
Pathogenesis and Host Response | Minireview

Social networking at the microbiome-host interface

Richard J. Lamont,1 George Hajishengallis,2 Hyun Koo3,4

AUTHOR AFFILIATIONS See affiliation list on p. 14.

ABSTRACT Microbial species colonizing host ecosystems in health or disease rarely do 
so alone. Organisms conglomerate into dynamic heterotypic communities or biofilms 
in which interspecies and interkingdom interactions drive functional specialization 
of constituent species and shape community properties, including nososymbiocity 
or pathogenic potential. Cell-to-cell binding, exchange of signaling molecules, and 
nutritional codependencies can all contribute to the emergent properties of these 
communities. Spatial constraints defined by community architecture also determine 
overall community function. Multilayered interactions thus occur between individual 
pairs of organisms, and the relative impact can be determined by contextual cues. Host 
responses to heterotypic communities and impact on host surfaces are also driven by the 
collective action of the community. Additionally, the range of interspecies interactions 
can be extended by bacteria utilizing host cells or host diet to indirectly or directly 
influence the properties of other organisms and the community microenvironment. 
In contexts where communities transition to a dysbiotic state, their quasi-organismal 
nature imparts adaptability to nutritional availability and facilitates resistance to immune 
effectors and, moreover, exploits inflammatory and acidic microenvironments for their 
persistence.
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The strength of the pack is the wolf

And the strength of the wolf is the pack

—Rudyard Kipling from The Jungle Book

T he polymicrobial communities that inhabit host surfaces and mucosal barriers 
are complex and dynamic, as well as compositionally and spatially heterotypic. 

Integration of spatially contextualized information from partner species and from the 
host microenvironment drives the emergence of community-specific properties, and 
the community can operate as a functionally cohesive, or quasi-organismal, unit (1). 
Underlying the development of a polymicrobial community is a regulatory system 
of interconnected switches and rheostats, which operate both transcriptionally and 
posttranscriptionally, and which calibrate the pathogenic potential, or nososymbiocity, 
of the community. Indeed, it is the community in toto that constitutes the etiological 
agent in many cases of disease at mucosal membranes and on host surfaces. Conse
quently, host responses should be considered with regard to the community in its 
entirety rather than to individual organisms.

While the principles of interbacterial communication are applicable in communities at 
any anatomical site, we shall focus here on the oral ecosystem in which many of the core 
concepts were originally established (2–5). The oral cavity comprises a diverse ecosystem 
containing an abundant microbiota and both hard and soft tissues; nonetheless, unlike 
other mucosal environments, for example, the gastrointestinal tract, the ecosystem of 
the oral cavity is readily accessible. Thus, the microbiome associated with tissue- and 
site-specific diseases, such as dental caries and periodontal disease, can be sampled 
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and studied exclusively. An intricate network of microbe-microbe and microbe-host 
interconnectivity has been uncovered, which can receive input in the form of physical or 
chemical signals, and which allows organisms to sense and respond to neighboring cells 
to coordinate group behavior and adapt to the microenvironment (6). While the extent 
of interspecies communication is potentially limitless, with hundreds of species capable 
of colonizing the mouth, the in situ configuration suggests that individual organisms 
have a more restricted sphere of influence. Fluorescent image analysis of subgingival 
communities shows that any one organism has a limited range of binding partners 
within distinct spatial structures, while specific microbes in supragingival biofilms can 
cluster themselves to create a localized pathogenic niche (7–9) (Fig. 1A). This parsimony 
of association facilitates the development of tractable and scalable models for the study 
of community development. Interestingly, as we shall explore, responses of an organism 
to partners show a significant degree of specificity for each pairing (10, 11), which 
may facilitate rapid adaptation to emerging conditions and allow organisms to have 
differential influence of community properties.

Interbacterial dialogue

The overall community developmental process of coadhesion and physiological 
integration belies an often multidimensional array of interbacterial interactions which 
can have differing outcomes depending on contextual cues. An overview of documented 
oral bacterial interactions is presented in Table 1, and these are extensively discussed in 
several excellent recent reviews (4, 13–16). In general, specialized adhesins mediate 
interbacterial binding which facilitates exchange of metabolites and other small 
molecules. Bacteria may utilize the information conveyed by attachment to a partner 
species to optimize fitness, resulting in new physiological functions that cannot be 
achieved by individual constituents alone. Although not yet resolved in oral bacteria, the 
outer membrane of other organisms, such as in Escherichia coli, can sense stressors 
including mechanical changes resulting from adhesion (17). In one such pathway, the 
lipoprotein NlpE senses surface adhesion and activates both the Cpx and BaeSR two-
component systems, thus initiating an adhesion-dependent pattern of gene expression 
(18–20). Physiological integration can then involve cross-feeding or progressive metabo
lism of complex substrates (21). Increased fitness of community organisms has implica
tions for pathogenicity, as in some instances virulence factors, for example, proteases, 
have dual functionality involving nutrient uptake in addition to tissue destruction. 
Indeed, current models of periodontal disease pathogenicity incorporate the role of 
interbacterial communication. In the polymicrobial synergy and dysbiosis (PSD) model, 
integration into subgingival communities of pathogens such as Porphyromonas gingiva
lis, even at low number, precipitates disruption of host homeostasis (22, 23). P. gingivalis 
thus fulfills the criteria for a keystone species; one whose supportive influence on its 
community is inordinately large relative to its abundance, thereby constituting the 
“keystone” of the community’s structure. A keystone pathogen, therefore, is a quantita
tively minor but functionally critical component of a disease-provoking microbiota. For 
instance, at least in the mouse host, P. gingivalis fulfills both criteria (low relative abun
dance and disproportionately large impact) by manipulating host immunity and 
inflammation in ways that promote the nososymbiocity and persistence of its commun
ity, while present at <0.01% of the total bacterial load (22). The concept of keystone 
pathogen should be distinguished from the action of other important pathogenic 
species, such as dominant pathogens, which can have a large impact on their communi
ties and the host simply by virtue of their outsize biomass. Interestingly, as we shall 
explore later, the role played by individual species can vary, and organisms that contrib
ute to dysbiosis in one context can help maintain homeostasis in another.

