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Abstract

Objective: Systemic lupus erythematosus (SLE) poses diagnostic challenges. This study aimed 

to evaluate the utility of a phenotype risk score (PheRS) and a genetic risk score (GRS) to identify 

SLE individuals in a real-world setting.

Methods: Using a de-identified electronic health record (EHR) with an associated DNA biobank, 

we identified 789 SLE cases and 2,261 controls with available MEGAEX genotyping. A PheRS for 

SLE was developed using billing codes that captured ACR SLE criteria. We developed a GRS with 

58 SLE risk SNPs.

Results: SLE cases had a significantly higher PheRS (7.7 ± 8.0 vs. 0.8 ± 2.0, p < 0.001) and 

GRS (12.6 ± 2.3 vs. 11.0 ± 2.0, p < 0.001) compared to controls. Black SLE individuals had a 

higher PheRS vs. White individuals (10.0 ± 10.1 vs. 7.1 ± 7.2, p = 0.002) but a lower GRS (9.0 ± 

1.4, 12.3 ± 1.7, p < 0.001). Models predicting SLE including PheRS had the highest AUC of 0.89. 

Adding GRS to PheRS did not result in a higher AUC. On chart review, controls with the highest 

PheRS and GRS had undiagnosed SLE.

Conclusion: We developed a SLE PheRS to identify established and undiagnosed SLE 

individuals. A SLE GRS using known risk SNPs did not add value beyond the PheRS and was of 

limited utility in Black SLE individuals. More work is needed to understand the genetic risks of 

SLE in diverse populations.
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Introduction

Systemic lupus erythematosus (SLE) poses a diagnostic challenge to clinicians. Patients 

have diverse presentations (1), and SLE symptoms can mimic other diseases (2). SLE 

patients can have delays in diagnosis based on atypical or incremental disease presentation 

(3). One study demonstrated that it took on average 7 years from symptom onset for SLE 

diagnosis (4). Delays in diagnosis lead to delays in treatment that result in increased SLE 

disease damage and associated increased morbidity and mortality (5, 6).

We sought to use a SLE phenotype risk score (PheRS) and a genetic risk score (GRS) 

to identify SLE individuals in the electronic health record (EHR) and potentially find 

individuals with undiagnosed SLE. A PheRS measures the degree to which a individual’s 

symptoms, as assessed by billing codes, overlap with defined disease criteria. Using billing 

codes in the EHR, PheRS have identified individuals with unrecognized Mendelian genetic 

disorders successfully and may help identify individuals earlier with rare diseases (7–9). 

To the best of our knowledge, PheRS with EHR billing codes have not been used in 

autoimmune diseases or SLE. We sought to build a PheRS with billing codes that capture 

SLE disease criteria.

Several studies examined genetic risk scores (GRS) in SLE with varying success to assess 

an individual’s risk of developing SLE (10–17). In some but not all studies, male (18), 

pediatric-onset (10–12, 17, 19), and SLE nephritis (11, 15–17) individuals all had higher 

GRS. These studies did not fully incorporate clinical data with GRS to determine if genetic 

data contributes beyond clinical data. We evaluated if the PheRS and GRS could identify 

individuals with SLE in the EHR as well as identify individuals with undiagnosed SLE. We 

also examined the association between the GRS and PheRS to determine if genetic data adds 

value beyond clinical data.

Methods

Synthetic Derivative and BioVU

After receiving IRB approval from VUMC, we used a large de-identified mirror image of 

the EHR called the Synthetic Derivative. The Synthetic Derivative contains over 3.2 million 

subjects with longitudinal clinical data since the 1990s (20). The Synthetic Derivative 

contains all clinical data including inpatient and outpatient notes for both primary care and 

subspecialty care. Billing codes (ICD-9 and ICD-10-CM), labs, medications, radiology, and 

pathology data are also available. Outside records are not available. Clinical data from the 

Synthetic Derivative is linked to a large genetic biobank called BioVU (20). BioVU allows 

for systematic collection across all individuals with representations of race and ethnicity that 

closely align with the demographics of individuals who seek care at VUMC in middle TN. 

BioVU accrues DNA samples from subjects using remaining blood obtained from routine 

clinical testing that would otherwise be discarded. This sample collection launched in 2007. 

