Fe2O3 MNPs into a mimetic parti-
cle with a diameter of about 200 nm and labeled with a 
near-infrared fluorescent dye. Male C57BL/6 mice were 
divided into three groups, the first group was injected with 
labeled particles via tail vein only, the second group was 
injected with labeled particles after stroke induction via a 
4 mm aperture cold light source, and the third group had a 
0.3 T magnet placed in the focal area of the head of the mice 
based on the second group. Near-infrared fluorescence in 
vivo imaging system showed significantly higher fluorescence 

intensity in the lesion area in the third group than in the 
other two groups with a rapid rise. Similar results were 
obtained with MRI, with the strongest carrier targeting effi-
ciency for the group applying the magnetic field. Quantitative 
blood flow analysis showed that recanalization of the isch-
emic region occurred 0.5–1h after particle administration and 
application of an external magnetic field led to a further 
increase in the rate of blood flow reconstruction. Mice were 
executed six hours after particle injection and immunohisto-
chemical analysis showed that brain tissue damage was sig-
nificantly reduced in the experimental group, and no 
significant damage was seen in other organs [90].

Mesenchymal stem cells (MSCs) are investigated for treat-
ing tissue injury in ischemic stroke because of their multiple 
effects, such as regenerative vascularization, immune modu-
lation, and neuroprotection [110]. However, direct implanta-
tion is invasive and has safety issues. Due to their large size, 
MSCs transplanted intravenously can be intercepted by pul-
monary capillaries with poor results [111]. MSCs-derived exo-
somes can improve this situation, but their targeting still 
needs to be improved [112]. Extracellular nanovesicles (NVs) 
function similarly to exosomes and can be produced on a 
large scale. Kim et  al. prepared magnetic NVs about 200 nm 
in size [91]. Male rats in the experimental group were treated 
with transient middle cerebral artery occlusion (i.e., transient 
MCAO) and wore magnetic helmets with an intensity of 
0.32 T. Magnetic NVs were labeled with the lipophilic dye 
VivoTrack 680 and injected into the rats from the tail vein. 
Compared with the control group, where NVs were mainly 
absorbed by the liver and spleen, the magnetic field effect 
resulted in a significant increase in fluorescence signal in the 
focal area 24 h after injection. In addition, the volume of 
brain infarcts in the experimental group was significantly 
smaller than that in the control group three days after injec-
tion. Immunohistochemistry showed that MSCs-derived mag-
netic NVs had anti-inflammatory, anti-apoptotic, and 
pro-angiogenic effects [91].

Myocardial infarction

Acute myocardial infarction is a hazardous ischemic heart 
disease, and its treatment is divided into invasive interven-
tional and surgical treatment and noninvasive drug treat-
ment. Invasive treatments have a high application threshold, 
drugs have a short half-life and high side effects, and thus 
well-targeted MDT modalities need to be urgently 
developed.

Endothelial progenitor cells (EPCs) can differentiate into 
mature endothelial cells and proliferate, promoting angio-
genesis and improving blood flow. However, the retention 
of EPCs in the infarct region is low, resulting in suboptimal 
clinical efficacy. In response, Zhang et  al. used silica-coated 
MNPs to label EPCs (MEPCs) and enhanced the aggregation 
of EPCs in the marginal infarct zone in rats by magnetic 
targeting [92]. The results showed that MEPCs produced 
essentially no microcirculatory embolism and cytotoxicity, 
reduced cardiomyocyte apoptosis and fibrosis, and pro-
moted angiogenesis in the infarct margins, with the 
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smallest infarct size and best cardiac morphology in the 
magnetic targeting group [92]. For the same purpose, 
another idea was provided by Sun et  al. [113]. To avoid the 
tumorigenic potential of exogenous EPCs, they recruited 
endogenous EPCs using SPIONs loaded with CD34 antibod-
ies. These SPIONs were loaded into neutrophils (NEs) to 
complete the targeting and release process. Ultimately, 
EPCs were successfully recruited to the infarct site, with 
increased microvessel density and improved left ventricular 
ejection function [113]. Unfortunately, the SPIONs of this 
experiment were only used for imaging and recruitment, 
and targeting was provided by chemotaxis of NEs. Future 
exploration of the potential of this indirect treatment 
modality in combination with magnetic targeting is 
worthwhile.