In other instances, as exemplified by the cariogenic Streptococcus mutans, the 
bacterial cells conglomerate preferentially into homotypic structures. Analysis of intact 
supragingival communities formed on mineralized host tissue (i.e., the teeth) reveals 
microbial clusters comprised almost exclusively of S. mutans that are surrounded by 
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TABLE 1 Interspecies interactions among oral bacteria

Organisms Interactions References

Interactions within communities
Streptococcus gordonii-Porphyromonas gingivalis Context-dependent regulation of consortia pathogenic potential. P. 

gingivalis exhibits modulation of tyrosine phosphorylation-dependent 
signaling; regulation of genes encoding fimbrial adhesins; upregulation 
of genes associated with oxidative stress resistance; increased gingipain 
activity and hemin acquisition; differential flux through one-carbon 
metabolism (OCM) pathways. Streptococcal AI-2 regulates expression of 
genes involved in carbohydrate metabolism in P. gingivalis. Short-chain 
fatty acids from P. gingivalis inhibit the competence-stimulating peptide 
(CSP) quorum-sensing system of S. gordonii.

(24–30)

S. gordonii-Veillonella parvula Consortia-dependent increased expression of streptococcal genes 
associated with carbohydrate metabolism and increased expression of 
oxidative stress-related processes in V. parvula.

(31)

S. gordonii-Fusobacterium nucleatum S. gordonii genes involved in the biosynthesis and export of cell 
wall proteins and carbohydrate metabolism, and F. nucleatum genes 
associated with translation, protein export, and sialic acid metabolism are 
differentially regulated in consortia which have increased survival within 
macrophages.

(32, 33)

S. sanguinis-F. nucleatum In a consortium, F. nucleatum masks the surface components recognized 
by H2O2 producing mouse oral microbiome constituents.

(34)

S. gordonii-Actinomyces oris S. gordonii scavenges arginine from A. oris through the extracellular 
protease challisin which results in downregulation of streptococcal genes 
involved in arginine biosynthesis; actinomyces catalase can protect 
streptococci from oxidative damage.

(35, 36)

S. gordonii-Aggregatibacter actinomycetemcomi
tans (Aa)

Consortia are synergistically virulent, and Aa displays: a shift from 
fermentative to respiratory metabolism (cross-respiration); preferential 
utilization of lactate through carbon resource partitioning; increased 
production of catalase and complement resistance protein ApiA; 
regulation of iron uptake mechanisms which lead to modulation of 
dispersin B production and remodeling of the extracellular matrix to 
ensure optimal distance from S. gordonii.

(37–40)

S. parasanguinis-Aa Aa promotes accumulation of S. parasanguinis through modulating the 
production of H2O2 by fine-tuning the expression of pyruvate oxidase.

(41)

S. gordonii-P. gingivalis, Prevotella intermedia, 
Tannerella forsythia

S. gordonii GAPDH binds heme and forms a reservoir that can be 
sequestered by HmuY of P. gingivalis, PinO of Pr. intermedia or Tfo of Ta. 
forsythia.

(42)

S. sanguinis, Aa-P. gingivalis Increased catalase production by Aa in consortia protects P. gingivalis from 
H2O2 produced by S. sanguinis.

(43)

S. intermedius, S. cristatus-P. gingivalis Streptococcal arginine deiminase (ArcA) represses expression of genes 
encoding fimbriae and gingipains in P. gingivalis.

(44, 45)

Mitis Group Streptococci (MGS)-Haemophilus 
parainfluenzae

MGS provide NAD and evoke distinct patterns of carbon utilization in H. 
parainfluenzae which is resistant to streptococcal H2O2.

(46)

V. parvula-P. gingivalis V. parvula produces a cell-density-dependent soluble molecule which 
stimulates P. gingivalis growth at low cell density and enhances in vivo 
virulence.

(47)

V. parvula-F. nucleatum, S. gordonii V. parvula catalase protects F. nucleatum in microaerophilic conditions and 
from streptococcal H2O2.

(48)

V. parvula-F. nucleatum
S. gordonii-F. nucleatum

V. parvula and S. gordonii increase amino acid availability for F. nuclea
tum, resulting in enhanced production of fermented and decarboxylated 
metabolites.

(49)

(Continued on next page)
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TABLE 1 Interspecies interactions among oral bacteria (Continued)

Organisms Interactions References

V. parvula, S. gordonii, F. nucleatum-P. gingivalis Cross-feeding of F. nucleatum with V. parvula and S. gordonii increases 
polyamine production which accelerated accumulation with P. gingivalis 
and subsequent dispersal of planktonic cells.

(49)

Corynebacterium durum-S. sanguinis Fatty acids produced by C. durum increase streptococcal chain length and 
promote resistance to phagocytosis.

(50)

P. gingivalis-S. mitis P. gingivalis induces expression of transposases and cell death of S. mitis. (51)
MGS-S. mutans H2O2 from MGS inhibit S. mutans growth; however, this can be mitiga

ted by pyruvate secretion which depletes H2O2; S. mutans lantibiotic 
and non-lantibiotic bacteriocins, tryglysin peptides, and tetramic acids 
are toxic to MGS; MGS block competence stimulating peptide and 
comX-inducing peptide (XIP) signaling and induce a common contact-
dependent pattern of differential gene expression in S. mutans; a 
streptococcal protease (challisin) can degrade CSP and suppress mutacin 
gene expression; AI-2 from S. gordonii stimulates biofilm formation and 
regulates virulence gene expression in S. mutans; SsnA DNase of S. 
gordonii inhibits accumulation of S. mutans.

