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Abstract
Background: AT-rich interaction domain 1A (ARID1A) is an essential subunit 
of the switch/sucrose non-fermentable chromatin remodeling complex and is 
considered to be a tumor suppressor. The Cancer Genome Atlas (TCGA) molecu-
lar classification has deepened our understanding of gastric cancer at the molecu-
lar level. This study explored the significance of ARID1A expression in TCGA 
subtypes of gastric adenocarcinoma.
Methods: We collected 1248 postoperative patients with gastric adenocarci-
noma, constructed tissue microarrays, performed immunohistochemistry for 
ARID1A, and obtained correlations between ARID1A and clinicopathological 
variables. We then carried out the prognostic analysis of ARID1A in TCGA sub-
types. Finally, we screened patients by random sampling and propensity score 
matching method and performed multiplex immunofluorescence to explore the 
effects of ARID1A on CD4, CD8, and PD-L1 expression in TCGA subtypes.
Results: Seven variables independently associated with ARID1A were screened 
out: mismatch repair proteins, PD-L1, T stage, differentiation status, p53, E-
cadherin, and EBER. The independent prognostic variables in the genomically 
stable (GS) subtype were N stage, M stage, T stage, chemotherapy, size, and 
ARID1A. PD-L1 expression was higher in the ARID1A negative group than in 
the ARID1A positive group in all TCGA subgroups. CD4 showed higher expres-
sion in the ARID1A negative group in most subtypes, while CD8 did not show the 
difference in most subtypes. When ARID1A was negative, PD-L1 expression was 
positively correlated with CD4/CD8 expression; while when ARID1A was posi-
tive, this correlation disappeared.
Conclusions: The negative expression of ARID1A occurred more frequently 
in the Epstein–Barr virus and microsatellite instability subtypes and was an in-
dependent adverse prognostic factor in the GS subtype. In the TCGA subtypes, 
ARID1A negative expression caused increased CD4 and PD-L1 expression, 
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1   |   INTRODUCTION

According to the latest global cancer statistics report, the 
incidence of gastric cancer ranks fifth, and gastric cancer-
related mortality ranks fourth worldwide, seriously en-
dangering human health.1 Despite obvious advances in 
diagnostic techniques and treatments in recent years, the 
overall prognosis of gastric cancer remains unsatisfactory. 
With the development of molecular biology techniques, 
The Cancer Genome Atlas (TCGA) proposed the con-
cept of molecular classification, which was classified into 
four subtypes in gastric cancer: Epstein–Barr virus (EBV) 
positive subtype, microsatellite instability (MSI) subtype, 
genomically stable (GS) subtype, and chromosomal in-
stability (CIN) subtype.2 The TCGA molecular classi-
fication not only greatly expands our knowledge on the 
heterogeneity and molecular complexity of gastric cancer 
but also shows important prognostic and therapeutic sig-
nificance. Considering the high-throughput techniques 
used in TCGA classification are very complex and expen-
sive to apply on a large scale in clinical practice, several 
studies have proposed the immunohistochemistry (IHC) 
and EBV-encoded RNA in situ hybridization (EBER-ISH) 
techniques as an alternative for routine application in pa-
thology laboratories.3,4

The switch/sucrose non-fermentable (SWI/SNF) 
chromatin remodeling complex dynamically alters the 
structure of chromatin, allowing highly condensed chro-
matin to expose more accessible sites for DNA binding 
factors, and further controlling gene expression.5 AT-
rich interaction domain 1A (ARID1A) is a core compo-
nent of the SWI/SNF complex, which plays an essential 
role in binding the SWI/SNF complex to DNA and is 
involved in regulating many critical cellular processes, 
such as cell proliferation, cell differentiation, and DNA 
repair.6 The ARID1A protein is encoded by the epon-
ymous ARID1A gene, which is most frequently mu-
tated among genes encoding for the SWI/SNF complex 
subunits,5 and its mutation frequency is ranked only 
second to that of TP53 in gastric cancer.2,7 In recent 
years, gastric adenocarcinoma with ARID1A abnor-
malities has received increasing attention as a distinct  
tumor entity.

Currently, there are many studies on ARID1A in gas-
tric adenocarcinoma, while the significance of ARID1A 
in the TCGA molecular subtypes of gastric adenocarci-
noma has not been studied in depth. Herein, we explored 
the prognostic and immune infiltration significance of 
ARID1A negative expression in TCGA subtypes in 1248 
patients with gastric adenocarcinoma.

2   |   MATERIALS AND METHODS

2.1  |  Patients collection and tissue 
microarrays construction

We collected 1347 patients with gastric adenocar-
cinoma who received initial surgical treatment at 
Weihai Municipal Hospital between January 2014 and 
December 2020. Subsequently, we excluded patients 
who received antitumor therapy before surgery (e.g., 
chemotherapy, radiotherapy, immunotherapy, molecu-
lar targeted therapy, etc.). The tissue microarrays (TMA) 
were constructed as follows. First, two pathologists care-
fully reviewed the hematoxylin and eosin (H&E)-stained 
slides of the screened patients and marked representa-
tive tumor areas. Second, we took out one tissue core 
(2 mm in diameter) from each corresponding formalin-
fixed and paraffin-embedded (FFPE) donor block using 
a manual tissue sampling gun (jlm-5133, Guangdong, 
China) and transferred the donor tissue cores to the 
recipient paraffin block (ZSGB-BIO, 60 holes, 2 mm in 
diameter). Finally, we fused the donor cores and the re-
cipient block into TMAs by heating slowly to 65°C. After 
excluding the spots that did not contain tumor tissue and 
those that detached from the TMA slides, 1248 patients 
were included in the study.

