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Schizophrenia polygenic risk score and type 2 diabetes onset 
in older adults with no schizophrenia diagnosis
Diana Shamsutdinovaa, Olesya Ajnakinaa,b, Angus Robertsa and Daniel Stahla

Objectives An association between type 2 diabetes 
(T2DM) and schizophrenia has long been observed, 
and recent research revealed presence of shared 
genetic factors. However, epidemiological evidence was 
inconsistent, some reported insignificant contribution of 
genetic factors to T2DM-schizophrenia comorbidity. Prior 
works studied people with schizophrenia, particularly, 
antipsychotic-naive patients, or those during the first 
psychotic experience to limit schizophrenia-related 
environmental factors. In contrast, we controlled 
such factors by utilizing a general population sample 
of individuals undiagnosed with schizophrenia. We 
hypothesized that if schizophrenia genetics impact T2DM 
development and such impact is not fully mediated by 
schizophrenia-related environment, people with high 
polygenic schizophrenia risk would exhibit elevated T2DM 
incidence.

Methods Using a population-representative sample 
of adults aged ≥50 from English Longitudinal Study of 
Ageing (n = 5968, 493 T2DM cases, average follow-up 
8.7 years), we investigated if schizophrenia polygenic 
risk score (PGS-SZ) is associated with T2DM onset. A 
proportional hazards model with interval censoring was 
adjusted for age and sex (Model 1), and age, sex, BMI, 
hypertension, cardiovascular diseases, exercise, smoking, 

depressive symptoms and T2DM polygenic risk score 
(Model 2). According to the power calculations, hazard 
rates > 1.14 per standard deviation in PGS-SZ could be 
detected.

Results We did not observe a significant association 
between PGS-SZ and T2DM incidence (hazard ratio 1.04; 
95% CI 0.93–1.15; and 1.01, 95% CI 0.94–1.09).

Conclusion Our results suggest low contribution 
of the intrinsic biological mechanisms driven by the 
polygenic risk of schizophrenia on future T2DM onset. 
Further research is needed. Psychiatr Genet 33: 191–201 
Copyright © 2023 The Author(s). Published by Wolters 
Kluwer Health, Inc.

Psychiatric Genetics 2023, 33:191–201

Keywords: comorbidity, healthy ageing, polygenic risk score, schizophrenia, 
type 2 diabetes

aDepartment of Biostatistics and Health Informatics, Institute of Psychiatry, 
Psychology and Neuroscience, King’s College London and bDepartment of 
Behavioural Science and Health, Institute of Epidemiology and Health Care, 
University College London, London, UK

Correspondence to Diana Shamsutdinova, MSc, Department of Biostatistics 
and Health Informatics, King’s College London, 16 De Crespigny Park, London 
SE5 8AF, UK
Tel: +44 207 848 0964; e-mail: diana.shamsutdinova@kcl.ac.uk

Received 1 February 2023 Accepted 9 June 2023.

 

Introduction
Schizophrenia is a highly heritable mental illness with 
a lifetime prevalence of 0.5–1% (Simeone et al., 2015; 
Public Health England, 2018). It is associated with ele-
vated rates of comorbid diseases and a four to 13 times 
higher mortality rate, leading to shorter life expectancy 
by up to 20 years (Lawrence et al., 2013). People with 
schizophrenia are particularly susceptible to metabolic 
dysfunction and type 2 diabetes (T2DM), characterized 
by a persistently elevated blood glucose concentration. 
The prevalence of T2DM in schizophrenia can be as 
high as 10–30% (Das-Munshi et al., 2017), which is two to 
three times higher than T2DM rate in the general popu-
lation (Stubbs et al., 2015). T2DM is among the main rea-
sons for the excess mortality in schizophrenia (Suvisaari 
et al., 2013), which reiterates the urgency to understand 

contributions of various risk factors to schizophrenia and 
T2DM comorbidity.

Previously, elevated rates of T2DM in adults with schiz-
ophrenia had been mainly attributed to the side effects 
of antipsychotics, however, present studies agree on a 
multifactorial nature of the relationship between schiz-
ophrenia and T2DM (Ward and Druss, 2015). Common 
T2DM risk factors, such as low physical activity, poor 
diet and low socio-economic status, are prevalent in 
people with schizophrenia and can be amplified by 
schizophrenia-related factors such as antipsychotics 
and cognitive impairments (Ward and Druss, 2015). In 
light of the growing evidence of metabolic changes in 
antipsychotic-naive patients and during the first epi-
sode of the illness (Pillinger et al., 2017; Rajkumar et al., 
2017), the presence of the shared biological mechanisms 
has been investigated (Mizuki et al., 2020). Supporting 
this hypothesis, twin and familial studies have found a 
considerable genetic component linking T2DM and 
schizophrenia (Sullivan et al., 2003; Almgren et al., 2011; 
Willemsen et al., 2015).
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The recent development of genetic methods such as 
genome-wide association studies (GWAS) has revealed a 
highly polygenic architecture of T2DM and schizophre-
nia, with many genetic variants contributing to both dis-
eases (Lin and Shuldiner, 2010; Hackinger et al., 2018). 
Building on GWAS results, polygenic scores (PGS) have 
emerged, which measure individual liability to a disorder. 
PGS are computed as a sum of common genetic variants 
weighted by log-odds of their effect sizes across the risk 
alleles identified by GWAS (Wray et al., 2014); a high PGS 
means that a large number of variants associated with the 
disorder are found in the individual genotype. PGS for 
schizophrenia (PGS-SZ) were associated with adverse 
symptoms strength (Richards et al., 2020), treatment-re-
sistance (Frank et al., 2015) and progression to schizo-
phrenia (Vassos et al., 2017), indicating the association of 
PGS-SZ with the severity of the disorder. Several stud-
ies have employed PGS to link schizophrenia polygenic 
risk to the risk of T2DM: PGS-SZ may predict insulin 
resistance (Tomasik et al., 2019), inflammatory and met-
abolic alterations (Maj et al., 2020) and poor glycaemic 
control (Cao et al., 2017). Nonetheless, negative findings 
have also been reported. For example, no correlation was 
found between glucose control and PGS-SZ in nonaffec-
tive psychosis (Habtewold et al., 2020).