MSCs-derived exosomes have been developed to treat 
ischemic stroke, as previously described. The same idea has 
also received attention in the treatment of heart attacks. 
Lee et  al. modified the surface of cubic iron oxide nanopar-
ticles (INOPs) of approximately 25 nm in size with PEG and 
fluorescent dyes and loaded them into MSCs-derived NVs 
[93]. The results showed that magnetically targeted 
INOP-NVs showed good retention at the infarct site and 
could promote myocardial repair in four ways: 
anti-inflammatory, anti-apoptotic, anti-fibrotic, and angio-
genic. Interestingly, in vitro experiments showed that INOPs 
promote the expression of therapeutic molecules and miR-
NAs in MSCs, but the exact mechanism is unclear [93]. 
Similar to the previous idea of Sun et  al. [113], Liu et  al. 
used antibody-coupled MNPs to recruit endogenous circu-
lating exosomes to treat heart attacks [6]. Differently, this 
study is a complete example of the magnetic targeting 
application. 200 nm Fe3O4 nanoparticles were encapsulated 
by SiO2 shells and subsequently modified with PEG, 
pH-sensitive hydrazone bonds, and two antibodies, CD63 
and MLC. After female rats were ligated with the left ante-
rior descending artery (LAD), 10 mg/kg of fluorescently 
labeled engineered MNPs were injected from the tail vein. 
A 1.3 T circular neodymium magnet was placed 5 mm from 
the heart within 10 min after injection. The results showed 
that the engineered MNPs could trap circulating exosomes, 
aggregate them to the infarct site, and complete their 
release in an acidic environment, thereby reducing infarct 
size, promoting angiogenesis, and improving left ventricular 
ejection fraction. Serum biochemical parameters and histo-
logical examination showed no significant evidence of tox-
icity. In addition, they injected the particles into a porcine 
vein and showed that the magnetic field continued to have 
a sufficient capture capacity at a flow rate of 50 ml/min. 
Notably, they also established a rabbit heart failure model 
and obtained the same results of improved cardiac func-
tion [6].

A recent interesting study from the team of Bao et  al. sug-
gests that magnetic stimulation itself has a therapeutic effect 
on myocardial infarction [114]. They loaded SPIONs into a 
hydrogel and wrapped it around the vagus nerve of infarcted 
rats. Under the stimulation of a pulsed magnetic field, the 
rats’ cardiac function was significantly improved. Future 
research on magnetic targeting in myocardial infarction 

treatment could try to combine drug delivery and magnetic 
neuromodulation.

Myocardial hypertrophy

Technically speaking, cardiac hypertrophy is a pathological 
change, but it can develop into severe heart disease, such as 
heart failure. Therefore, attention to myocardial hypertrophy 
is warranted. Currently, the means of remodeling for myocar-
dial hypertrophy are unsatisfactory [115]. Myocardial fibrosis 
is the most crucial pathological factor leading to myocardial 
hypertrophy. Means to reverse myocardial fibrosis are still 
under investigation.