We obtained the following clinical pathological infor-
mation by reviewing the electronic medical record (EMR) 
systems and pathological records: age, sex, tumor site, 
tumor size, differentiation status, WHO histological clas-
sification, Lauren classification, vascular invasion (VI), 
perineural invasion (PNI), invasion depth, lymph node 
metastasis, and distant organ metastasis. We restaged 
the enrolled patients according to the latest AJCC TNM 

whereas CD8 expression appeared independent of ARID1A. The expression of 
CD4/CD8 induced by ARID1A negativity was accompanied by an increase in PD-
L1 expression.
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staging system (8th edition, 2019). Overall survival (OS) 
times was defined as the time from the date of diagnosis 
to the date of death or last follow-up, which were obtained 
by EMR system or telephone follow-up.

This study was approved by the Ethics Review Board 
of Weihai Municipal Hospital (permission code: 2021053), 
which considered that the written informed consent from 
patients was unnecessary due to this study was retrospec-
tive and was conducted anonymously. The design and 
workflow of this study are shown in Figure 1.

2.2  |  Immunohistochemistry and in situ 
hybridization

We obtained sections of 2 μm thickness from TMA blocks 
and then implemented IHC staining for ARID1A, E-
cadherin, p53, PD-L1, Ki-67, HER-2, MSH2, MSH6, MLH1, 
and PSM2 using an automated immunostaining machine 
(Benchmark ULTRA, Ventana) following the manufactur-
er's procedure. The primary antibodies' information were 
as follows, ARID1A (EPR13501, Rabbit, 1:1000, Abcam), 

F I G U R E  1   Study design and workflow of the present study. EBER-ISH, EBV-encoded RNA in situ hybridization; EBV, Epstein–Barr virus; 
Her-2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; mIF, multiplex immunofluorescence; MMR, mismatch repair; 
PD-L1, programmed cell death ligand-1; PSM, propensity score matching; TCGA, The Cancer Genome Atlas; TMA, tissue microarrays.
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E-cadherin (EP6, Rabbit, Prediluted, Origene), MSH2 
(RED2, Rabbit, Prediluted, Origene), MSH6 (EP49, Rabbit, 
Prediluted, Origene), MLH1 (ES05, Rabbit, Prediluted, 
Origene), PMS2 (EP51, Rabbit, Prediluted, Origene), p53 
(DO-7, Mouse, Prediluted, Origene), PD-L1 (SP263, Rabbit, 
Prediluted, Roche), Ki-67 (MyM1-Ki67, Mouse, Prediluted, 
Anbiping), and Her-2 (4B5, Rabbit, Prediluted, Roche). If 
the immunohistochemical staining of Her-2 is 2+, further 
fluorescence in situ hybridization (FISH) is required. We 
detected EBV infection by the EBER-ISH method using the 
EBER assay kits (ZSGB-BIO, ISH-7001).

2.3  |  Assessment criteria for 
immunohistochemical staining

ARID1A was scored according to staining intensity and 
staining proportion of tumor cells, respectively. Staining 
intensity was scored as 0 (absence of any nuclear stain-
ing), 1 (faint nuclear staining), and 2 (intense nuclear 
staining); Staining proportion was scored as 0 (0%), 1 (1%–
10%), and 2 (11%–100%). The above two scores were mul-
tiplied to obtain a final score, ranging from 0 to 4; 0 or 
1 was defined as ARID1A negative, and ≥2 was defined 
as ARID1A positive.8 For heterogeneous expression, the 
score of each component was multiplied by the propor-
tion and then summed to obtain the final score. MMR pro-
teins (including MLH1, PMS2, MSH2, and MSH6) were 
classified as present (definite nuclear staining) and lost 
(complete absence of nuclear staining). Any MMR pro-
teins lost were defined as MMR deficient (dMMR), and all 
MMR proteins present were defined as MMR proficient 
(pMMR). Complete absence or apparent reduction (>30%) 
of membranous staining for E-cadherin was evaluated as 
absent, irrespective of cytoplasmic staining.3 The evalua-
tion criteria for p53 were as follows: nuclear staining of 
inhomogeneous variable intensity was defined as wild-
type, and either complete absence of nuclear staining in 
all tumor cells or strong diffuse nuclear staining in more 
than 90% of tumor cells was defined as mutant-type.9 The 
criteria for IHC evaluation of HER2, Ki-67, and PD-L1 are 
listed in Table S1.

2.4  |  TCGA molecular classification

We performed an analogous TCGA molecular classifica-
tion according to the staining results of EBER, MMR, and 
E-cadherin. First, we selected EBER-positive cases as EBV 
subtype; Next, we classified the dMMR cases into MSI sub-
type based on the MMR result; Then, we classified cases 
with E-cadherin negative expression as GS subtype; Finally, 
the remaining cases were classified as CIN subtype.3,4

2.5  |  Multiplex immunofluorescence 
(mIF)

We randomly screened half of the ARID1A negative pa-
tients, followed by screening ARID1A positive patients 
using the propensity score matching (PSM) method in 
a 1:1 ratio. We then marked interest regions in tumor 
center (TC) and invasive margin (IM) on representative 
H&E-stained slides. Finally, we constructed TMAs using 
the same method described above for subsequent mIF 
analysis.