Other genetic methods, such as Mendelian Randomization 
and Linkage Disequilibrium score regression (LDSR), 
were applied to investigate T2DM-SZ comorbidity. 
LDSR uses GWAS summary statistics to quantify con-
tributions of polygenic effects and can estimate genetic 
correlations. Mendelian Randomization is a technique 
that uses known genetic variants linked to a disease to 
test causal relationships between a trait and the disease. 
Using LDSR, schizophrenia was found genetically cor-
related with glucose abnormalities and hip-to-waist ratio 
(So et al., 2019), with fasting insulin levels (Li et al., 2018) 
and an eating disorder anorexia nervosa (Bulik-Sullivan 
et al., 2015). In contrast, other works reported no genetic 
overlap (Polimanti et al., 2018), or a small negative 
genetic correlation between schizophrenia and T2DM 
(Perry et al., 2022) and metabolic syndrome (Aoki et al., 
2022), while a positive correlation would be expected to 
link an increased T2DM risk and schizophrenia genet-
ics. Mendelian Randomization analyses were also incon-
sistent: So and colleagues (So et al., 2019) demonstrated 
schizophrenia’s causal role in metabolic abnormalities 
such as raised triglycerides; others found none (Li et al., 
2018; Polimanti et al., 2018; Aoki et al., 2022) in either 
direction (Polimanti et al., 2018; Aoki et al., 2022).

Noticeably, prior studies of T2DM-schizophrenia 
comorbidity have naturally been focused on people 
with schizophrenia. To control for schizophrenia-related 
environmental factors, many employed antipsychot-
ic-naive patients (Kirkpatrick et al., 2012; Greenhalgh 
et al., 2017), or people experiencing their first psychotic 

episode (Zhang et al., 2015; Pillinger et al., 2017; Steiner et 
al., 2019), other adjusted for environmental factors such 
as economic status, level of education and medication 
(Annamalai et al., 2017; Das-Munshi et al., 2017); how-
ever, schizophrenia-related factors such as low social sup-
port, lifestyle habits and psychological stress of psychotic 
experiences (Kirkpatrick et al., 2012; Ward and Druss, 
2015; Kasteridis et al., 2019; Pillinger et al., 2020) may be 
difficult to control in a sample of affected people, either 
due to the absence of relevant information or due to the 
fact that most people with schizophrenia. In turn, it may 
bias estimates of the impact of the underlying biological 
mechanisms of schizophrenia on T2DM rates. Similar 
argument can be applied to any case–control study on 
this topic, including genetic research, as it would draw 
conclusions from an underlying assumption that cases 
have higher genetic predisposition to schizophrenia than 
controls. Although this is a reasonable assumption, it can 
be difficult to separate the genetic and environmental fac-
tors causing the differences between these groups, espe-
cially in the presence of gene-environment correlations 
(Abdellaoui et al., 2022) and interactions (VanderWeele 
et al., 2014).