As of March 2023, there are over 310,000 genotyped samples. Subjects who are already 

genotyped have dense EHR data with a mean follow-up of 5.7 years with an individual 

subject on average having 596 labs, 601 medications, and 132 clinic notes.
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Genotyping

Genotyping was performed at the Vanderbilt Technologies for Advanced Genomics 

(VANTAGE) Core using the MEGAEX chip. The MEGAEX chip contains over 2 million 

SNPs and covers 65.7% of GWAS catalog SNPs. SLE risk alleles were selected based on 

replicated SLE GWAS findings. We focused on risk alleles in European ancestry cohorts 

knowing our population is predominantly White, but also because SLE GWAS in non-White 

populations are limited (21). SNPs were required to have independent associations through 

literature review and were not in linkage disequilibrium. Of the 67 candidate SNPs, we 

assembled 58 SNPs with a 95% sampling and 95% call rate (Supplemental Table 1).

Identifying SLE cases and controls

Within the Synthetic Derivative, we identified potential SLE cases using a previously 

validated algorithm that requires ≥ 4 counts of the SLE International Classification of 

Diseases, Ninth Revision, Clinical Modification (ICD-9) code of 710.0 and antinuclear 

antibody (ANA) positive titer of ≥ 1:160, while excluding dermatomyositis (DM) and 

systemic sclerosis (SSc) ICD-9 codes (710.3, and 710.1, respectively) (22). This algorithm 

has a positive predictive value of 90% and a sensitivity of 86% (22). We performed chart 

review on all potential SLE cases to ensure they were diagnosed with SLE by a Vanderbilt 

or external specialist (rheumatologist, nephrologist, or dermatologist). We have previously 

described this SLE EHR cohort (22–27). We then selected which SLE cases had available 

MEGAEX chip data (Figure 1).

Controls were identified in the Synthetic Derivative and did not have ICD-9 codes under 

the 710.* heading “Diffuse diseases of connective tissue,” the 714.* heading “Rheumatoid 

arthritis and other inflammatory polyarthropathies,” or ICD-10 codes M05.* (“Rheumatoid 

arthritis with rheumatoid factor”), M06.* (“Other rheumatoid arthritis”), M32 (“SLE”), 

M33.* (Dermatopolymyositis), M34.* (“Systemic sclerosis”), M35.* (“Other systemic 

involvement of connective tissue”), and M36.* (“Systemic disorders of connective tissue 

in diseases classified elsewhere”). Controls were frequency-matched to SLE cases in a 5:1 

ratio by age (±5 years), race, and sex to maximize power while allowing close matching. 

Control subjects were “medical home patients” who received longitudinal care at VUMC 

(28) with at least 3 outpatient visits within 5 years to ensure density of records was similar to 

that of cases. These controls have previously been described (23, 24, 28). We then selected 

controls with available MEGAEX chip data.

Development of phenotype risk score

We developed the phenotype risk score (PheRS) by identifying billing codes (both ICD-9 

and ICD-10-CM) and corresponding PheWAS codes that capture the 1997 ACR SLE 

criteria (24, 29), as most cases were diagnosed with SLE prior to 2019. A list of both 

ICD-9 and ICD-10-CM codes that are mapped to PheWAS codes is available at http://

phewascatalog.org. PheWAS and their associated billing codes that correspond to SLE 

disease criteria (24) were used in the phenotype risk score (Supplemental Table 2). The 

SLE PheRS was the sum of these codes in a given individual weighted by the log inverse 

prevalence of that code in the entire EHR. As is typical for a PheRS, billing codes with a 

direction mention of SLE (i.e. 710.0 and M32*) were excluded from the PheRS, as our goal 
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was to identify individuals not diagnosed with SLE. Scores were calculated for both SLE 

cases and controls.

Development of genetic risk score

We developed the genetic risk score (GRS) by reviewing SLE GWAS studies and focusing 

on SNPs with replication in predominantly European ancestry cohorts, as our population is 

predominantly White. We then ensured SNPs of interest had independent effects and were 

not in linkage disequilibrium (Supplemental Table 1). To calculate the GRS, we weighted 

each SNP by the inverse log of the effect size (i.e. odds ratio) reported in the literature and 

then summed all the SNPs for a total score (18, 30). Scores were calculated for both SLE 

cases and controls.