The mIF for CD4, CD8, PD-L1, CK-pan, and 
DAPI was performed at Tissuegnostics Asia Pacific 
Limited (Beijing, China) using a five-color kit from 
Tissuegnostics (commercial number: TGFP550) follow-
ing the manufacturer's protocol. Immunofluorescence 
images were acquired using the Tissue FAXS 
Cytometry platform of Tissuegnostics and were then 
high-throughput quantitatively analyzed with Strata 
Quest software (version 7.0.1). The brief protocol was 
as follows: First, the fluorescence was detected by flu-
orescence microscope at different wavelengths in five 
channels respectively, dark blue for DAPI (TG470SN), 
skyblue for CK pan (TG430N), green for CD4 (TG520N), 
yellow for CD8 (TG570N), and red for PD-L1 (TG650N). 
Next, the DAPI fluorescence staining channel was used 
for nucleus identification, and the parameters were ad-
justed by the “forward-reverse tracking tools” accord-
ing to the results of quantitative analysis to obtain the 
cell number in sight (n/sight). Then, the image segmen-
tation of the nucleus and cytoplasm was performed, 
and optimal thresholds for the positivity of each marker 
were determined based on fluorescence signal inten-
sity. Finally, each marker's positive cells (n/sight) were 
calculated according to the fluorescence signal around 
the nucleus.

2.6  |  Statistical analysis

All statistical analyses and statistical graphics were 
performed with R software (version 4.1.2). The chi-
square test was used to analyze the correlation be-
tween categorical variables, including the correlation 
between ARID1A and clinicopathological features, as 
well as the correlation between ARID1A and TCGA 
molecular classification. Variables with p < 0.05 were 
then screened out for the subsequent multivariate lo-
gistic regression analysis (screening variables with 
the stepwise method) and least absolute shrinkage 
and selection operator (LASSO) regression analysis, 
respectively. Then, a random forest model was used 
to sort the variables filtered out by logistic regression 
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and LASSO according to the importance, measured by 
increase in node purity (IncNodePurity), with higher 
values indicating more significant importance.10 The 
Kaplan–Meier method was used for survival analysis 
and plotting of survival curves, comparing the dif-
ferences in survival curves by the log-rank test. The 
univariate Cox regression analysis was performed to 

T A B L E  1   Univariate correlation analysis of ARID1A with 
clinicopathological variables.

ARID1A

Variables Total Negative Positive p-Value

Age 1248 275 (22.04) 973 (77.96) 0.458

<60 372 (29.81) 77 (28) 295 (30.32)

≥60 876 (70.19) 198 (72) 678 (69.68)

Sex 0.094

Female 319 (25.56) 81 (29.45) 238 (24.46)

Male 929 (74.44) 194 (70.55) 735 (75.54)

Site 0.141

Antrum 759 (60.82) 156 (56.73) 603 (61.97)

Body 357 (28.61) 82 (29.82) 275 (28.26)

Cardia 132 (10.58) 37 (13.45) 95 (9.76)

Size 0.003

<4 cm 624 (50) 116 (42.18) 508 (52.21)

≥4 cm 624 (50) 159 (57.82) 465 (47.79)

T-stage <0.001

T1 227 (18.19) 23 (8.36) 204 (20.97)

T2 185 (14.82) 47 (17.09) 138 (14.18)

T3 204 (16.35) 41 (14.91) 163 (16.75)

T4 632 (50.64) 164 (59.64) 468 (48.1)

N-stage 0.094

N0 484 (38.78) 101 (36.73) 383 (39.36)

N1 210 (16.83) 53 (19.27) 157 (16.14)

N2 218 (17.47) 58 (21.09) 160 (16.44)

N3 336 (26.92) 63 (22.91) 273 (28.06)

M-stage 0.026

M0 1185 (94.95) 254 (92.36) 931 (95.68)

M1 63 (5.05) 21 (7.64) 42 (4.32)

TNM-stage 0.006

I 310 (24.84) 51 (18.55) 259 (26.62)

II 299 (23.96) 76 (27.64) 223 (22.92)

III 576 (46.15) 127 (46.18) 449 (46.15)

IV 63 (5.05) 21 (7.64) 42 (4.32)

Differentiation <0.001

Moderate 142 (11.38) 27 (9.82) 115 (11.82)

Poor 699 (56.01) 189 (68.73) 510 (52.42)

Well 407 (32.61) 59 (21.45) 348 (35.77)

WHO 0.659

Tubular 642 (51.44) 141 (51.27) 501 (51.49)

Papillary 49 (3.93) 9 (3.27) 40 (4.11)

Poorly 
cohesive

498 (39.9) 115 (41.82) 383 (39.36)

Mucinous 59 (4.73) 10 (3.64) 49 (5.04)

ARID1A

Variables Total Negative Positive p-Value

Lauren <0.001

Diffuse 666 (53.37) 170 (61.82) 496 (50.98)

Intestinal 418 (33.49) 66 (24) 352 (36.18)

Mixed 164 (13.14) 39 (14.18) 125 (12.85)

VI 0.004

No 650 (52.08) 122 (44.36) 528 (54.27)

Yes 598 (47.92) 153 (55.64) 445 (45.73)

PNI 0.861

No 907 (72.68) 201 (73.09) 706 (72.56)