In light of the previously mixed findings, we aim to 
bring another evidence to the multifaceted T2DM-
schizophrenia relationship. Instead of contrasting people 
with and without schizophrenia, we employ PGS-SZ to 
measure individual genetic susceptibility to schizophre-
nia in a general population sample of older adults (aged 
≥50) with no schizophrenia diagnosis from the English 
Longitudinal Study of Ageing (ELSA) (Steptoe et al., 
2013), and fit a proportionate hazards model to meas-
ure the PGS-SZ- T2DM association with T2DM onset. 
We hypothesize that if schizophrenia genetic factors do 
impact T2DM development and are not entirely medi-
ated by the above-mentioned environmental factors, 
people with high schizophrenia polygenetic risk would 
exhibit elevated T2DM incidence rates in the follow-
ing 9 years (Fig.  1). An underlying mechanism could 
be that people with polygenic liability to schizophrenia 
inherit diabetogenic traits linked to schizophrenia, such 
as metabolic dysregulation (Aoki et al., 2022), inflamma-
tion (Tsalamandris et al., 2019; Perry et al., 2022), sleeping 
patterns (Byrne et al., 2016), or eating disorders (Bulik-
Sullivan et al., 2015; Solmi et al., 2019). An important 
advantage of our relatively simple regression analysis is 
the ability to quantify PGS-SZ’s impact on T2DM inci-
dence with limited bias, while advanced genetic methods 
such as Mendelian Randomization which were argued to 
be beneficial in identifying the presence of an association 
rather than measuring its strength (VanderWeele et al., 
2014). Indeed, the general population sample naturally 
limits environmental factors associated with schizophre-
nia including treatments’ side effects; while the sample’s 
representativeness allows for assessing associations across 
a population-wide range of genotypes.
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Methods
Sample
The sample came from the large and well phenotyped 
ELSA dataset (Steptoe et al., 2013). ELSA is an ongoing 
multidisciplinary study developed by a team of research-
ers based at University College London, the Institute 
for Fiscal Studies, and the National Centre for Social 
Research. The core ELSA cohort was recruited in 1998–
2000 and included 11391 individuals aged ≥50, represent-
ative of the older noninstitutionalized UK population 
(Steptoe et al., 2013). Additional participants were invited 
at later stages to maintain representative age distribution. 
The participants were followed biennially with question-
naires starting from wave 1 (2002/3). In addition, medi-
cal examinations, including blood tests, took place every 
four years at waves 2 (2004/5), 4 (2008/9), 6 (2012/13), 8 
(2016/17) and 10 (2020/2023). In this project, we used the 
information from wave 2 (2004/5) to wave 8 (2016/17), 
which were the first and the last completed waves that 
involved medical examinations.

Ethical approval for each ELSA wave was granted by the 
National Research Ethics Service (London Multicentre 
Research Ethics Committee); all participants gave 
informed consent. The datasets analyzed during the cur-
rent study are available in UK Data Services and can be 
accessed at https://discover.ukdataservice.ac.uk.

Inclusion criteria
The baseline of our study was the time of participants’ 
first nurse visit when blood was first collected, which was 
wave 2 (2004/5 for 82% of the sample) or wave 4 (2008/9 
for the remaining 18%), depending on an individual 
entry point. Initial diabetes status and all covariates were 
measured at that time. We included participants with the 

available genetic information, with no T2DM or schizo-
phrenia diagnosis at the baseline, and the outcome meas-
ure available for at least one wave after the baseline. As 
PGSs are built on European ancestry GWAS, participants 
of non-European descent were excluded.

Type 2 diabetes outcome
T2DM status was established by self-report and blood test 
results (Stringhini et al., 2016; Aguayo et al., 2019). Blood-
based diagnosis was based on the glycated haemoglobin 
(HBA1c) level, using a threshold of HbA1C ≥ 48 mmol/
mol (6.5%) (World Health Organization, 2011). Self-
reported diabetes was coded from the respondent’s 
answers [“Has a doctor ever told you have (diabe-
tes)”] and was previously validated (Pierce et al., 2009). 
Although the questionnaires did not distinguish the type 
of diabetes, all cases were assumed to be T2DM given 
the participants were older than 50 (Demakakos et al., 
2012; Stringhini et al., 2016).

Covariates
We included a range of known T2DM risk factors in the 
ELSA data (Nice, 2015). Age and BMI were entered as 
continuous variables; sex was categorical. BMI was calcu-
lated using the standard formula (kg/m2) from the weight 
and height measured during the medical visits. Self-
reported history of hypertension, stroke and cardiovascu-
lar diseases was binary (yes/no). Cardiovascular diseases 
included self-reported prevalent diagnoses of angina, 
heart attack, myocardial infarction, congestive heart fail-
ure, heart murmur and an abnormal heart rhythm. HDL 
cholesterol (mmol/l) and triglycerides (mmol/l) from the 
baseline blood test were continuous. The presence of 
depressive symptoms was established by the 8-item ver-
sion of the Centre for Epidemiologic Studies Depression 

Fig. 1

Risk factors involved in the association of type 2 diabetes and schizophrenia. The diagram is based on the three reviews (Lin and Shuldiner, 2010; 
Ward and Druss, 2015; Mizuki et al., 2020). The present study investigates whether the genetic predisposition to schizophrenia is associated with 
the risk of T2DM onset in the absence of schizophrenia diagnosis, utilizing a general population sample. TD2M, type 2 diabetes.

https://discover.ukdataservice.ac.uk
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Scale, found to be comparable to the full 20-item scale 
(Karim et al., 2015); a score ≥ four defined participants 
with severe depressive symptoms (Hamer et al., 2012). 
Behavioural characteristics included current smoking sta-
tus and exercise regime. Smoking status was defined as 
a current smoker (“yes”) or a nonsmoker (“no”), which 
included current nonsmokers and those who had never 
smoked before the interview. Exercise regime was cat-
egorized as “vigorous” for vigorous exercise ≥1/week; 
“moderate” for moderate exercise ≥1/week; “low/none” 
otherwise, based on the self-reported exercise frequen-
cies. Socio-economic status was represented by education 
level and accumulated wealth. Education level had three 
categories (0 – tertiary education, 1 – upper secondary 
and vocational training and 2 – less than lower second-
ary education) (Schneider, 2008) based on the education 
history. Wealth status was established from the collective 
value of the property, savings, investments and nonfinan-
cial assets such as artwork and jewellery, net of debt and 
mortgages, which was then tertiled into the low/medium/
high categories (Stringhini et al., 2016; Zaninotto and 
Steptoe, 2019). Finally, genetic ancestry and polygenic 
predisposition to schizophrenia and T2DM (see below) 
were included as covariates.