(52–58)

MGS, S. mutans-Veillonella S. mutans produces lactate for Veillonella metabolism; Veillonella enhances 
expression of S. gordonii α-amylase to increase release of lactate.

(59, 60)

V. parvula-S. gordonii, S. mutans V. parvula can protect S. mutans from H2O2 produced by S. gordonii and 
increases the expression of genes required for the uptake and metabo
lism of sugars in S. mutans.

(61)

S. parasanguinis-S. mutans, Candida albicans S. parasanguinis accumulation in consortia is promoted by nitrite through 
upregulation of reactive nitrogen species (RNS) scavengers. Nitrite drives 
the metabolic signature of the consortia and restricts virulence factor 
production.

(62)

F. nucleatum-P. gingivalis F. nucleatum can remove oxygen and promote the growth of P. gingivalis. (63, 64)
F. nucleatum-P. gingivalis, T. denticola, Ta. forsythia AI-2 from F. nucleatum induces expression of adhesins in P. gingivalis, T. 

denticola, and Ta. forsythia, and enhances consortia formation.
(65)

P. gingivalis-Pr. intermedia Pr. intermedia interpain protease extracts heme from hemoglobin and 
converts to methemoglobin which is a substrate for the extraction of 
iron(III) protoporphyrin IX by HmuY of P. gingivalis.

(66, 67)

T. denticola-P. gingivalis Glycine, isobutyrate, and thiamine produced by P. gingivalis stimulate 
the growth of T. denticola. Succinate and OCM metabolites produced 
by T. denticola stimulate glycine production and growth of P. gingivalis; 
T. denticola increases the expression of hemagglutinin adhesin domain 
proteins in P. gingivalis which enhances P. gingivalis adhesive capabilities.

(68–71)

Aa-P. gingivalis AI-2 from Aa can regulate expression of genes involved in stress resistance 
and iron uptake in P. gingivalis.

(72)

T. denticola-P. gingivalis, F. nucleatum Genes encoding T. denticola major antigens are suppressed by P. gingivalis 
and F. nucleatum.

(73)

Interactions involving host cells
S. gordonii-P. gingivalis Streptococcal H2O2 incapacitates P. gingivalis gingipain and prevents 

Notch activation of epithelial cells; S. gordonii activates the TAK-NLK 
pathway and blocks P. gingivalis mobilization of FOXO1; S. gordonii 
induces a transcriptional profile which mitigates the impact of P. 
gingivalis.

(74–76)

S. gordonii-P. gingivalis Spent culture supernatant of S. gordonii suppresses inflammatory 
responses of epithelial cells, fibroblasts, and macrophages to P. gingivalis 
lipopolysaccharide.

(77)

P. gingivalis-F. nucleatum P. gingivalis suppresses endocytic pathway-mediated inflammasome 
activation in macrophages and prevents activation by F. nucleatum; in 
neutrophils P. gingivalis induces Toll-like receptor 2 (TLR2)-C5aR which

(78–80)

(Continued on next page)
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outer layers of other microbial species forming a corona-like spatial arrangement (7, 86) 
(Fig. 1B). The inner core of S. mutans appears to be physically separated from the outer 
layer of other microbial species by extracellular polymeric substances, including glucans, 
adhesins, glycoproteins, and eDNA (87). Despite this isolation, the inner S. mutans cells 
interact with the outer members of this spatially ordered community. For example, the 
presence of S. oralis in the outer community induces the expression of S. mutans atpB, a 
key gene associated with acid tolerance and increased fitness at acidic pH, while helping 
to create a localized acidogenic state via metabolic interactions that contributes to 
dissolution of the tooth enamel (86). Furthermore, such spatial configuration of the 
cloistered S. mutans cells creates a protective microenvironment against antimicrobials 
such as chlorhexidine, thus establishing a retentive pathogenic niche (86). These findings 
highlight the importance of the spatial structure of the microbiome (termed biogeogra
phy) in mediating the function and outcome of host-microbe interactions (13)

The Porphyromonas gingivalis interactome

The full pathogenic potential of P. gingivalis in periodontal disease is only realized in the 
context of a microbial community (24, 88, 89), and thus networking with other organisms 
is of considerable importance in shaping the pathoecology of the gingival compart
ments. While the major component of the oral microbiota is acquired initially as an infant 
from caregivers and other family members (90), there is an order to the process based on 
fitness in the dynamic ecosystem (91). Facultative species such as the oral streptococci 
avidly adhere to the salivary pellicle on enamel surfaces and constitute an abundance of 
early colonizers (92–94). The reduction in oxygen tension as facultative accrete into 
densely packed communities facilitates successful colonization by anaerobes such as P. 
gingivalis. Further expansion of P. gingivalis is enhanced by inflammation-derived 
proteinaceous nutritional substrates such as will become available during gingivitis 
induced by an abundant early community (95). It has also been established that a 
propensity for slow growth at low cell density contributes to late colonization by P. 
gingivalis (47). This dependency on an autoinducer (AI) can be overcome by the early 
colonizing Veillonella parvula, which provides a soluble growth initiating cue (47) (Fig. 
2A). Surfaces encountered by P. gingivalis during successful colonization and expansion 
are populated by a variety of organisms, and P. gingivalis is well equipped with adhesins 
mediating attachment to many of these, including fusobacteria, actinomyces, veillonel
lae, and streptococci (96–100). Once established in deeper subgingival areas, P. gingivalis 
also coadheres with spirochetes such as Treponema denticola (68). For binding to S. 
gordonii, P. gingivalis employs the FimA structural subunit fimbriae which engage GAPDH 

TABLE 1 Interspecies interactions among oral bacteria (Continued)

Organisms Interactions References

activates PI3K and protects F. nucleatum from phagocytosis; P. gingivalis 
capsule-mediated association augments epithelial cell invasion by P. 
gingivalis.