Yes 341 (27.32) 74 (26.91) 267 (27.44)

Her-2 0.018

Negative 1169 (93.67) 266 (96.73) 903 (92.81)

Positive 79 (6.33) 9 (3.27) 70 (7.19)

Ki-67 0.214

High 1021 (81.81) 232 (84.36) 789 (81.09)

Low 227 (18.19) 43 (15.64) 184 (18.91)

PD-L1 <0.001

Negative 1161 (93.03) 227 (82.55) 934 (95.99)

Positive 87 (6.97) 48 (17.45) 39 (4.01)

EBER <0.001

Negative 1177 (94.31) 248 (90.18) 929 (95.48)

Positive 71 (5.69) 27 (9.82) 44 (4.52)

MMR <0.001

dMMR 184 (14.74) 95 (34.55) 89 (9.15)

pMMR 1064 (85.26) 180 (65.45) 884 (90.85)

p53 <0.001

Mutation 527 (42.23) 71 (25.82) 456 (46.87)

Wild 721 (57.77) 204 (74.18) 517 (53.13)

E-cadherin <0.001

Negative 418 (33.49) 128 (46.55) 290 (29.8)

Positive 830 (66.51) 147 (53.45) 683 (70.2)

Variables with p < 0.05 were shown in bold value.
Abbreviations: dMMR, mismatch repair deficient; EBER, EBV-encoded 
RNA; Her-2, human epidermal growth factor receptor 2; MMR, mismatch 
repair; PD-L1, programmed cell death ligand-1; pMMR, mismatch repair 
proficient; PNI, perineural invasion; VI, vascular invasion.

T A B L E  1   (Continued)
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preliminary screen variables associated with prognosis. 
Variables with p < 0.05 were then screened out for the 
subsequent multivariate Cox regression analysis and 
LASSO regression analysis, respectively. Then, a ran-
dom survival forest model was used to sort the varia-
bles according to the variable importance (VIPM), with 
higher values indicating stronger predictive ability.11 
The PSM method (method = “nearest”, caliper = 0.02) 
was used to screen ARID1A positive patients in a 1:1 
ratio based on baseline characteristics of ARID1A 
negative patients for subsequent mIF. The independ-
ent Student's t-test (data meet normal distribution and 
variance homogeneity) or Wilcoxon rank-sum test was 
used to perform statistical analysis for continuous data 
in two groups. Spearman's rank test was used to ana-
lyze the correlation between immune markers (CD4, 
CD8, and PD-L1). Two-sided tests were adopted, and 

the differences were considered statistically significant 
when p < 0.05.

The R packages used in this study were listed as fol-
lows: ggplot2 (3.3.6), rcompanion (2.4.18), epiDisplay 
(3.5.0.1), MASS (7.3–54), forestmodel (0.6.2), glmnet (4.1–
3), randomForest (4.7–1.1), survival (3.2–13), survminer 
(0.4.9), randomForestSRC (3.1.1), pheatmap (1.0.12), and 
MatchIt (4.3.1).

3   |   RESULTS

3.1  |  Clinicopathological information of 
the patients

A total of 1248 patients were enrolled in this study with 
a median age of 64 years (range: 28.0–88.0), nearly 3/4 

F I G U R E  2   Representative immunohistochemistry images of important markers. (A) Diffuse strong expression of ARID1A; (B) reduced 
expression of ARID1A; (C) heterogeneous expression of ARID1A; (D) complete loss expression of ARID1A; (E) positive expression of MLH1; 
(F) negative expression of MLH1; (G) positive expression of E-cadherin; (H) negative expression of E-cadherin; (I) wild-type expression of 
p53 (nuclear staining of variable intensity); (J) mutant-type expression of p53 (diffuse and uniform strong nuclear staining); (K) mutant-type 
expression of p53 (complete absence of nuclear staining); (L) positive expression of EBV. EBER, EBV-encoded RNA; EBER-ISH, EBV-
encoded RNA in situ hybridization.
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(929, 74.44%) were male, and most of the lesions were 
located in the antrum (759, 60.82%). The distribution of 
AJCC TNM stage I, II, III, and IV in the cohort was 310 
(24.84%), 299 (23.96%), 576 (46.15%), and 63 (5.05%), 
respectively. The main IHC findings were as follows: 
ARID1A negative in 275 patients (22.04%), EBER 
positive in 71 patients (5.69%), dMMR in 184 patients 
(14.74%), E-cadherin absent in 418 patients (33.49%), 
Her-2 positive in 79 patients (6.33%), and PD-L1 posi-
tive in 87 patients (6.97%). The detailed clinicopatho-
logical information is shown in the “Total” column of 
Table  1. Typical IHC and EBER images are shown in 
Figure 2.

The distribution of EBV, MSI, GS, and CIN subtypes 
in the entire cohort was 71 (5.69%), 181 (14.5%), 331 
(26.52%), and 665 (53.29%), respectively (Figure  3A,B). 
Among the TCGA subtypes, the MSI subtype showed 
the highest proportion of ARID1A negative (51.38%), 
followed by the EBV subtype (38.03%); however, there 
was no statistical difference between these two sub-
types (Figure  3C). The specific statistical results of 
pairwise comparison among subtypes are shown in  
Table S2.