Melatonin, a hormone secreted by the pineal gland of 
the brain, has been shown to have anti-fibrotic effects on 
the myocardium [116]. However, conventional oral adminis-
tration makes its bioavailability low. Accordingly, Zhao et  al. 
combined poly (lactide) polycarboxybetaine, cardiac hom-
ing peptides, and 10 nm size SPIONs coupled with mela-
tonin to prepare an approximately 200 nm large drug 
delivery vehicle with dual targeting capability [94]. 
Sprague-Dawley rats underwent transverse aortic constric-
tion (TAC) surgery to induce myocardial hypertrophy. 
Fluorescent dye-labeled functionalized nanocarriers were 
injected into the rats from the tail vein, followed by a 0.6 T 
neodymium magnet placed outside the heart. The results 
showed that this carrier had good drug encapsulation abil-
ity, prolonged the circulating half-life of melatonin, and 
increased its accumulation in the heart. After treatment, 
parameters associated with myocardial hypertrophy and 
hydroxyproline concentrations in cardiac tissue were signifi-
cantly reduced. RT-PCR showed a significant decrease in the 
expression of genes associated with myocardial hypertro-
phy and fibrosis [94].

Liu et  al., on the other hand, focused on the TGF-β sig-
naling pathway, which may be a key driver of myocardial 
hypertrophy and fibrosis. In 2019, they revealed that Foxp1 
transcriptional repressors expressed in endothelial cells 
could reverse pathological myocardial fibrosis by regulating 
the TGF-β1-Endothelin-1 pathway [117]. RGD-peptide MNPs 
(RGD-MNPs) were used to deliver TGF-β1-siRNA to 
Foxp1-deficient endothelial cells, showing that TGF-β1 sig-
naling was blocked and myocardial hypertrophy and fibrosis 
were reversed. In 2020, the team further found that simvas-
tatin could modulate the Foxp1-TGF-β1 signaling pathway 
by activating Kruppel-like factor 2 (Klf2), an upstream factor 
of Foxp1, which in turn attenuates TAC-induced myocardial 
hypertrophy [118]. RGD-MNPs were used to block Klf2 sig-
naling. Overall, the team’s study established a clear mecha-
nistic pathway and implied the targeting potential of 
RGD-MNPs. Unfortunately, the specific magnetic targeting 
operation was not described in detail, and the RGD-MNPs 
were only used to block the signal.

Heart failure

Heart failure (HF) is one of the major public health  
problems today, and its mortality rate has been increasing 
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in recent years due to a lack of effective management  
[119].

Omecamtive Mecarbil (OM) is a novel cardiac myosin acti-
vator for treating systolic heart failure. However, it has 
dose-dependent side effects, and repeated dosing decreases 
patient compliance. Accordingly, Kiaie et  al. loaded it onto 
chitosan-coated SPIONs with a diameter of 45 nm to improve 
the targeting of OM and reduce the dose used [95]. Male 
Wistar rats were used to construct the HF model. A 0.3 T 
magnet was placed on the heart surface, and SPIONs loaded 
with OM were injected into the rats from the tail vein. The 
result showed a 2.5-fold increase in OM targeting, a 96% 
reduction in dose, and an 18% increase in left ventricular 
ejection fraction from 71.7 ± 1.41% to 89.6 ± 1.40% [95].

Mesenchymal stem cells (MSCs) can repair the myocar-
dium but are difficult to be retained in the myocardium 
after exogenous injection. Repeated invasive injections to 
obtain sustained efficacy are impractical. Accordingly, 
Naseroleslami et  al. used PEG-coated 40 nm diameter 
SPIONs to label MSCs to improve cell homing ability [96]. 
Isoproterenol (ISO) saline solution was injected subcutane-
ously into male Wistar rats for four consecutive days to 
induce heart failure. 2 × 106 SPION-labeled MSCs were 
injected into the heart, and a 0.3 T neodymium magnet, 
8 mm long and 2 mm wide, was placed 1 mm above the 
heart and subsequently sutured incision. The results showed 
that the magnetic field improved the retention of MSCs, 
the ejection fraction was improved, and myocardial fibrosis 
was significantly reduced [96].