S. gordonii-F. nucleatum Coaggregation inhibits epithelial cell apoptosis and promotes secretion of 
tumor necrosis factor and interleukin (IL)-6.

(81)

S. gordonii, F. nucleatum-P. gingivalis Consortium growth causes an increase in Mfa1 expression in P. gingivalis 
and elevated invasion of dendritic cells by P. gingivalis and F. nucleatum.

(82)

S. cristatus-F. nucleatum S. cristatus stabilizes IκB-α in epithelial cells, blocking nuclear factor kappa 
B (NF-κB) activation and cytokine secretion induced by F. nucleatum.

(83)

P. gingivalis-F. nucleatum The P. gingivalis serine phosphatase SerB dephosphorylates the p65 NF-κB 
subunit, blocking nuclear translocation and cytokine secretion induced 
by F. nucleatum.

(84)

T. denticola-F. nucleatum T. denticola incapacitates the F. nucleatum-induced expression of human 
beta defensins and IL-8 in epithelial cells by interrupting endo-lysosomal 
maturation and reactive oxygen species-dependent TLR activation.

(85)
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on the streptococcal surface, as well as the Mfa1 structural subunit fimbriae which 
engage SapA/SspB, members of the Ag I/II family of streptococcal surface proteins (24, 
101). The functional domain on the SspB protein has been localized to a C-terminal 
region, designated BAR, spanning aa residues 1,167–1,193 (24, 102). Ag I/II members in 
other oral streptococcal species that possess a homologous BAR domain (such as S. mitis 
and S. oralis) support P. gingivalis adherence, whereas those lacking BAR homologs (such 
as S. cristatus and S. mutans) do not (25, 98). Of note, both S. cristatus and S. mutans lack 
physiological compatibility with P. gingivalis (Fig. 2A). Arginine deiminase produced by S. 
cristatus inhibits the expression of fimbrial- and protease-associated genes in P. gingivalis, 
consequently diminishing community formation and pathogenicity in vivo (103). Low pH 
values as are induced by S. mutans are antagonistic to P. gingivalis (104). Hence, P. 
gingivalis can be seen to have tailored its adhesive repertoire to favor attachment to non-
antagonistic organisms. The situation is more nuanced, however, as the relationship 

FIG 1 Interbacterial and interkingdom interactions in oral polymicrobial communities. (A) The oral microbiota harbors a multitude of different microbes, 

including bacteria, fungi, viruses, and ultra-small organisms. These diverse microbial populations engage in complex interspecies or cross-kingdom interactions 

which drive cooperative, competitive, or both outcomes among community members. Certain species, such as Streptococcus mutans, form highly clustered 

communities with precise spatial structure at the infection site (supragingival) which promotes a disease-causing state (dental caries). (B) Complex physical and 

chemical interactions with different species promote a multilayered, corona-like spatial arrangement formed by an inner core composed almost exclusively of 

S. mutans and outer layers of other oral microbes, physically separated by extracellular polymeric substances. This spatial structure enhances bacterial fitness 

and protection, and creates a highly acidic microenvironment, leading to the localized onset of disease. Precise positioning and spatial arrangement combined 

with polymicrobial interactions can coordinate pathogenesis in situ to create virulence hotspots impacting the host tissues. [Adapted from reference (12) with 

permission from Elsevier.]
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between P. gingivalis and S. mitis can turn toxic through the induction of multiple 
transposases and cell death in the streptococci (105).

In contrast, the relationship between P. gingivalis and S. gordonii remains harmonious 
and indeed begins prior to attachment (Fig. 2A). Oral streptococci such as S. gordonii 
produce para-amino benzoic acid (pABA) which diffuses freely in and out of bacterial 
cells and is an essential component of one-carbon metabolism (OCM) (26, 106, 107). 
Exogenous pABA acquired by P. gingivalis can interfere with tyrosine phosphorylation/
dephosphorylation-based signaling in P. gingivalis, which funnels through the bacterial 
tyrosine (BY) kinase Ptk1. Ptk1 is a node in a regulatory network which controls the 
production of virulence factors, including the gingipain proteases, fimbriae, and 
extracellular polysaccharide (EPS) (27, 108) (Fig. 2B). In addition, Ptk1 is one of only two 
common fitness determinants of P. gingivalis identified in an abscess model with either S. 
gordonii or Fusobacterium nucleatum (10). Hence, in conditions of pABA excess, P. 
gingivalis virulence is dampened, both in abscess and alveolar bone loss models of 
disease (26). Through mechanisms that have yet to be unraveled, physical association 
between P. gingivalis and S. gordonii also impacts the phosphorylation/activation state of 
Ptk1 in a manner which reverses information flow through the circuitry. Consistently, 
physically integrated P. gingivalis-S. gordonii communities are more pathogenic in animal 
models of periodontal disease compared to either organism alone (89, 109) (Fig. 2B). In 
this context, we have proposed that S. gordonii does not function as a true commensal 
but rather as an accessory pathogen, an organism that, while not pathogenic in itself, can 
act synergistically to elevate the pathogenicity of another species or of a community 
(97).