3.2  |  Correlation between ARID1A 
expression and clinicopathologic variables

Univariate correlation analysis between ARID1A expres-
sion and clinicopathological variables identified 13 vari-
ables with p < 0.05 as follows: Size, T stage, M stage, TNM 
stage, differentiation status, Lauren classification, VI, Her-
2, PD-L1, EBER, MMR, p53, and E-cadherin (Table 1).

We performed multivariate logistic regression analysis 
(Figure 4A) and LASSO regression analysis (Figure 4B,C) 
for the above 13 variables, and screened out seven indepen-
dent correlated variables, which were ranked using ran-
dom forest according to the importance as follows: MMR, 
PD-L1, T-stage, differentiation status, p53, E-cadherin, 
and EBER (Figure 4D). Details of variables filtered out by 
LASSO regression and the ranking of the variables by ran-
dom forest are presented in Table S3.

3.3  |  Survival and prognostic analysis

Univariate log-rank survival analysis revealed that the 
ARID1A negative group showed a worse survival than the 

F I G U R E  3   (A) Flowchart of TCGA molecular classification based on IHC and EBER-ISH. (B) Distribution of TCGA subtypes. (C) 
ARID1A expression in TCGA subtypes. CIN, chromosomal instability; EBV, Epstein–Barr virus; GS, genomically stable; MSI, microsatellite 
instability; ns, no significance. ***: p < 0.001.
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ARID1A positive group (p = 0.0001, Figure  5A). The GS 
subgroup exhibited a significantly worse survival than the 
other three subtypes (p < 0.0001, Figure 5B), and statistical 
results of pairwise comparisons between subgroups were 
shown in Table S4. We also performed survival analyses 
of ARID1A expression in each TCGA subtype and found 
that ARID1A negative group showed worse survival only 
in the GS subgroup (p < 0.0001, Figure  5C), whereas 
ARID1A negative was not associated with worse survival 
in the other three subtypes (Figure 5D–F).

We carried out univariate and multivariate Cox regres-
sion analyses in the entire cohort and found that ARID1A 
negative expression was an adverse factor for poor prog-
nosis in the univariate Cox regression analysis, whereas 
this association disappeared after the multivariate Cox re-
gression analysis (Table S5). We subsequently performed 
univariate Cox regression analysis in the GS subtype and 
screened out 11 variables associated with prognosis: age, 

size, VI, PNI, ARID1A, chemotherapy, WHO histological 
classification, differentiation status, T stage, N stage, and 
M stage (Table 2). Next, we performed multivariate Cox 
regression analysis and LASSO regression analysis for 
the above 11 variables and screened out six independent 
prognostic variables, which were ranked using a random 
survival forest according to the importance as follows: N 
stage, M stage, T stage, chemotherapy, size, and ARID1A 
(Figure 6D). The information of variables filtered out by 
LASSO regression and the ranking of the variables by ran-
dom survival forest were presented in Table S6.

3.4  |  Correlation of ARID1A with 
CD4+ and CD8+ T cells and PD-L1 expression

After PSM and exclusion of spots without tumor tissue or 
detached from the slides, 107 ARID1A positive patients 

F I G U R E  4   Correlation analysis of ARID1A. (A) Variables screened by multivariate logistic regression analysis. (B) and (C) Variables 
filtered out by the minimalist model of LASSO regression. (D) Variables ranked by importance using random forest. dMMR, mismatch 
repair deficient; EBER, EBV-encoded RNA; MMR: mismatch repair; PD-L1, programmed cell death ligand-1; pMMR, mismatch repair 
proficient.
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and 128 ARID1A negative patients were included in the 
mIF study. The distribution plot of propensity scores was 
shown in Figure S1, and comparisons of baseline charac-
teristics after PSM were shown in Table S7.

The heatmap showed that the expression of CD4, 
CD8, and PD-L1 clustered into a high expression cate-
gory (red predominant) and a low expression category 
(blue predominant); this means the ARID1A negative 
group had higher expression of CD4, CD8, and PD-L1 
than ARID1A positive group (Figure  7A,C). The bar-
plots showed that the proportion of EBV and MSI sub-
types was significantly higher in the ARID1A negative 
group than in the ARID1A positive group (Figure 7B,C). 
Detailed statistics results were shown in Table  S8. We 
analyzed the correlation between ARID1A and immune 
infiltration after stratification according to TCGA clas-
sification. The boxplots showed that the ARID1A neg-
ative group had higher expression of CD4, CD8, and 
PD-L1 than the ARID1A positive group in the entire co-
hort (Figure 8A,F). PD-L1 expression was higher in the 
ARID1A negative group than in the ARID1A positive 

group in all TCGA subgroups. CD4 did not show differ-
ences in the EBV subtype of the IM (Figure 8J), while 
showed higher expression of the ARID1A negative 
group in the remaining subtypes. CD8 showed higher 
expression of the ARID1A negative group in the MSI 
subtype of the IM (Figure 8I), while did not show differ-
ence in the remaining subtypes.

We analyzed the correlation between PD-L1 expres-
sion in IHC and immune infiltration. The results showed 
that the PD-L1 expression in IHC was consistent with that 
in mIF (Figure  9A,D). When ARID1A was negative, the 
expression of CD4/CD8 in the PD-L1 positive group was 
significantly higher than that in PD-L1 negative group 
(Figure 9B,E), and when ARID1A was positive, this correla-
tion disappeared (Figure  9C,F). Further, we analyzed the 
linear relationship among PD-L1, CD4, and CD8 accord-
ing to the data from mIF. We found a positive correlation 
between these three markers in ARID1A negative gastric 
carcinomas (Figure 10B,E), while PD-L1 was not associated 
with CD4/ CD8 in ARID1A positive cases (Figure 10C,F). 
Typical images of mIF were shown in Figure 11.