Genetic data
The genetic data were extracted from blood samples 
taken during home visits. The genome-wide genotyping 
was performed at University College London Genomics 
in 2013–2014 using the Illumina HumanOmni2.5 
BeadChips (HumanOmni2.5-4v1, HumanOmni2.5-8v1.3, 
Illumina Inc., San Diego, California, USA).

Quality control
Single-nucleotide polymorphisms were excluded if they 
were nonautosomal, the minor allele frequency was <1% 
if more than 2% of genotype data were missing, and if 
the Hardy–Weinberg Equilibrium P value<10−4. Samples 
were removed based on call rate (<0.99), suspected 
non-European ancestry, sex difference in allelic frequency 
of ≥0.2, heterozygosity and relatedness. Presence of the 
closely related individuals can violate the independ-
ence of observations assumption and may lead to biased 
results. To assess the relatedness, identical by descent 
probabilities were computed for each pair of participants 
using the method of moments implemented in PLINK 
1.9 (Chang et al., 2015). The probability of 1 represents 
duplicates or monozygotic twins, 0.5, 0.25 and 0.125 – 
first-, second- and third-degree relatives, with some var-
iability due to genotyping error, linkage disequilibrium 
and population structure. Therefore, we excluded one 
individual at random from the pairs with the identical by 
descent probability above 0.2, which is halfway between 
the third- and second-degree relatives (Laurie et al., 2010; 
Marees et al., 2018). We further calculated principal com-
ponents as measures of genetic ancestry, which then were 

used to adjust for possible remaining population stratifi-
cation in the association analyses (Price et al., 2006).

Polygenic score
Polygenic scores for schizophrenia (PGS-SZ) were com-
puted based on the 2020 GWAS by the Schizophrenia 
Working Group of the Psychiatric Genomics Consortium 
(Ripke et al., 2020), which was a combined meta-analy-
sis of 69 369 individuals with a diagnosis of schizophre-
nia and 236 642 controls; polygenic scores for T2DM 
(PGS-T2DM) were based on the GWAS of the DIAbetes 
Genetics Replication study and Meta-analysis Consortium 
(Morris et al., 2012). As previous research highlighted that 
PGSs built from directly genotyped data either had more 
predictive power (Okbay et al., 2016) or did not differ 
significantly from PGSs calculated using imputed data 
(Ware et al., 2017), we calculated PGSs based on geno-
typed data. PGSs were calculated as a weighted sum of 
the allele dosages, summing over the markers abiding by 
the P value threshold (P

T
) (i.e. 0.001, 0.01, 0.05, 0.1, 0.3 

and 1) weighted according to the strength of effect esti-
mate were summed in a continuous score using PRSice 
(Euesden et al., 2015). As a large comparative study previ-
ously showed that a PGS at P value thresholds P

T
 = 1 was 

the ultimate PGS to use in longitudinal studies (Okbay et 
al., 2016; Ware et al., 2017), we utilized PGS-SZ and PGS-
T2DM that were based on P

T
 = 1 assuming all genetic 

markers contribute to trait development (Ajnakina and 
Steptoe, 2020). To aid interpretability, PGSs were nor-
malized to a mean of 0 and an SD of 1.

Statistical methods
All statistical analyses were conducted in RStudio ver-
sion 3.6.1 (Stekhoven and Bühlmann, 2012). All tests 
were two-tailed; P values ≤ 0.05 were considered statis-
tically significant.

Missing data
Some covariates had missing data: BMI for 354 (5.9%) 
participants, smoking status for 24 (0.4%), education for 
970 (16.3%) and triglycerides and HDL cholesterol for 
398 (6.7%). As the representativeness of the initial sam-
ple can be impaired in complete cases analyses (Donders 
et al., 2006), we performed multiple imputations with 
random forest (Doove et al., 2014) implemented in the 
R package mice (van Buuren and Groothuis-Oudshoorn, 
2011), which was shown to produce less biased estimates 
in health records compared to linear methods (Shah et al., 
2014). We generated 20 versions of the data and pooled 
the results using Rubin’s rule (Rubin, 1987). To assess 
imputation quality, we compared variables distribution 
before and after the imputation, which was similar.