The OCM pathway, of which pABA is an essential precursor, is an integral part of 
cellular intermediary metabolism, producing a number of one-carbon unit intermediates 
(formyl, methylene, methenyl, and methyl), which are required for the synthesis of 
various amino acids and other biomolecules, such as purines, thymidylate, folate, and 
redox regulators (110, 111). The participation of pABA in both OCM and virulence 
provides insight into coordination of physiologic and pathogenic properties by P. 
gingivalis. Tyrosine phosphorylation is required for processing and secretion of gingi
pains (108), and thus interference of Ptk1 activation by pABA will reduce the availability 
of amino acids that are also required as substrates to maintain OCM (110). Hence, 
accumulation of exogenous or endogenous pABA acts as a negative feedback loop to 
fine-tune OCM. While phosphorylation-mediated coupling of OCM and gingipain 
activities likely arose as a mechanism to ensure balanced flux through OCM, given the 
prominent pathological role of gingipains, this axis also drives pathogenicity. This 
landscape of metabolic pathogenicity may include other organisms, as T. denticola can 
provide OCM metabolites to P. gingivalis as a means to increase glycine availability for 
treponemal growth (69) (Fig. 2A).

The full nature of the trophic web involving P. gingivalis remains to be established, but 
all indications are that it is extensive and multicomponent. For example, in coculture with 
F. nucleatum, S. gordonii secretes ornithine via an arginine-ornithine antiporter (ArcD), 
which supports fusobacterial growth through an increase in amino acid availability. 
Higher levels of ornithine cause F. nucleatum to increase the production of putrescine, a 
polyamine derived from ornithine by decarboxylation (49). Similarly, coculture with V. 
parvula increases lysine availability, which promotes the production of the polyamine 
cadaverine by F. nucleatum. When P. gingivalis is present, both community coalescence 
and subsequent dispersal of planktonic cells are enhanced by polyamines (49).

The interplay between P. gingivalis and S. gordonii has relevance for host cell respon
ses to the oral microbiome. P. gingivalis has emerged as a potential oncopathogen in oral 
and esophageal squamous cell carcinoma (112, 113). Certainly, as a monoinfection, P. 
gingivalis has a number of effects on gingival epithelial cells consistent with such a role. 
These include the suppression of apoptosis, acceleration through the cell cycle, and the 
induction of epithelial mesenchymal transition (EMT) as well as a dysbiotic inflammatory 
microenvironment (113, 114). However, S. gordonii can mitigate these effects through a 
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variety of processes. For example, P. gingivalis upregulates genes encoding components 
of the Notch signaling pathway, including the downstream effector olfactomedin 4 
(OLFM4), which is required for epithelial cell migratory, proliferative, and inflammatory 
responses to P. gingivalis (74). This regulation can be overridden by S. gordonii through 
the production of hydrogen peroxide, which inactivates the P. gingivalis gingipain 
proteases and prevents proteolytic cleavage and activation of the Notch1 extracellular 

FIG 2 The P. gingivalis interactome. (A) Overview (not to scale) of interactions of P. gingivalis with other bacteria, bacterial communities, and with gingival 

epithelial cells. Green arrows represent a synergistic relationship which increases the colonization, growth, or pathogenicity of P. gingivalis, or an increase in 

an epithelial cell signaling pathway. Red flat arrows represent an antagonistic relationship. (B) The streptococcal metabolite para-amino benzoic acid (pABA) 

and physical attachment between P. gingivalis and S. gordonii have opposing effects on pathogenicity, although both funnel through activation/inactivation of 

the Ptk1 tyrosine kinase signaling pathway. (C) Indirect communication between S. gordonii and P. gingivalis involving the epithelial cell as an intermediary. S. 

gordonii can activate the TAK1-NLK pathway, which mitigates P. gingivalis stimulation of FOXO1-Zeb2 signaling. P. gingivalis, however, can enhance Zeb2 activity 

through pathways that are insulated from S. gordonii.
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domain (74) (Fig. 2A). In this context, we have proposed that S. gordonii functions as a 
homeostatic commensal, suppressing the impact of potential pathogens to help 
maintain eubiotic host responses. Production of hydrogen peroxide will be higher on 
oral mucosal membranes, compared to periodontal pockets, due to differences in 
oxygen availability, and this may be one reason that S. gordonii exhibits distinct “person
alities” at these sites. Remarkably, S. gordonii can also influence the behavior of P. 
gingivalis indirectly by using the epithelial cell as an intermediary. S. gordonii can 
program gingival epithelial cells to resist FOXO1-Zeb2-dependent regulation of EMT 
markers initiated by P. gingivalis (75). Mechanistically, S. gordonii prevents serine-
phosphorylation-mediated activation of FOXO1 by inducing the phosphorylation and 
activation of the TAK1-NLK-negative regulatory pathway, even in the presence of P. 
gingivalis (75) (Fig. 2C). Moreover, RNA-Seq of epithelial cells infected with P. gingivalis, S. 
gordonii, or both organisms in combination, shows that the dual organism challenge 
induces a pattern of gene expression which resembles that of S. gordonii more closely 
than that of P. gingivalis (74). It is likely, therefore, that S. gordonii possess additional 
mechanisms to diminish the influence of P. gingivalis on epithelial cell function. Related 
oral streptococcal species may perform similar roles, and S. sanguinis, for example, can 
override the effect of P. gingivalis on epithelial cells with regard to the production of 
inflammatory cytokines (115). Interestingly, however, P. gingivalis can impact epithelial 
cell circuitry in ways that are insulated from streptococci (Fig. 2C). This includes pathways 
that can promote Zeb2 activity and may allow P. gingivalis to manipulate host cell 
physiology to a sufficient degree even in the presence of organisms with opposing 
activity (116). In addition, P. gingivalis can suppress epithelial cell production of the 
neutrophil chemokine IL-8 and the T-cell chemokine IP-10 in a heterotypic infection with 
otherwise stimulatory organisms (117, 118). The immunosuppressive features of P. 
gingivalis can thus counteract the effects of community partners and may contribute to 
the keystone pathogen features of the organism.