Cardiac arrest/ischemia-reperfusion injury

Cardiac arrest is a significant health problem with a high 
mortality rate, primarily due to reperfusion injury to the 
organism after resuscitation [120]. The potential of magneti-
cally targeted drug delivery in cardiopulmonary resuscitation 
was discussed in 2012 [121]. Xanthos et  al. suggested that 
disposable magnet pads could be added to the defibrillator 
to introduce well-targeted drug therapy without hindering 
CPR. Unfortunately, the last five years of research have not 
revived this idea. Nevertheless, there are still some examples 
of using MNPs as drug carriers.

Hydrogen sulfide (H2S) can reduce ischemia-reperfusion 
injury in the heart and brain. However, the lack of effective 
carriers to deliver it to target organs and control its release 
leads to its cytotoxicity causing damage to normal tissues. 
Wang et  al. prepared mesoporous iron oxide nanoparticles 
(MIONs) loaded with diallyl trisulfide (DATS), an H2S donor, 
which were used in mouse models of myocardial ischemia 
with good biocompatibility and controlled release properties 
[122]. Sun et  al. also prepared DATS-loaded MIONs. They 
modified them with PEG to obtain longer circulation times 
and introduced lactoferrin to help them cross the blood-brain 
barrier [123]. Huang et  al., on the other hand, prepared 
DATS-loaded erythrocyte membrane-encapsulated MIONs, 
which showed long circulation and controlled release in the 
animal model of ischemia-reperfusion and improved cardiac 
function through anti-inflammatory, antioxidant, and 

anti-apoptotic pathways [124]. Unfortunately, none of these 
studies used magnetic fields to target MIONs, and it is entirely 
possible to introduce magnetic targeting systems into the 
study of H2S in the future.

Atrial fibrillation

Atrial fibrillation is the most common cardiac arrhythmia. 
The incidence has steadily increased in recent years, and 
the efficacy of therapeutic options has not been satisfac-
tory [125]. Ablation is a common treatment, but it requires 
a specialized electrophysiologist to perform it, and the 
indications for its application are strict and costly. In this 
regard, Yu et  al. proposed a way to intervene early in par-
oxysmal atrial fibrillation. They constructed approximately 
200 nm large CaCl2-loaded PLGA-MNPs and subjected male 
mongrel dogs to 6 hours of rapid atrial pacing (RAP) after 
open-heart treatment to induce atrial fibrillation [97]. 
1 mg/ml of Ca-MNPs were injected from the left circumflex 
artery into dogs, and 0.26 T of electromagnets were placed 
on the epicardial surface of the target atrial ganglionated 
plexi (GP). The results showed that Ca-MNPs were targeted 
to the target GP, and the neurotoxicity of calcium ions suc-
cessfully inhibited GP function and prevented RAP-induced 
electrical remodeling of the atria [97].

Part IV. Conclusions and prospects

MDT has great potential for application in cardiovascular 
diseases. In this review, we present the current status of 
research on magnetically targeted drug/cargo delivery 
from five aspects: guiding magnetic fields, magnetic carri-
ers, delivery channels, drug release control, and safety 
assessment, and summarize the evidence from animal 
experiments in the last five years. To improve the effi-
ciency of targeted drug delivery, researchers have devel-
oped advanced magnetic carriers such as magnetic robots, 
adopted antibody functionalization strategies to achieve 
bio-magnetic targeting, and supplemented with various 
modalities, such as pH and ultrasound, to control drug 
release. In animal experiments on CVDs, MDT is mainly 
applied to ischemic stroke and cardiac diseases, and 
thrombolysis and stem cell therapy are repeatedly men-
tioned topics. In our opinion, new nano-delivery technolo-
gies can all be tried in combination with magnetic 
targeting. Moreover, researchers need to fully exploit the 
potential of magnetic carriers to move in magnetic fields, 
of which magnetic microwheels are an example. In addi-
tion, nanotoxicity, protein corona, and vascular embolism 
are three safety concerns of MDT that need to be further 
illustrated in clinical trials. In the future, MDT needs to be 
studied more extensively and in-depth in more CVDs to 
elucidate more details in specific situations.
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