Regression analysis
To estimate the association of the PGS-SZ and the out-
come, we used a proportional hazards model with interval 
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censoring in R package icenReg (Anderson-Bergman, 
2017b). Interval censoring occurs when the outcome sta-
tus is observed periodically, so only an interval when the 
event happened is known. The method accommodated 
the uncertainty of the T2DM onset between the data 
collection waves. In interval censoring, regression param-
eters are estimated by maximizing log-likelihood, which 
includes terms representing the probability of the event 
falling into an interval, as opposed to a specific timepoint, 
as in the Cox model (Cox, 1972). IcenReg was shown to 
achieve a faster and more reliable convergence than other 
interval censoring methods (Anderson-Bergman, 2017a). 
Due to an increasing number of missing covariates as the 
study progressed (up to 25% at the second medical assess-
ment), the unfeasible computational time it would take to 
perform multiple imputations, as well as the absence of 
interval censoring methods handling time-variant covar-
iates, only the baseline covariate values were used in the 
analysis; however, we tested how the results would differ 
if we update covariate values at the next follow-up and 
employ Cox model with time-variable covariates (details 
in the following Sensitivity analyses section).

We fitted two regression models to measure the strength 
of the PGS-SZ – T2DM onset association using different 
levels of adjustments. Model 1 included PGS-SZ, adjust-
ments for genetic ancestry (four principal components), 
age and sex. Model 2 also accounted for BMI, prevalent 
hypertension, prevalent cardiovascular diseases, severe 
depressive symptoms, current smoking, exercise regime, 
level of education, accumulated wealth and PGS-T2DM. 
As this was an exploratory study, which does not strictly 
require adjustment for multiple comparisons (Bender 
and Lange, 2001), we did not employ correction for mul-
tiple testing.

Power calculations
The smaller the effect of a variable, the larger the sam-
ple size needed to detect it with a given probability 
(power) and a P value threshold. We computed a mini-
mum effect size that can be detected in our sample with 
0.80 power and a P value of 0.05 using the R package 
powerSurvEpi (Qiu et al., 2021). For our sample size of 
5968 with 493 events, hazard ratios (HRs) of 1.14 per 
SD change or higher are likely to be detected with 
80% power and a P value threshold of 0.05 (Hsieh and 
Lavori, 2000).

Sensitivity analyses
First, a complete case analysis was performed to control 
the impact of missing data imputation. Second, our sam-
ple included people older than 50, and participants with 
higher PGS-SZ could have already been diagnosed with 
T2DM at inception, and our analysis may have included 
“tail” incident cases. To assess survival bias, we fitted a 
logistic regression for the cross-sectional association of 
the PGS-SZ and diabetes status at the baseline, in which 

we considered T2DM cases that occurred at early ages 
and compared the results to the main findings. Third, we 
re-ran the main models restricting the outcome definition 
to diagnosed T2DM cases only, as earlier ELSA studies 
did (Demakakos et al., 2012; Bell et al., 2014).

Fourth, we tested the results’ sensitivity to the changes 
in the health and behaviour variables recorded at the sub-
sequent follow-up. As the chosen statistical method was 
not extended to time-varying covariates, we could not 
test it directly. Instead, we compared the interval cen-
soring method to the Cox model implemented in the R 
package survival (Therneau, 2022) for which we assigned 
event times to the middle of a respective interval. The 
results were similar in impact sizes and confidence inter-
vals (CIs), so we fitted a Cox model with time-varying 
covariates. We included updated levels for BMI, triglyc-
erides, HDL cholesterol, depressive symptoms, hyper-
tension, stroke, cardiovascular disease, smoking and 
exercise regime. We then compared it to the Cox model 
with covariates fixed at the baseline.

Results
Sample
Our analytical sample included 5968 participants with a 
mean age of 64.9 (SD 9.2), and 2675 (44.8%) were men 
(Table 1). The average follow-up period in the present 
study was 8.7 years (SD 3.4); during this time, we iden-
tified 493 T2DM incident cases, 379 (76.9% of all cases) 
self-reported and 114 (23.1%) undiagnosed. Participants 
who developed T2DM had lower accumulated wealth 
and education level, higher BMI, higher prevalence of 
hypertension, higher triglyceride and lower HDL cho-
lesterol, and were less likely to practice vigorous physical 
activities compared to those with no T2DM. Compared 
to other ELSA participants, our analytical sample had 
lower mean age, BMI, prevalence of hypertension and 
cardiovascular diseases and higher accumulated wealth. 
That was mainly due to the exclusion of the prevalent 
T2DM cases. Before that, the differences were more 
subdued, though higher hypertension rates and lower 
wealth persisted (Supplementary Tables 1 and 10, 
Supplemental digital content 1, http://links.lww.com/PG/
A311).

Polygenic risk score for schizophrenia and type 2 
diabetes
We found no association between PGS-SZ and T2DM 
incidence during the 9-year follow-up period (Table 2). 
Estimated HRs for 1 SD increase in PGS-SZ were 1.01 
(95% CI = 0.94–1.09) in Model 1 adjusted for age, sex 
and genetic ancestry and 1.04 (95% CI = 0.93–1.15) in 
the fully adjusted Model 2. Most of the other included 
risk factors were significant, including the less often 
included T2DM risk factors such as severe depressive 
symptoms (HR = 1.47; 95% CI, 1.08–1.77), or polygenic 
risk to T2DM (HR = 1.34; 95% CI, 1.21–1.47). Figure 2 

http://links.lww.com/PG/A311
http://links.lww.com/PG/A311
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plots cumulative T2DM incidence over the observation 
period by sex, presence of severe depressive symptoms, 
PGS-SZ and PGS-T2DM. In agreement with the regres-
sion analysis, participants grouped by the first three fac-
tors have visibly different T2DM survival curves, while 
survival curves for the individuals with high PGS-SZ and 
the rest look less dissimilar.