Corynebacterium-streptococcal interactions

Studies of bacterial interplay in the oral microbiome have focused traditionally on 
organisms deemed important in terms of bulk presence or absence. More recent 
image analysis by fluorescent in situ hybridization of communities recovered in vivo 
has identified organisms playing functional roles in establishing biogeography (9). One 
such organism is Corynebacterium durum which assembles into structures known as 
“corncobs” with oral streptococci (119). C. durum has a dramatic effect on the morphol
ogy of S. sanguinis provoking an increase in chain length, a phenomenon effectuated 
by fatty acids likely delivered in corynebacterial membrane vesicles (50). Mixtures 
of palmitic, stearic, and/or oleic acids induce streptococcal chain length elongation; 
however, the process also involves metabolic coordination of fatty acid production in S. 
sanguinis. The streptococcal fab operon, which encodes fatty acid biosynthetic reactions, 
is downregulated in the presence of C. durum supernatants, and deletion of genes within 
the operon, such as fabH or acpP, phenocopies the chain length effect in the absence 
of exogenous fatty acids. C. durum also induces an increase in the expression of gldA, 
encoding an enzyme which converts glycerol into dihydroxyacetone (glycerone), and 
ablation of gldA expression in S. sanguinis prevents chain length regulation (50). Thus, 
there would appear to be regulatory connections between lipid metabolism and chain 
length in S. sanguinis, which can be intercepted by exogenous fatty acids provided 
by C. durum. The influence of C. durum on S. sanguinis extends beyond chain length, 
and interbacterial association increases streptococcal growth rate as well as resistance 
to phagocytosis and killing by macrophages (50). The association of S. sanguinis with 
C. durum in corncob structures will benefit the streptococci, therefore, by providing 
protection from innate immunity.
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Streptococcal interaction with Candida

Oral streptococcal interactions with Candida albicans are associated with enhanced 
virulence of early childhood caries and oropharyngeal diseases (120–122). C. albicans 
interacts with mitis group streptococci (MGS) to enhance bacterial colonization and 
biofilm formation, while C. albicans becomes more invasive, thus promoting mucosal 
tissue infection and destruction (120). C. albicans physically interacts with MGS, including 
S. gordonii, S. sanguinis, and S. oralis, through cell surface proteins and receptors. 
Streptococcal cell surface adhesins, SspA and SspB, interact with the C. albicans surface, 
while Als and HWP adhesins on the fungal cell wall appear to mediate binding to 
MGS. Specifically, SspB and Als3 mediate intercellular binding through the N-terminal 
domain of Als3 (123). These interactions may also involve O-mannosyl residues in 
Als adhesins and other cell wall proteins, such as Sap9. In vivo studies show that 
coinfection of C. albicans and S. oralis results in increased mucosal tissue invasion and 
augmented inflammatory responses due to induction of neutrophil-activating cytokines 
(IL-17, CXCL1, MIP-2/CXCL2, TNF, IL1α, and IL-1β) and upregulation of Toll-like receptor 
2-dependent proinflammatory signaling as well as increased epithelial μ-calpain activity 
(124). How the host orchestrates immune responses against C. albicans-streptococcal-
mediated mucosal infection and the role of this cross-kingdom interaction in host 
immune evasion need further elucidation (120).

In contrast to MGS, the cariogenic S. mutans employs distinctive mechanisms to 
associate with C. albicans. In addition to antigen I/II adhesins (125), S. mutans secretes 
glucosyltransferase (Gtf ) exoenzymes that bind avidly to the C. albicans cell surface 
and convert sucrose to large amounts of EPS α-glucans on the fungal surface. The EPS 
provides bacterial binding sites and promotes coassembly with C. albicans in saliva while 
promoting colonization of the tooth surface and interkingdom biofilm formation that 
exacerbates the severity of dental caries (126, 127). Mechanistically, S. mutans-derived 
GtfB binds with high affinity to N- or O-linked mannans located on the outermost layer 
of the C. albicans cell wall and maintains its catalytic activity to produce α-glucans 
in situ (128). The formation of glucan-rich matrix provides a scaffold for both surface 
adhesion and cell-to-cell cohesion while establishing chemical and nutrient gradients by 
modulating diffusion. It also provides an additional benefit to the fungi by creating a 
“drug-trapping matrix” that prevents uptake of the antifungal fluconazole, reducing C. 
albicans killing efficacy (129).

Complex signaling, cross-feeding, and metabolic interactions occur within the 
interkingdom MGS- or S. mutans-Candida biofilms. Signaling/quorum sensing (QS) and 
other biomolecules appear to facilitate these interactions, including AI-2, peptidoglycan 
fragments, exoenzymes, and hydrogen peroxide (H2O2) (130) (Fig. 1A). For example, 
nutrient byproducts as well as AI-2 signaling and H2O2 from S. gordonii stimulate 
C. albicans hyphal development within biofilm communities, while S. oralis activates 
expression of fungal aspartyl proteases. C. albicans can promote streptococcal prolifera
tion by providing growth-stimulating factors and reducing oxygen tension. The impact 
of C. albicans and MGS synergism on the host-pathogen interaction has been demon
strated in vivo, whereby heterotypic C. albicans-S. oralis community growth enhances 
neutrophil infiltration, leading to increased severity of soft tissue lesions (120–122). C. 
albicans and S. mutans display interesting synergistic mechanisms, whereby S. mutans 
converts sucrose to glucose that can be more readily metabolized by C. albicans. C. 
albicans activates S. mutans competence, virulence gene expression, and GtfB produc
tion via QS molecules such as farnesol, while enhancing acidogenicity and aciduricity of 
the community (122, 131).