Chart Review

We conducted chart review on the 50 controls with the highest PheRS and the 50 controls 

with the highest GRS. We assessed both inpatient and outpatient notes and labs for 

1997 updated ACR and SLICC SLE criteria (29, 31). Race and ethnicity were based 

on both self-report and administrative data. Prior studies have validated that these EHR 

race assignments reflect genetic ancestry (32). Age was defined as current age at time of 

analysis. We performed chart review to assess for presence of SLE nephritis, defined by 

a renal biopsy or diagnosis by a rheumatologist or nephrologist. To estimate age at SLE 

diagnosis, we performed chart review to examine for date of SLE diagnosis documented in 

a rheumatologist’s note. If this date was not documented, we used date of first SLE billing 

code.

Statistical Analysis

We compared categorial variables using Chi-square or Fisher’s exact test and compared 

continuous variables using the Mann-Whitney U test, as there were non-normal distributions 

in the data. We performed logistic regression to estimate the association of SLE case status 

with both PheRS and GRS adjusting for age, sex, and race. We also performed Pearson 

correlation and linear regression to estimate the association of PheRS with GRS adjusting 

for age, sex, and race as well as to estimate the association of age of SLE diagnosis with 

PheRS and GRS. Two-sided p values less than 0.05 were considered significant. Analyses 

were conducted using R version 4.0.2.

Results

PheRS

Demographics for SLE cases (n = 789) and controls (n = 2,261) are shown in Table 1. There 

were no significant differences in age, sex, or ethnicity. SLE cases were significantly more 

likely to be White compared to controls (p < 0.001). Initially, controls were race matched 

to SLE cases but then only SLE cases and controls were selected who had available genetic 

data. In BioVU, 79% of subjects are White and 10% Black. SLE cases had significantly 

higher PheRS compared to controls (7.7 ± 8.0 vs. 0.8 ± 2.0, p < 0.001) (Figure 2A). Female 

and male individuals with SLE had similar PheRS (7.7 ± 8.0 vs. 7.3 ± 7.1, p = 0.61). 

Compared to White individuals with SLE, Black individuals had higher PheRS (10.0 ± 10.1 

Barnado et al. Page 4

Arthritis Rheumatol. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



vs. 7.1 ± 7.2, p = 0.002). In a logistic model, PheRS was significantly associated with SLE 

case status after adjusting for age, sex, and race (p < 0.001).

Chart review of controls with highest PheRS

We chart reviewed the 50 controls with the highest PheRS (Figure 3). The control with 

the highest PheRS was a 38-year-old, Black female individual who had a positive ANA 

and dsDNA and a renal biopsy consistent with class V SLE nephritis with the pathologist 

noting need for clinical correlation. The individual followed with nephrology who felt the 

individual did not fit enough 1997 ACR SLE criteria (29), as she didn’t have extrarenal SLE 

manifestations. She later developed end stage renal disease (ESRD). The individual fulfilled 

both SLICC (31) and 2019 EULAR/ACR SLE criteria (33).

The control with the second highest PheRS was a 55-year-old, Black female individual 

who presented in the inpatient setting with transverse myelitis and found to have a positive 

ANA and dsDNA. She also had a history of ESRD and pancytopenia, both with causes 

unidentified. The individual was managed by neurology and never saw rheumatology. 

She was treated with corticosteroids, intravenous immunoglobulin, plasma exchange, and 

cyclophosphamide but was never formally diagnosed as SLE. She fulfilled both SLICC 

(31) and 2019 EULAR/ACR SLE criteria (33). In addition to the 2 “controls” discussed 

above, there were an additional 4 individuals who had incomplete lupus or fulfilled ≤ 

3 ACR SLE (29) or SLICC ACR criteria (31). These individuals had a positive ANA, 

malar rash, and inflammatory arthritis. There were also an additional 8 individuals that 

had other autoimmune disease including discoid lupus, Crohn’s disease, and seronegative 

spondyloarthropathy.