F I G U R E  5   Survival analysis plots. (A) Survival analysis by ARID1A expression in the entire cohort. (B) Survival analysis by TCGA 
subtypes in the entire cohort. (C)–(F) Survival analysis by ARID1A expression in TCGA subtypes. CIN, chromosomal instability; EBV, 
Epstein–Barr virus; GS, genomically stable; MSI, microsatellite instability. ***: p < 0.001.
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T A B L E  2   Univariate and multivariate Cox regression analysis for overall survival in GS subtype.

Variables

Univariate Cox

p-Value

Multivariate Cox

p-ValueHR (95% CI) HR (95% CI)

Sex (ref = female)

Male 1.12 (0.75–1.66) 0.579

Age (ref = “<60”)

≥60 1.67 (1.11–2.50) 0.013 1.48(0.96–2.28) 0.076

Size (ref = “<4 cm”)

≥4 cm 2.52 (1.78–3.56) <0.001 1.64(1.12–2.39) 0.01

Site (ref = antrum)

Body 1.15 (0.79–1.67) 0.460

Cardia 1.45 (0.86–2.45) 0.163

Differentiation (ref = well)

Moderate 1.17 (0.60–2.27) 0.640 0.91(0.45–1.86) 0.797

Poor 1.57 (1.02–2.40) 0.039 1.25(0.69–2.28) 0.457

WHO (ref = tubular)

Papillary 3.53 (1.71–7.26) 0.001 4.17(1.88–9.24) <0.001

Poorly cohesive 1.65 (1.14–2.38) 0.008 1.61(0.97–2.69) 0.068

Mucinous 0.87 (0.42–1.78) 0.703 0.49(0.21–1.12) 0.09

Lauren (ref = intestinal)

Mixed 0.88 (0.47–1.67) 0.706

Diffuse 1.41 (0.93–2.13) 0.105

T_stage (ref = T1)

T2 2.62 (0.69–9.86) 0.156 1.48(0.37–5.84) 0.577

T3 10.90 (3.21–36.93) <0.001 3.22(0.85–12.18) 0.084

T4 12.01 (3.81–37.82) <0.001 3.92(1.12–13.75) 0.033

N_stage (ref = N0)

N1 2.12 (1.05–4.26) 0.035 1.8(0.88–3.71) 0.109

N2 4.73 (2.52–8.87) <0.001 2.5(1.25–5) 0.009

N3 6.84 (3.85–12.14) <0.001 3.15(1.67–5.96) <0.001

M_stage (ref = M0)

M1 5.46 (3.3–9.02) <0.001 3.65(2.13–6.24) <0.001

VI (ref = no)

Yes 1.91 (1.35–2.71) <0.001 1.13(0.76–1.66) 0.555

PNI (ref = no)

Yes 1.94 (1.39–2.71) <0.001 0.99(0.69–1.42) 0.9385

Her-2 (ref = negative)

Positive 0.86 (0.42–1.75) 0.672

Ki-67 (ref = low)

High 0.97 (0.63–1.49) 0.895

PD-L1 (ref = negative)

Positive 1.49 (0.73–3.03) 0.277

ARID1A (ref = positive)

Negative 2.33 (1.66–3.26) <0.001 1.44(1.01–2.08) 0.04

Chemo (ref = no)

Yes 0.65 (0.46–0.90) 0.010 0.56(0.39–0.81) 0.002

Variables with p < 0.05 were shown in bold value.
Abbreviations: Chemo, chemotherapy; Her-2, human epidermal growth factor receptor 2; PD-L1, programmed cell death ligand-1; PNI, perineural invasion; 
ref, reference; VI, vascular invasion.
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4   |   DISCUSSION

ARID1A mutation has been observed in various tumors, 
particularly gynecological tumors, such as 57% of ovarian 
clear cell carcinomas12 and 25% of endometrial carcino-
mas.13 In gastric cancer, ARID1A has also been identi-
fied as a novel driver gene14 with a mutation frequency of 
14%–24%.2,7 The most common types of mutations were 
nonsense and frameshift mutations, leading to functional 
abnormalities of the ARID1A protein. Thus, negative ex-
pression of the ARID1A protein may reflect the mutation 
status of the ARID1A gene.14,15 Many studies have con-
firmed that ARID1A expression is associated with mul-
tiple clinicopathological features of gastric cancer.16,17 In 
this study, we screened out seven clinicopathological vari-
ables, among which MMR, EBER, and E-cadherin were 
used for TCGA classification.