Notably, cross-kingdom interactions can also repress functions of the member species 
to modulate population growth, biofilm structure, and spatial organization. S. mutans-
derived mutanobactin A and fatty acid signaling through trans-2-decenoic acid can 
inhibit C. albicans hyphal formation (132, 133). Furthermore, competence-stimulating 
peptides secreted by S. mutans (134) or S. gordonii (135) can inhibit C. albicans hyphal 
formation. Paradoxically, farnesol produced by C. albicans, which stimulates S. mutans 
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growth and gtfB expression at low concentrations, disrupts bacterial growth at higher 
concentrations. Hence, similar to the situation described above for S. gordonii-P. gingivalis 
interactions, a tightly regulated cooperative and antagonistic balance through stimu
lus-inhibition mechanisms appears to mediate bacterial-fungal interactions, which can 
become synergistic when conditions are conducive for disease.

Host responses dependent on community properties

Since the early 20th century, different theories have been proposed for the microbial 
etiology of the inflammatory periodontal lesions, ranging from the “non-specific plaque 
hypothesis” (disease caused by mere increase in the quantity of subgingival plaque 
bacteria beyond a certain threshold, regardless of the species involved) to the implica
tion of specific organisms (including an oral amoeba later named Entamoeba gingiva
lis) or a select few bacteria (such as the red complex of P. gingivalis, T. denticola, 
and T. forsythia) [reviewed in reference (23)]. As outlined above, it is now well estab
lished that periodontal disease is driven by mutually reinforcing interactions between 
a polymicrobial dysbiotic community and the host inflammatory response. The PSD 
model of periodontal disease pathogenesis was founded upon knowledge from modern 
metagenomic and metatranscriptomic studies with insights into the dynamic changes 
in the composition and structure of the periodontal microbiome, as well as from 
mechanistic studies in clinically relevant animal models on how bacteria synergize to 
maximize nososymbiocity [reviewed in reference (24)]. According to the PSD model, the 
emergence of dysbiosis (hence the potential for destructive inflammation) is determined 
not by specific individual organisms acting independently but by the combined output 
of community action; the latter is molded by interspecies interactions as well as host 
genetic and environmental variables that impact on both the microbial community and 
the immune response (24). In other words, what matters is not so much the identities of 
individual species but rather the presence of the appropriate complement of genes and 
their interaction with the host environment. This concept is consistent with published 
mechanistic studies, such as the ones briefly discussed below.

Independent studies in model organisms show that combinations of different oral 
pathogens cause increased periodontal inflammation and bone loss as compared to 
each pathogen alone (136–139). P. gingivalis is incapable of causing periodontitis by 
itself in germ-free mice, although it can colonize this host after repeated oral inocula
tions; however, the pathogenic potential, or keystone pathogen function, of P. gingi
valis is readily expressed in the context of an oral microbial community, as occurs 
when the pathogen is introduced into the oral commensal microbiota of conventional 
mice (88). Mechanistically, P. gingivalis interacts with phagocytes in ways that disrupt 
immune surveillance (e.g., extracellular killing, phagocytosis) and stimulate inflamma-
tory pathways, factors that favor the outgrowth of pathobionts, thus enhancing the 
community’s nososymbiocity (78, 88, 140). Reciprocally, P. gingivalis receives metabolic 
and colonization support from accessory pathogens (47, 89, 97, 141) (Fig. 3). Thus, in this 
give-and-take relationship, the capacity of P. gingivalis to provide keystone function to 
the community is dependent upon help from companion species.

The aptitude by which P. gingivalis manipulates the host immune response to 
promote dysbiosis depends heavily on its ability to exploit complement signaling 
pathways (78, 142, 143). The recent success of a complement-targeted clinical trial for the 
treatment of periodontal disease might thus not be attributable only to inhibition of 
inflammation but also to counteraction of complement-dependent immune subversion 
by P. gingivalis (144). In addition to subverting the host response, P. gingivalis may 
mediate keystone function via direct interactions with community members. For 
instance, introduction of this keystone pathogen into an otherwise health-compatible 
microbial community leads to major transcriptomic and proteomic alterations with 
potential for increased virulence expression (145, 146). P. gingivalis may also contribute to 
dysbiosis via elimination of health-associated species, such as by inducing cell death in S. 
mitis as mentioned above (105).
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That inflammatory periodontal lesions are driven predominantly by dysbiotic, rather 
than multitudinous (as the non-specific plaque hypothesis would predict), communities 
is also supported by a study using the ligature-induced periodontitis model in mice. 
Ligature placement in posterior teeth of conventional mice results in rapidly increased 
bacterial biomass and structural changes in the microbial community of affected sites, as 
compared to unligated, hence, healthy, contralateral sites. These changes are associated 
with gingival inflammation and loss of alveolar bone (147). Administration—via the 
drinking water—of different antibiotics, either alone or in combinations, revealed that 
inflammatory bone loss was not necessarily associated with an increase in the total 
microbial load. Specifically, those antibiotic treatments which inhibited inflammation (as 
assessed by expansion of CD4+ T helper 17 cells) and bone loss also invariably caused 
compositional changes within the community, without—however—always decreasing 

FIG 3 Interspecies and microbe-host interactions that promote dysbiosis and inflammatory disease. Whereas communities of predominantly eubiotic 

commensals induce balanced immune responses that contribute to homeostatic immunity and a healthy periodontal tissue, dysbiotic communities induce 

dysregulated inflammatory responses that are detrimental for the host and ineffective in controlling the bacteria. In polymicrobial communities associated with 

periodontitis, keystone pathogens are aided by accessory pathogens in terms of metabolic and/or colonization support and, once established, can subvert host 

immunity in a manner that contributes to the outgrowth of inflammophilic pathobionts. Community members engage in complex interspecies communication 

that elevates the expression of virulence factors and the pathogenicity of the entire community. A key environmental factor that aggravates dysbiosis and 

pathobiont expansion is destructive inflammation, which not only drives bone loss but also generates tissue breakdown products that can be used as nutrients 

by the dysbiotic community. These mutually reinforcing interactions between dysbiosis and inflammation represent a self-sustained feed-forward loop that 

constitutes the actual driver of periodontitis and can explain, in great part, its chronic nature.
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the total microbial load (147). Therefore, although a dysbiotic community may be highly 
abundant relative to health-associated communities, it is mainly the qualitative differen-
ces (the collective gene pool as altered in dysbiosis) that dictate its increased pathogenic 
potential. Such dysbiotic communities are quite stable and can transmit disease both 
horizontally and vertically.