Of the 50 controls with the highest PheRS, the lowest PheRS among the top 50 controls was 

10.39. This corresponds to an 81% percentile among SLE cases (Supplemental Figure 1). 

For these same 50 controls with the highest PheRS, there was a mean GRS of 11.07. This 

GRS corresponds to a 30% percentile among SLE cases.

Genotype risk score (GRS)

We compared SLE genotype risk scores (GRS) in SLE cases (n = 789) vs. controls (n = 

2261) (Figure 2B). Compared to controls, SLE cases had a significantly higher GRS (12.16 

± 2.25 vs. 11.02 ± 2.04, p < 0.001). Compared to female SLE cases, male SLE cases had a 

higher GRS (11.58 ± 2.21 vs. 11.30 ± 2.15, p = 0.03). White SLE cases had a significantly 

higher GRS compared to Black SLE cases (12.31 ±1.67 vs. 9.01 ± 1.36, p < 0.001). We also 

calculated an unweighted GRS by counting the cumulative number of risk alleles for each 

SNP in each individual. SLE cases had a significantly higher allele risk count compared to 

controls (32.95 ± 5.12 vs. 30.46 ± 4.85, p < 0.001).

Chart review of controls with highest GRS

Similar to the PheRS analyses, we conducted chart review on the 50 controls with the 

highest GRS to determine if SLE or other autoimmune diseases may have been undiagnosed 

or misdiagnosed (Figure 3). Of the 50 controls, 5 had incomplete SLE with features 

including positive ANA, joint pain, and serositis with 2 of these individuals having seen 
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rheumatology. Another 10 controls had other autoimmune diseases including rheumatoid 

arthritis, psoriatic arthritis, type 1 diabetes, Crohn’s disease, autoimmune hepatitis, primary 

biliary cirrhosis, and antiphospholipid antibody syndrome. While individuals with codes for 

rheumatic autoimmune diseases were removed from the controls, individuals with codes for 

all autoimmune diseases (i.e. type 1 diabetes, Crohn’s) were not removed. The three control 

individuals with rheumatic autoimmune diseases (psoriatic arthritis, rheumatoid arthritis) 

had atypical presentations and also loss of follow-up after diagnosis and thus did not have 

associated billing codes for these conditions.

Of the 50 controls with the highest GRS, the lowest GRS among the top 50 controls was 

15.02. This corresponds to a 91% percentile among SLE cases (Supplemental Figure 2). For 

these same 50 controls, there was a mean PheRS of 2.58, corresponding to a 25% percentile 

among SLE cases.

GRS and association with clinical variables

We compared the GRS in cases with SLE nephritis (n = 147) to cases without SLE nephritis 

(n = 640). Cases without SLE nephritis had a higher GRS compared to cases with nephritis 

(12.3 ± 2.2 vs. 11.5 ± 2.6, p < 0.001). This result remained the same when we restricted 

the analyses to SLE nephritis individuals with diagnoses confirmed on renal biopsies (n = 

119). Stratifying results by race demonstrated that White cases with nephritis (n = 76) had 

significantly higher GRS compared to Black cases with nephritis (n = 55) (13.3 ± 1.8 vs. 9.1 

± 1.6, p < 0.01). White cases with SLE nephritis had a higher GRS compared to White cases 

without SLE nephritis (13.3 ± 1.8 vs. 12.8 ± 1.8, p = 0.05). There was no difference in GRS 

in Black cases with vs. without nephritis (9.1 ± 1.6 vs. 9.1 ± 1.6, p = 0.92).

For age of SLE diagnosis, Black cases were diagnosed at a significantly younger age than 

White cases (33 ± 16 vs. 42 ± 15, p < 0.001). We observed an adjusted R2 of 0.18 with age 

of SLE diagnosis and GRS in all SLE cases (p < 0.001), an adjusted R2 of 0.001 in White 

cases (p = 0.58), and an adjusted R2 of 0 in Black cases (p = 0.77) (Figure 4). In a linear 

regression model for GRS, age of SLE diagnosis was not significant after adjusting for sex 

and race (p = 0.99).