In this study, we found that the proportion of ARID1A 
negative expression varied significantly among different 
TCGA molecular subtypes, with higher ARID1A nega-
tive proportion in the MSI subtype and EBV subtype, il-
lustrating the close correlation of ARID1A with MSI and 
EBV, which is consistent with previous TCGA findings.2 
The coding region of the ARID1A gene contains many 
microsatellites.14 A study concerning exome sequencing 
of MSI colorectal cancers showed that the ARID1A gene 
exhibited more frequent short tandem repeats (STR) mu-
tations, inferring MMR deficiency as the underlying cause 
of ARID1A mutations.18 However, a study of endometrial 
cancer found that ARID1A plays a role in epigenetic si-
lencing (methylation) of the MLH1 gene, speculating that 
ARID1A mutations preceded MSI.19 Another proteomic 
study showed that ARID1A recruited MSH2 to chroma-
tin during DNA replication and promoted MMR, whereas 

F I G U R E  6   Prognostic analysis in the GS subtype. (A) Independent prognostic variables screened by univariate and multivariate Cox 
regression analysis. (B) and (C) Variables filtered out by the minimalist model of LASSO regression. (D) Variables ranked by importance 
using random survival forest. Chemo, chemotherapy.
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ARID1A inactivation led to MMR deficiency.20 Although 
the causal relationship between ARID1A and MSI is con-
troversial, an increasing number of studies have shown 
that ARID1A was a causative gene for MSI rather than 
the target gene. A study confirmed that loss of ARID1A in 
EBV-positive gastric cancer was partly regulated by EBV-
encoded miRNAs21; meanwhile, ARID1A loss increased 
the susceptibility of gastric epithelial cells to EBV infection 
and promoted gastric tumorigenesis.22 Several other vari-
ables related to ARID1A observed in this study were also 
confirmed in previous studies. For example, E-cadherin 
expression was downregulated or absent when ARID1A 
was silenced,23 and the loss of E-cadherin led to epithelial-
mesenchymal transition (EMT), further increasing tumor 
aggressiveness.24 ARID1A was inversely correlated with 
TP53, and simultaneous mutations in ARID1A and TP53 
were rarely observed in the same tumor.14,19,25 In addi-
tion, the loss of ARID1A caused worse differentiation and 
deeper tumor invasion in gastric cancer.16,17

Loss of ARID1A resulted in higher T stage, worse 
differentiation, and E-cadherin deficiency in this study, 
which are well-known factors contributing to poor prog-
nosis in gastric cancer. Interestingly, loss of ARID1A is 

closely associated with MSI and EBV, which can lead to 
immune infiltration, activate the immune system to kill 
tumor cells, and appear to be a favorable prognostic factor 
in gastric cancer. Although some studies of gastric cancer 
suggested that alterations in ARID1A caused better sur-
vival,14 more studies supported that loss of ARID1A was 
an adverse prognostic factor.16 Our present study showed 
that in the GS subtype, ARID1A negative expression re-
sulted in worse OS and was an independent prognostic 
factor, whereas, in the other subtypes, ARID1A loss did 
not correlate with OS. This illustrated the complexity of 
the relationship between ARID1A and prognosis, which 
might be related to molecular background, treatment con-
text, or potential confounders. In a study of liver cancer,26 
ARID1A was also found to have context-dependent tumor 
suppressor and oncogenic roles. Histologically, the GS 
subtype mainly shows the diffuse type in Lauren's classifi-
cation, with E-cadherin frequently absent and more prone 
to EMT, ultimately leading to a worse prognosis.4,27 Our 
study also found poor survival in the GS subtype, and the 
ARID1A negative group in the GS subtype showed the 
worst survival, which may account for the poor survival 
of the entire cohort by ARID1A negative. The ARID1A 

F I G U R E  7   Heatmaps of CD4, CD8, and PDL1 expression and bar plots of TCGA subtypes distribution. (A) Heatmap of CD4, CD8, 
and PD-L1 expression in tumor center. (B) Distribution of TCGA subtypes in ARID1A negative and positive groups in tumor center. (C) 
Heatmap of CD4, CD8, and PD-L1 expression in invasive margin. (D) Distribution of TCGA subtypes in ARID1A negative and positive 
groups in invasive margin. CIN, chromosomal instability; EBV, Epstein–Barr virus; GS, genomically stable; IM, invasive margin; MSI, 
microsatellite instability; TC, tumor center; TCGA, The Cancer Genome Atlas. ***: p < 0.001.
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F I G U R E  8   Impact of ARID1A status on the expression of CD4, CD8, and PD-L1. (A) The entire mIF cohort in tumor center; (B)–
(E) TCGA subtypes in tumor center; (F) the entire mIF cohort in invasive margin; (G)–(J) TCGA subtypes in invasive margin. CIN, 
chromosomal instability; EBV, Epstein–Barr virus; GS, genomically stable; IM, invasive margin; MSI, microsatellite instability; ns, no 
significance; TC, tumor center. *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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negative group within the GS subtype represents a partic-
ular subtype with the worst prognosis and requires more 
in-depth molecular-level studies.

Some studies on gastric adenocarcinoma found SWI/
SNF complex abnormalities to be an independent prog-
nostic factor for OS in the GS subtype.28,29 Interestingly, 
ARID1A negative expression exhibited worse survival in 
the EBV subtype,29 which was inconsistent with our pres-
ent study, possibly due to different ARID1A classification 
methods or bias caused by too few patients in the subgroup. 
Large-scale studies are needed to explore the complete mo-
lecular profile of gastric adenocarcinoma, confirm the prog-
nostic significance of TCGA classification and ARID1A 
negative expression, and ultimately achieve risk stratifica-
tion and more individualized patient management.