Sensitivity analyses
All sensitivity analyses yielded similar results, and the 
T2DM – PGS-SZ association remained statistically insig-
nificant. In particular, restricting the sample to partic-
ipants with complete records or changing the outcome 
definition to diagnosed T2DM cases had little impact on 
the estimated HRs, including the one for PGS-SZ. Cross-
sectional analysis showed that baseline T2DM was not 
associated with PGS-SZ (odds ratio 1.03; 95% CI, 0.94–
1.12 adjusted for sex, age and ancestry). Detailed results 
can be found in the Supplementary materials, Tables 5–8, 
Supplemental digital content 1, http://links.lww.com/PG/
A311.

Discussion
We aimed to investigate whether aggregated polygenic 
risk for schizophrenia is associated with the onset of 
T2DM during an average follow-up of 9 years in a 
sample of older adults without schizophrenia diagno-
sis residing in the UK. Our hypothesis was that intrin-
sic biological mechanisms underlying both diseases 
would manifest in an elevated T2DM incidence rate 
in people with high polygenic load to schizophrenia, 
which we tested using longitudinal regression analysis. 
Employing a sample without schizophrenia cases was a 
way to limit environmental factors associated with the 
hardships of living with this mental disorder (such as 
antipsychotic medication side effects, or low social sup-
port), while polygenic risk scores enabled us to quan-
tify schizophrenia genetic risk in such a sample. We 
further adjusted for socio-economic and behavioural 
variables to single out the impact of the genetic factors. 
To our knowledge, this is the first study to examine this 
relationship in a representative sample of undiagnosed 
adults.

Table 1  Baseline sample characteristics

Baseline characteristics 

Type 2 diabetes by wave 8

Test statistics 

P value 

No
N = 5475 (91.7%) 

Yes
N = 493 (8.3%) 

Mean (SD)/n (%) Mean (SD)/n (%) t(df)/x2(df)

Length of follow-up, years 8.9 (3.4) 7.4 (3.3) 9.44 (5966) <0.001
Age (years) 64.9 (9.3) 65.2 (8.6) −0.81 (5966) 0.42
Sex
  Men 2431 (44.4) 244 (49.5) 4.74 (1) 0.030
  Women 3044 (55.6) 249 (50.5)   
Relationship status
  Not married 1703 (31.1) 150 (30.4) 19.80 (1) 0.76
  Married 3772 (68.9) 343 (69.6)   
BMI (kg/m2) 27.4 (4.6) 30.8 (5.3) −15.35 (5966) <0.001
Stroke
  No 5350 (97.7) 471 (95.5) 2.00 (1) 0.16
  Yes 125 (2.3) 22 (4.5)   
History of hypertension
  No 3696 (67.5) 234 (47.5) 80.79 (1) <0.001
  Yes 1779 (32.5) 259 (52.5)   
History of cardiovascular disease
  No 4749 (86.7) 424 (86) 0.21 (1) 0.65
  Yes 726 (13.3) 69 (14)   
Blood test
  Triglycerides (mmol/l) 1.7 (1.0) 2.2 (1.2) −9.84 (5966) <0.001
  HDL cholesterol (mmol/l) 1.6 (0.4) 1.4 (0.3) 8.99 (5966) <0.001
Severe depressive symptoms present
  No 4779 (87.3) 404 (81.9) 11.29 (1) 0.001
  Yes 696 (12.7) 89 (18.1)   
Accumulated wealth
  Low 1641 (30) 200 (40.6) 30.2 (2) <0.001
  Intermediate 1818 (33.2) 163 (33.1)   
  High 2016 (36.8) 130 (26.4)   
Education level
  Less than secondary 1672 (36.5) 188 (44.5) 17.89 (2) <0.001
  Secondary 2164 (47.3) 194 (46)   
  Tertiary 740 (16.2) 40 (9.5)   
Smoking status
  Nonsmoker 4627 (84.8) 388 (79.2) 10.90 (1) 0.001
  Smoker 827 (15.2) 102 (20.8)   
Exercise regime
  Light 256 (4.7) 30 (6.1) 19.8 (2) <0.001
  Moderate 3365 (61.5) 344 (69.8)   
  Vigorous 1853 (33.9) 119 (24.1)   

http://links.lww.com/PG/A311
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Ascertainment of the outcome measure
Our T2DM outcome included self-reported T2DM 
cases diagnosed by a clinician and undiagnosed cases 
established by the blood tests. This translated into an 
observed 8.3% T2DM incidence in our sample over the 
9 years, or 9.5 cases per 1000 person-years for the total 
incidence, and 7.3 per 1000 person-years for diagnosed 
cases only, consistent with other developed countries’ 
rates (Au et al., 2014; Bell et al., 2014; Forouhi and 
Wareham, 2019), and estimates that a quarter of dia-
betes cases remain undiagnosed (Huang et al., 2021). 
Further, we assumed that all diabetes cases were of 
type 2, however, the number of misspecified cases is 
estimated to be very low. In the UK, 94 out of 100 exist-
ing diabetes cases are of type 2 (NHS Digital, 2021), 
and the risk of T2DM increases with age (Pal et al., 
2021), while more than half of type 1 are diagnosed 
before 40 years (Rogers et al., 2017), it is unlikely that 
more than 3% (15) of the observed 493 diabetes onsets 
were misspecified in our sample of adults aged 50 and 
above.