PheRS and association with clinical variables

We performed similar analyses for age of diagnosis and PheRS. We observed an adjusted R2 

of 0.03 in all SLE cases (p < 0.001), an adjusted R2 of 0.01 in White cases (p = 0.02), and an 

adjusted R2 of 0.06 in Black cases (p = 0.004) (Figure 4). Age at SLE diagnosis (p < 0.001), 

race (p < 0.001), and the interaction between race and age at SLE diagnosis (p = 0.01) were 

all significantly associated with PheRS after adjusting for sex (p = 0.30).

Models with PheRS and GRS

We then performed analyses that incorporated both the SLE GRS and PheRS. We examined 

for the association of individual SNPs with the PheRS. There was only one SNP (rs2476601, 

PTPN22) with a significant association with the PheRS (p = 0.03). In SLE cases, there 

was no correlation between the PheRS and GRS (R2 = 0.03). Using linear regression, we 

examined the association of PheRS with GRS adjusting for age, sex, and race. GRS was 
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not significantly associated with the PheRS (p = 0.52) after adjusting for age and sex. Both 

Black race (p < 0.01) and younger age (p < 0.01) were associated with higher PheRS after 

adjusting for GRS and sex.

In a logistic regression model for SLE case status, both the PheRS (OR = 1.05, 95% CI 

1.04 −1.05, p < 0.01) and GRS (OR = 1.04, 95% CI 1.03–1.04, p < 0.01) were significantly 

associated with SLE case status after adjusting for age and sex. As we observed different 

distributions of PheRS and GRS by race, we conducted stratified analyses by race. In a 

model with White subjects, both the PheRS (OR = 1.05, 95% CI 1.04–1.05, p < 0.01) and 

GRS (OR = 1.04, 95% CI 1.03 – 1.05, p < 0.01) were significantly associated with SLE case 

status after adjusting for sex and age. In a model with Black subjects, the PheRS (OR = 1.04, 

95% CI 1.04–1.05, p < 0.01) but not the GRS (p = 0.57) was associated with SLE case status 

after adjusting for sex and age.

We compared the performance of models for SLE case status in all individuals (overall) and 

in stratified analyses with White and Black individuals (Figure 5). AUCs for overall and 

stratified models with PheRS, GRS, and both PheRS and GRS are shown in Supplemental 

Table 3. Models with PheRS + GRS had the highest AUCs (overall AUC: 0.89, 95% CI 

0.87–0.90) while models with only the GRS had the lowest AUC (overall AUC: 0.65, 95% 

CI 0.63–0.67).

Discussion

We developed a PheRS that identified individuals with SLE in the EHR and even identified 

individuals with SLE clinical criteria who were not formally diagnosed with SLE. The SLE 

PheRS is important because it could be deployed within the EHR to assemble individuals 

with established diagnoses of SLE and to identify individuals who have concerning features 

for SLE that are misdiagnosed or undiagnosed. To the best of our knowledge, PheRS have 

been developed for Mendelian genetic disorders (7–9) but not for SLE or other systemic 

autoimmune diseases. We also developed a SLE GRS using available and validated GWAS 

findings that also identified individuals with SLE in the EHR. The SLE GRS did not add 

value in our models beyond clinical data from the SLE PheRS.

Our SLE PheRS, which only uses billing codes, performed well in distinguishing SLE 

cases from controls with a robust AUC of 0.87 in the overall model. The controls with the 

highest scores were undiagnosed SLE cases, while other controls with high PheRS had other 

systemic autoimmune diseases. The SLE PheRS was higher in Black vs. White SLE cases 

with a higher AUC for the PheRS model in Black vs. White SLE cases. Multiple studies 

demonstrate a more severe SLE disease course in Black SLE individuals with higher rates 

of SLE nephritis and SLE mortality (35, 36). Within our own SLE EHR cohort, we have 

demonstrated this racial health disparity (24).