It has been well documented that the loss of ARID1A 
caused an increase in tumor-infiltrating lymphocytes 
(TILs) and increased expression of PD-L1.30 Our present 
study also reached the same conclusion. However, our 
study showed the proportions of the MSI subtype and EBV 
subtype were significantly higher in the ARID1A negative 
group than in the ARID1A positive group, and it has been 

confirmed that the MSI subtype and EBV subtype can lead 
to high PD-L1 expression and high TILs.31 Therefore, to 
eliminate confounding factors, we performed subgroup 
analyses in TCGA subtypes and found that the expres-
sion of CD4 and PD-L1 remained strongly associated with 
ARID1A expression in each subtype. In contrast, the ex-
pression of CD8 appeared to be independent of ARID1A 
status in each subtype. One study on ovarian cancer found 
that the relationship between ARID1A loss and CD8+ 
TILs was confounded by MMR status.32 In another study 
on ovarian cancer, ARID1A was found to directly inhibit 
the expression of CD274 (the gene encoding PD-L1).33 
More mechanistic studies related to immune regulation 
in gastric cancer are warranted. Our present study ob-
served an inconsistent effect of ARID1A expression on the 
infiltration of CD4+ and CD8+ T cells in TCGA subtypes, 
implicating ARID1A involved in the immune infiltration 
through different mechanisms. Whether or to what ex-
tent the effects of ARID1A on TILs and PD-L1 expression 
are influenced by confounding factors such as EBV and 
MMR is unclear, and more in-depth investigations are still 
needed.

F I G U R E  9   The correlation between PD-L1 expression of IHC and immune infiltration. (A) and (D) The PD-L1 expression in IHC was 
consistent with that in mIF; The expression of CD4/CD8 in the PD-L1 positive group was significantly higher than that in PD-L1 negative 
group for all cases. (B) and (E) When ARID1A was negative, the expression of CD4/CD8 in the PD-L1 positive group was significantly higher 
than that in PD-L1 negative group. (C) and (F) When ARID1A was positive, there was no difference in the expression of CD4/CD8 between 
PD-L1 negative and PD-L1 positive groups. IM, invasive margin; mIF, multiplex immunofluorescence; ns, no significance; TC, tumor center. 
*: p < 0.05; **: p < 0.01; ***: p < 0.001.
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PD-L1 expressed on tumor cells can inhibit the function 
of CD8+ T cells, leading to immune resistance and promoting 
tumor progression.34 Consistent with a previous study,35,36 
our study also found a high PD-L1 expression in gastric 
cancer infiltrated with CD8+ T cells, suggesting that adap-
tive immune resistance is active and can be counteracted by 
inhibiting PD-1/PD-L1. Further hierarchical analysis found 
that PD-L1 was highly expressed in gastric carcinomas with 
high CD8+ T infiltration only when ARID1A was negative. 
We speculated that the loss of ARID1A increased PD-L1 
expression by activating Akt signaling,37 further leading to 
immune resistance,34 which is also one of the reasons for the 
poor prognosis of ARID1A-negative patients. Another plau-
sible explanation for the poor prognosis of ARID1A-negative 
patients is that ARID1A negativity induced the suppression 
of critical genes responsible for chemotherapy and radio-
therapy sensitivity, leading to radioresistance or chemoresis-
tance of cancer cells.36,38

Numerous studies of targeted therapies in a synthetic 
lethality manner have been conducted based on ARID1A 

mutation,39 including poly polymerase, PI3K/AKT, 
Ataxia-telangiectasia-mutated-and-Rad3-related kinase, 
enhancer of zeste homolog 2, and histone deacetylase 6, 
etc. Furthermore, due to the correlation between ARID1A 
and immune regulation, ARID1A may serve as a bio-
marker for immunotherapy.40

The limitations of this study are as follows. First, 
the TMA is an economical and highly efficient method 
for protein expression analysis, especially in large-
scale cohorts. However, there is a discrepancy between 
the results of protein expression obtained from TMA 
and the real results due to the heterogeneity of gas-
tric cancer. Second, we used IHC and EBER-ISH for 
TCGA classification instead of high-throughput mo-
lecular techniques. However, protein expression may 
be insufficient to represent the complex molecular 
changes. Finally, we screened out a subset of patients 
for mIF using random sampling and PSM instead of 
the entire cohort, which may lead to biased statistical  
results.

F I G U R E  1 0   The correlation between PD-L1 expression, CD4+, and CD8+ T cell infiltration in mIF. (A) and (D) PD-L1, CD4, and CD8 
were positively correlated in all cases; (B) and (E) PD-L1, CD4, and CD8 were positively correlated in ARID1A negative cases; (C) and (F) 
CD4 and CD8 were positively correlated, while PD-L1 was not associated with CD4 and CD8 in ARID1A positive cases. Corr, correlation 
coefficients; IM, invasive margin; ns, no significance; TC, tumor center; *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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5   |   CONCLUSIONS

In summary, we detected the IHC expression of ARID1A 
in gastric adenocarcinoma and explored the impact of 
ARID1A negative expression on prognosis and immune 
infiltration in combination with TCGA molecular classi-
fication. Negative expression of ARID1A occurred more 
frequently in the EBV and MSI subtypes and was an inde-
pendent adverse prognostic factor in the GS subtype. The 
ARID1A negative group in the GS subtype may represent 
a particular population with the worst prognosis. The high 
CD8 expression caused by ARID1A negative was mainly 
due to MSI and EBV subtypes, whereas the high expres-
sion of PD-L1 and CD4 resulted more from ARID1A it-
self. The increase of CD8+ T cells infiltration caused by 
ARID1A negativity was accompanied by the increase of 

PD-L1 expression, which might induce adaptive immune 
resistance that can be resisted by inhibiting PD-1/PD-L1.
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