Main findings in the context of previous research
The nexus of schizophrenia diagnosis and T2DM onset 
among adults is supported by the epidemiological (Frank 
et al., 2015; Annamalai et al., 2017; Pillinger et al., 2017; 
Rajkumar et al., 2017) and genetic research (Hackinger 
et al., 2018; So et al., 2019). Shared biological and genetic 
factors underlying T2DM and schizophrenia are also 
thought to be involved in the onset of these diseases (Lin 
and Shuldiner, 2010; Mizuki et al., 2020); however, we did 
not observe a significant association between polygenic 
predisposition to schizophrenia and T2DM in our sample.

This result is consistent with several other works such 
as a recent meta-analysis of the familial risk of glucose 
dysregulation and schizophrenia (Misiak et al., 2020), 
Mendelian Randomization studies reporting no causal 
relationship of schizophrenia to T2DM, or T2DM to 
schizophrenia (Li et al., 2018; Polimanti et al., 2018; Aoki et 
al., 2022), or LDSR analysis showing a negative T2DM-
schizophrenia correlation as opposed to an expected pos-
itive (Perry et al., 2022). Aoki and colleagues (Aoki et al., 
2022) have even concluded that metabolic dysregulation 

Fig. 2

Survival curves for T2DM incidence by sex, exercise regime, wealth category, presence of severe depressive symptoms and polygenic scores for 
schizophrenia and T2DM. T2DM, type 2 diabetes with 95% confidence intervals.
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in schizophrenia was likely to be due to schizophrenia 
environmental factors such as lifestyle habits, poor living 
conditions and antipsychotic medication.

However, we would not dismiss the supportive evi-
dence and highlight the fact that even though our 
results point to a negligible impact of schizophrenia 
genetic factors on T2DM onset in the general popu-
lation, they do not imply that such association is weak 
in people with schizophrenia due to potential GxE and 
ExE factors (Chung and Miller, 2019). For example, 
GxE studies found that genetic risk to schizophre-
nia may underly an increased sensitivity to metabolic 
stress (Brunelin et al., 2008) or to psychological stress 
due to childhood adversities (Guloksuz et al., 2019), 
both of which increase T2DM chances (Hackett and 
Steptoe, 2017). A compounding effect of the environ-
mental factors (ExE) can be inferred from a positive 
correlation between the T2DM risk and the duration 
of psychotic illness (Philippe et al., 2005). Thus, given 
persistent evidence of the first psychotic episode being 
a stressful event for the metabolic system (Pillinger et 
al., 2017), schizophrenia onset may mark a qualitative 
change in the body metabolism, which is absent in a 
sample of undiagnosed adults. Larger studies involv-
ing a sufficient number of diagnosed and undiagnosed 
adults could help quantify such effects.

Secondly, it is feasible that PGS-SZ's impact on T2DM 
incidence in adults undiagnosed with schizophrenia is 
smaller than what we could have detected in the cohort 
of six thousand adults. In this case, we can estimate 
an upper bound of the association strength using the 
results of the power calculations which suggested that 
an association with a HR of 1.14 or higher would have 
been detected, which is relatively low compared to the 
impact of other risk factors (Table 2). Therefore, if our 
finding is false negative, it is likely that 1 SD in PGS-SZ 
implies a lower than 14% increase in the T2DM hazard 
rate. Assuming the PRS in a population would be in the 
[−2SD, +2SD] range, most susceptible undiagnosed peo-
ple would have less than a 30% increase in the instanta-
neous risk of T2DM compared to a median person.

Finally, while discussing the possibility of a false negative 
result, we should mention PGS limitations. PGS is a con-
venient tool that projects complex genetic architecture 
on a single axis realigned with the propensity of present 
schizophrenia (Wray et al., 2014), but such simplicity may 
come at a cost. Schizophrenia genetic variants responsi-
ble for metabolic abnormalities may have low weights in 
the constructing equation of PGS-SZ, making PGS-SZ 
ineffective in predicting T2DM risks. Interestingly, PGS-
T2DM have been linked to the onset of psychosis (Perry 
et al., 2020), which may indicate that PGS-T2DM better 
captures common genetic variants of the two diseases. 
Further, it is possible that previous studies focused on 
shared genetics, but less on the direction of their impact. 
While genes such as TCF7L2, TNF, APOE and BDNF-
related genes can heighten T2DM and schizophrenia 
risk (Alkelai et al., 2012; Mizuki et al., 2020; Perry et al., 
2022), other genes may have opposing impacts and lead 
to inconsistent and biased LDSR findings (Perry et al., 
2022). This effect may explain the negative genetic cor-
relation between BMI and schizophrenia found by many 
(Bulik-Sullivan et al., 2015; Ikeda et al., 2018; Aoki et al., 
2022). Finally, genetic associations of metabolic traits and 
schizophrenia have been found sex- and age-dependent, 
with a stronger negative correlation in older age (Hübel 
et al., 2019), and could have contributed to the negative 
findings in our sample of older adults.