Identifying individuals with autoimmune diseases, including SLE, can be challenging due 

to SLE disease heterogeneity. Individuals with SLE and other autoimmune diseases face 

significant diagnostic delays (5, 6, 37). While SLE risk models have been developed to 

identify individuals with SLE, these models have not been validated, deployed in real-time 
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in the EHR, or assessed to determine if they improve outcomes (4, 38). Our SLE PheRS only 

requires billing codes and could be easily deployed within the EHR or other administrative 

databases. The SLE PheRS could potentially be used to assemble individuals with SLE 

across a healthcare system, not just known SLE individuals followed in a rheumatology 

clinic. Based on finding 2 SLE individuals in our control sample with high SLE PheRS 

(0.0088%), applying this estimate to our entire de-identified EHR, while excluding known 

SLE individuals, could result in identifying approximately 3,200 individuals with possible 

SLE and 1,700 individuals if we restrict to age ≤ 45 years. The SLE PheRS could 

work as part of a learning health system (39–41) where billing codes used in real time 

identify individuals with a high SLE PheRS. These individuals could then be prioritized for 

rheumatology evaluation.

We assessed if genetic data would add value beyond clinical data to identify individuals with 

SLE. While genetics contributes to SLE risk, it does not explain the risk completely with 

a monozygotic twin concordance rate of 24% and a dizygotic twin concordance rate of 2% 

(42). We developed a SLE GRS as a method to summarize important SLE risk SNPs. As 

in other SLE GRS studies, we found a similar effect size when comparing GRS in SLE 

cases to controls. Similar to Hughes et al. (18), males with SLE had a higher GRS compared 

to females. We did not find a significant association of GRS with age of SLE diagnosis. 

Our findings contrast with other studies that conducted similar analyses with correlation and 

linear regression (10, 19). Our study likely did not find an association of GRS with age of 

SLE diagnosis due to the limited utility of the GRS in Black SLE cases, with Black SLE 

cases significantly younger at SLE diagnosis compared to White SLE cases. Age at SLE 

diagnosis not correlating with GRS further demonstrates that the GRS using SNPs from 

a predominantly European cohort did not capture the genetic risks for Black SLE cases. 

Age of SLE diagnosis was significantly associated with PheRS, particularly in Black cases. 

These findings align with studies demonstrating more severe disease with younger age of 

onset (10, 43–45) as well as younger age of disease onset in Black individuals with SLE (36, 

46).

In contrast to other SLE GRS studies (11, 15, 17), in our overall cohort, individuals with 

SLE nephritis did not have a higher GRS compared to individuals without nephritis. In 

stratified analyses, White individuals with SLE nephritis had higher GRS compared to SLE 

individuals without nephritis. This finding was similar to a study where an HLA-based 

GRS was associated with SLE nephritis only in European ancestry individuals (16). In our 

study, there was no significant difference in GRS in Black individuals with vs. without SLE 

nephritis. As Black SLE individuals were overrepresented in individuals with nephritis, we 

did not observe a significant association with nephritis and GRS in our overall cohort.

Most of the prior SLE GRS studies have not incorporated clinical data with genetic risk 

scores to determine if genetic data adds value beyond clinical data and have focused on 

SLE individuals of European and Asian ancestry. The SLE GRS did not add value to the 

logistic regression model for SLE case status in either the overall or stratified cohorts. 

Notably, the GRS was not significantly different in Black individuals with SLE compared 

to Black controls. The GRS is likely to be less helpful in Black individuals, as currently 

published SLE GWAS do not include SLE individuals of African ancestry (21). Some 

Barnado et al. Page 8

Arthritis Rheumatol. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



studies have shown that different race and ethnic ancestry groups share risk loci for SLE 

(47, 48), particularly in White and Asian populations. Other studies, however, have shown 

unique SLE risk loci in Asian (49) and Black individuals (50). Until a GWAS of Black SLE 

individuals is published, the clinical utility of current SLE GRS may be limited in Black 

individuals with SLE (21).

While we developed and deployed a SLE PheRS and a GRS in a relatively large sample 

of SLE individuals, our study has limitations. Our data comes from a single center in the 

Southeastern US, so our results may not be generalizable to other SLE populations. As our 

study used EHR data, we do not have access to SLE disease activity or damage measures. 