Specifically, a dysbiotic microbial community, which was established in the mouse 
oral cavity following inoculation with P. gingivalis, could be stably transferred to 
germ-free mice, which subsequently developed periodontal bone loss (148). The 
same study showed that the P. gingivalis-induced microbial community could also be 
transferred from parents to offspring, which developed significant bone loss relative 
to offspring of periodontally healthy control parents. Moreover, antibiotic treatment of 
mice with oral microbial dysbiosis could only transiently reverse dysbiosis, as dysbio
sis was readily restored upon antibiotic termination (148). This implies a degree of 
resilience inherent in the interspecies communication within the dysbiotic community 
and perhaps also in the community’s interactions with a favorable host environment 
upon cessation of treatment. Inflammation is a major ecological factor that contributes 
to the dysbiotic shift in the microbial population structure associated with periodonti
tis. Through the availability of nutrients derived from inflammatory tissue breakdown, 
inflammation exerts selective pressure on the community organization, favoring the 
expansion of inflammophilic pathobionts at the expense of species that cannot endure 
or capitalize on an inflammatory environment (6, 149) (Fig. 3). This concept is fur
ther supported by observations in a controlled multispecies community environment. 
The addition of serum, hemoglobin, or hemin (which are by-products of destructive 
inflammation) to an in vitro generated oral multispecies community selectively favors 
the expansion of pathobiont species. These, moreover, upregulate the expression of 
genes that can facilitate increased exploitation of a nutritionally favorable inflammatory 
environment; indeed, the upregulated genes encode for proteases, hemolysins, and 
molecules required for the acquisition of hemin (150). Other host-related factors that 
contribute to the emergence of dysbiosis include inherited and acquired traits, such as 
immune deficiencies, smoking, unhealthy diet, obesity, diabetes, and systemic inflamma-
tory disorders, as well as aging (1, 151, 152).

The effects of periodontal dysbiosis are not restricted locally since oral patho
bionts and their proinflammatory products can spill into the circulation through the 
ulcerated and richly vascularized gingival epithelial barrier (153, 154). The resulting 
systemic inflammation can cause functional alterations in a variety of organs, includ
ing the bone marrow, where induction of maladaptive myelopoiesis exacerbates not 
only periodontitis but also systemic comorbidities, such as rheumatoid arthritis (155). 
Moreover, oral pathobionts may translocate to extraoral sites including, for example, 
the intestine, where they can aggravate colitis (156). It can readily be envisioned 
that ectopically colonizing oral microbes can cooperate or synergize with the resident 
dysbiotic microbiota (e.g., in the lungs or intestine), thereby further promoting disease at 
extraoral sites. This concept of an interconnected microbiome with enhanced virulence is 
supported, in principle, by certain observations. Orally aspirated P. gingivalis is detected 
together with Pseudomonas aeruginosa in tracheal aspirates of individuals with acute 
exacerbation of chronic obstructive pulmonary disease (157). Importantly, the ability 
of P. aeruginosa to invade respiratory epithelial cells, modulate host cell apoptosis, and 
ultimately cause host cell death is enhanced in the presence of P. gingivalis (158, 159).

Whereas periodontal dysbiotic communities induce immune and inflammatory 
responses that are ineffective, dysregulated, and detrimental for the host, both locally 
and systemically, communities of predominantly eubiotic commensals induce balanced 
immune responses that contribute to homeostatic immunity and maintain host-microbe 
equilibrium that characterizes a healthy periodontium (160). The mechanisms under
lying homeostatic interactions between eubiotic communities and the host immune 
system have been extensively studied in the gut and might have parallels in the oral 
cavity. Different members of such communities contribute to diverse mechanisms that 
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collectively contribute to homeostasis (e.g., by inducing antimicrobial proteins to resist 
pathogenic species, stimulating regenerative responses to promote tissue repair, and 
activating regulatory T-cell responses to restrain potentially destructive inflammation) 
(161–166).

Conclusions

With the exception of invasive exogenous pathogens, microbes in and on humans 
assemble into spatially constrained heterotypic communities. Nutritional, signaling, 
and physical interactions among community participants drive the emergent proper
ties of the community. Pairs of organisms can interact through multiple mechanisms, 
and the collective outcome, for example, increased or diminished nososymbiocity, 
varies according to context. In many cases, such as dental caries and periodontal 
diseases, it is the community that represents the fundamental etiological unit. Dysbi
otic microbial communities fundamentally represent a quasi-organismal entity, where 
constituent organisms with functional specialization engage in intimate interactions 
within the community and with the host to maximize its pathogenic potential and 
outcompete health-compatible communities. The mutually reinforcing interactions 
between dysbiotic communities and inflammation not only drive periodontitis but, 
being self-sustained, may also contribute to the chronicity of this oral disease. In dental 
caries, host dietary sugars can modulate the dysbiosis and polymicrobial interactions in 
supragingival communities leading to highly structured and localized acidic microenvir
onments that shape the persistence and metabolic activity of the community to promote 
disease development and severity.
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