Strengths and weaknesses
The strength of this analysis is the employment of a rep-
resentative sample of the English older adult population, 
which meant we investigated the association across a pop-
ulation-wide range of polygenic scores. The comprehen-
sive list of the participants’ characteristics in the ELSA 
study allowed control of the health-related, socio-eco-
nomic and behavioural variables, assessing the PGS-SZ 
and T2DM relationship on various levels. We addressed 
information bias from missing values by employing mul-
tiple imputations and complete case analyses, and bias 
due to undiagnosed T2DM outcomes by the respective 
sensitivity analyses. We catered for the uncertainty in 

Table 2  Estimated hazard ratios for the type 2 diabetes incidence 
main study models

Estimated hazard ratios 

Model 1 Model 2 

HR (95% CI) HR (95% CI)

PGS-SZ (per 1 SD) 1.010 (0.932–1.095) 1.037 (0.933–1.152)
Age (per 10 years) 1.164 (1.047–1.294)** 1.210 (1.067–1.373)**
Sex: women 0.798 (0.668–0.954)* 0.763 (0.586–0.993)*
BMI (per 5 kg/m2)  1.572 (1.381–1.789)***
History of hypertension  1.632 (1.348–1.976)***
History of cardiovascular 

diseases
 0.994 (0.721–1.372)

Severe depressive 
symptoms

 1.352 (0.996–1.834)

Triglycerides (mmol/l)  1.112 (1.04–1.189)**
HDL cholesterol (mmol/l)  0.628 (0.385–1.025)
History of stroke  1.499 (0.972–2.312)
Current smoking  1.428 (1.095–1.864)**
Exercise: light  0.937 (0.606–1.451)
Exercise: vigorous  0.789 (0.602–1.036)
Education: low  1.448 (0.997–2.102)
Education: medium  1.342 (0.940–1.918)
Wealth: medium  1.021 (0.769–1.354)
Wealth: low  1.172 (0.894–1.537)
PGS-T2DM (per 1 SD)  1.335 (1.214–1.467)***

Model 1 adjusted for age, sex, genetic ancestry and schizophrenia polygenic 
score.
Model 2 adjusted for age, sex, genetic ancestry and schizophrenia polygenic 
score, BMI, hypertension, cardiovascular diseases, stroke, present severe 
depressive symptoms, blood triglycerides and HDL (mmol/l), current smoking 
(yes/no), exercise (light/moderate/vigorous; baseline level = moderate), wealth 
(low/medium/high; baseline level is “high”), education (low/medium/high, baseline 
level is “high”), polygenic score for T2DM.
CI, confidence interval, HR, hazard ratio, PGS-SZ, polygenic risk score for schiz-
ophrenia, T2DM, type 2 diabetes.
*P value <0.05 and above 0.01; **P value <0.01 and above 0.0001; ***P value 
<0.001.
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the T2DM onset date by employing interval censoring, 
which has not been done yet in ELSA diabetes studies. 
The sample included people over 50, and as T2DM inci-
dence tends to increase with age (Nichols et al., 2015), 
that could have been beneficial for the sample’s statistical 
power. Our sensitivity analysis of the prevalent T2DM 
cases showed that people who developed T2DM before 
the baseline had similar T2DM-PGS-SZ relationships 
as those who developed T2DM during the observation 
period, suggesting limited survival bias.

There are several limitations of our study. First, we did 
not test any specific biological pathways or traits in which 
schizophrenia-related polygenic risk manifests. Second, 
it is feasible that PGSs utilized in the present study, hav-
ing encompassed hundreds to thousands of common var-
iants, accumulated noise which might have masked the 
genuine associations (Vilhjálmsson et al., 2015). Third, 
information bias could be present due to undiagnosed or 
unreported cases of schizophrenia and other self-reported 
health-related covariates. Fourth, potential participation 
bias should be acknowledged, as our sample was slightly 
biased towards individuals with higher socio-economic 
status, similar to other genetic studies (Schoeler et al., 
2023). Extrapolation to younger populations should be 
made cautiously. Finally, worth noting the limited gen-
eralizability of our results to non-European populations, 
as underlying GWASs used predominantly European 
samples.

Conclusion
Our results provide alternative evidence suggestive of the 
low contribution of the intrinsic biological mechanisms 
driven by the polygenic risk of schizophrenia on a future 
T2DM onset. By undertaking a quantitative approach 
we could estimate a 30% population-wide upper limit on 
aggregated polygenic risk to schizophrenia’s impact on 
the instantaneous T2DM risk, compared to a median risk 
in the population. Nevertheless, we do not exclude that 
schizophrenia-related environmental factors play a con-
founding or intermediating role in the clinical association 
of T2DM and schizophrenia, which we could not test in 
our setting, or that PGS-SZ did not fully represent schiz-
ophrenia-related genetic risk underlying T2DM devel-
opment leading to a negative finding. Further research 
is needed.
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