These measures are not collected routinely in clinical practice and thus are not available 

currently in the EHR. Date of SLE diagnosis is also not systematically collected in the 

EHR, but we had a date of diagnosis documented for 90% of SLE cases and only used first 

SLE billing code to estimate diagnosis in the remaining 10%. While the demographics of 

individuals in our de-identified EHR match the demographics of individuals in our genetic 

biobank, we observed slight differences in race in our SLE and control individuals with EHR 

data compared to SLE and control individuals with genetic data, due to projects that have 

generated extant genotype data available to this project. We also had a low proportion of 

Hispanic individuals. Further, while our controls were initially age, sex, and race matched 

to our SLE cases, we then selected SLE cases and controls that had available genetic 

data, which resulted in some imbalances in race between these groups. To account for this 

difference, we adjusted for race in our models and performed stratified analyses. While we 

included 3 SNPs in the MHC region which tag the genetic association between SLE and the 

HLA region, we did not, however, directly examine the effects of HLA classical alleles, as 

these data were not available.

We developed a SLE PheRS that can identify SLE individuals accurately in the EHR and 

even found individuals who were undiagnosed. We propose that the SLE PheRS could serve 

as a clinical tool to identify SLE individuals who may be lost on a diagnostic odyssey in 

the healthcare system, simply by assessing for patterns of specific billing codes. Further, we 

demonstrate that genetic data may not add value beyond the clinical data in identifying SLE 

individuals. The limited utility of genetic data was most evident in Black SLE individuals 

but may improve as Black SLE GWAS data become available and identify more relevant 

SLE risk SNPs for this population.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Flow chart of selection of SLE cases.
We used a large, de-identified electronic health record called the Synthetic Derivative to 

select our SLE cases. We used an algorithm with a positive predictive value of 90% 

requiring ≥ 4 or more SLE ICD-9 codes (710.0) and a positive ANA (≥ 1:160). We 

performed chart review to confirm SLE case status and then selected SLE cases that had 

both available genetic data (existing data on the MEGAEX chip) and clinical data (including 

billing codes).
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Figure 2. Boxplot of Systemic lupus erythematosus (SLE) phenotype risk scores (PheRS) in SLE 
cases vs. controls.
(A) We identified 789 SLE cases, all who had a SLE diagnosis confirmed by a 

rheumatologist. We identified 2,261 controls with no known autoimmune disease diagnoses. 

The horizontal line indicates the median score. (B) Boxplot of SLE genetic risk scores 
(GRS) in SLE cases vs. controls. Both SLE cases and controls were required to have 

genetic data available on MEGAEX chip. The genetic risk score consisted of 58 SLE risk 

SNPs with a 95% sampling and 95% call rate.
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Figure 3. Controls with the highest genetic risk scores (GRS) and phenotype risk scores (PheRS).
The bar graphs show the proportion of diagnoses of the controls with the 50 highest GRS 

and PheRS. Categories included systemic lupus erythematosus (SLE), incomplete SLE, 

other autoimmune disease, and no autoimmune disease or not a case.
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Figure 4. Scatterplot of age of SLE diagnosis and SLE genetic risk score (GRS) and phenotype 
risk score (PheRS).
A) Age of SLE diagnosis and GRS in all SLE cases, B) Age of SLE diagnosis and GRS in 

White SLE cases, C) Age of SLE diagnosis and GRS in Black SLE cases, D) Age of SLE 

diagnosis and PheRS in all SLE cases, E) Age of SLE diagnosis and PheRS in White SLE 

cases, and F) Age of SLE diagnosis and PheRS in Black SLE cases. Age of SLE diagnosis 

was obtained from chart review.
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Figure 5. AUC for models for SLE case status using SLE phenotype risk score (PheRS) and 
genotype risk score (GRS).
A) Models in all SLE and control individuals. B) Models in White SLE and control 

individuals only. C) Models in Black SLE and control individuals only. The blue line 

denotes an unadjusted model using only the PheRS. The red line denotes an unadjusted 

model for SLE case status using only the GRS while the purple line denotes an unadjusted 

model with both PheRS and GRS.
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Table 1.

Comparison of SLE cases and controls.

Characteristics SLE cases (n = 789) Controls (n = 2261) p value

Current mean age ± standard deviation 56.2 ± 16.9 55.0 ± 17.3 0.08

Sex

 Female (%) 89% 90% 0.56

 Male (%) 11% 10%

Race

 White (%) 78% 61% < 0.001

 Black (%) 17% 34%

 Asian (%) 2% 2%

 Other (%) 3% 3%

Ethnicity

 Hispanic (%) 2% 2% 0.65
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