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The effects of statin therapy on brain tumors, particularly 
glioma: a review
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Alaa F. Alrousand, Amro K. Abu-Safiehe and Nuwar S. Alabdallate

Brain tumors account for less than 2% of all malignancies. 
However, they are associated with the highest morbidity 
and mortality rates among all solid tumors. The most 
common malignant primary brain tumors are glioma or 
glioblastoma (GBM), which have a median survival time 
of about 14 months, often suffer from recurrence after a 
few months following treatment, and pose a therapeutic 
challenge. Despite recent therapeutic advances, the 
prognosis for glioma patients is poor when treated with 
modern therapies, including chemotherapy, surgery, 
radiation, or a combination of these. Therefore, discovering 
a new target to treat brain tumors, particularly glioma, 
might be advantageous in raising progression-free 
survival and overall survival (OS) rates. Statins, also 
known as competitive HMG-CoA reductase inhibitors, 
are effective medications for reducing cholesterol and 
cardiovascular risk. The use of statins prior to and 
during other cancer treatments appears to enhance 
patient outcomes according to preclinical studies. After 
surgical resection followed by concurrent radiation and 
treatment, OS for patients with GBM is only about a year. 
Statins have recently emerged as potential adjuvant 

medications for treating GBM due to their ability to inhibit 
cell growth, survival, migration, metastasis, inflammation, 
angiogenesis, and increase apoptosis in-vitro and in-vivo 
studies. Whether statins enhance clinical outcomes, 
such as patient survival in GBM, is still debatable. This 
study aimed to explore the effects of statin therapy in the 
context of cancer treatment, with a particular focus on 
GBM. Anti-Cancer Drugs 34: 985–994 Copyright © 2023 
The Author(s). Published by Wolters Kluwer Health, Inc.
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Introduction
Cancer is a major global public health problem. According 
to the WHO and the American Cancer Society (ACS), 
cancer is the second leading cause of death despite tre-
mendous advances in tumor identification and therapy 
in recent years [1–4]. Cancer incidence and mortality 
are considered in the GLOBOCAN 2020 global cancer 
burden update [5]. Excluding non-melanoma skin can-
cer, it forecasts 19.3 million new cancer cases and more 
than 10 million deaths worldwide [5]. In addition, the 
ACS predicted that in 2021, there would be 24 690 new 
cases of brain cancer and other nervous system tumors 
diagnosed in the USA, with 18 000 deaths due to these 
tumors [6].

Brain cancer refers to various tumors that develop in the 
brain or other tissues [7]. Glioma or glioblastoma (GBM) 
is the most common type of brain cancer, which accounts 

for more than 80% of all malignant brain tumors [8]. Other 
brain cancers include meningioma, pituitary adenoma, 
and schwannoma [9]. The incidence and fatality rates of 
brain cancers vary depending on several factors, includ-
ing age, gender, and geographic region [10]. For instance, 
brain cancer is most common in industrialized countries, 
although fatality rates in underdeveloped countries may 
be greater due to restricted access to treatment [11]. GBM 
is the most common highly invasive brain tumor among 
adults, affecting roughly 3-5 people per 100  000 per-
sons per year [12]. Gliomas tend to affect males, elderly, 
Caucasian and those with certain rare genetic disorders 
[13]. Glioma is associated with poor prognosis and short 
survival time of about 12–15 months [8,14]. Recently, 
investigations for new management approaches focused 
on enhancing the GBM sensitivity toward apoptosis-in-
duced therapy [15].

Apoptosis, also known as programmed cell death, is a 
highly regulated process that is involved in various 
physiological and pathological processes, including 
development, tissue homeostasis, and cancer [16,17]. 
The extrinsic and the intrinsic pathways are the two 
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main apoptotic pathways, illustrated in Fig.  1. The 
intrinsic pathway is activated by intracellular signals, 
such as DNA damage, oxidative stress, or the lack of cell 
survival signals [15–17]. These signals activate proap-
optotic proteins such as Bax and Bak and induce the 
release cytochrome c from the mitochondria [17–20]. 
Cytochrome c then binds to apoptotic protease-acti-
vating factor 1 (Apaf-1), forming the apoptosome, a 
caspase-activating complex [21,22]. The apoptosome 
subsequently activates caspase-9, which activates 
downstream effector caspases leading to cell death [23]. 
Both extrinsic and intrinsic pathways activate effector 
caspases, which cleave and activate a wide range of sub-
strates, resulting in the morphological and biochemical 
alterations seen during apoptosis. The control of these 
pathways is complex and involves the interaction of 
proapoptotic and antiapoptotic proteins [16,24]. On 
the other hand, extrinsic pathway is activated by bind-
ing of extracellular signals to death receptors on the 

cell surface [16]. Activation of death receptors induces 
caspase-8 activation and eventually activation of down-
stream effector caspases such as caspase-3, -6, and -7 
[16,24,25].
All mammalian cells produce cholesterol, one of the most 
significant biological lipid components, that is, widely dis-
persed throughout the body’s tissues [26,27]. Cholesterol 
is mainly found in cellular membranes, where it pre-
serves the fluidity and integrity of cell membranes and 
composes membrane microstructures [26,27]. Several 
biological processes, including the cell immunological 
response, posttranslational modification of proteins, and 
cell signal transmission, are affected by cholesterol and 
its precursors or metabolites, which may play a role in 
promoting malignancy [28,29]. Additionally, cancer cells’ 
eternal growth accompanies by a rise in their need for 
cholesterol. Many different types of malignant tumors, 
including GBM, exhibit metabolic problems of choles-
terol. This suggests that reprogramming the metabolic 

Fig. 1

The intrinsic and extrinsic pathways of apoptosis. Death receptors (DRs), play a key role in the extrinsic route, which is activated by outside stimuli or 
ligand molecules. The intrinsic pathway is mediated by Bax/Bak insertion into mitochondrial membrane, followed by release of cytochrome c, which 
combines with Apaf-1 and procaspase-9 to create apoptosomes, which are then activated by caspase-3 to cause apoptosis. Bcl-2, B-cell lymphoma 
protein 2; Bcl-xL, Bcl-2 homolog splice variants; cFLIP, cellular FLICE inhibitory proteins; Cyt C, cytochrome; IAPs, proteins that suppress apoptosis; 
SMAC, second mitochondrial activator of caspases; tBid, truncated bid; TRAIL, TNF-related apoptosis-inducing ligand.
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profile of cholesterol is a novel characteristic of cancer 
[30,31].

Statins, known as lipid-lowering agents, inhibit 
3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductases, 
the rate-limiting enzyme of the mevalonate pathway and 
cholesterol synthesis [32–34]. In addition, several clinical 
studies have demonstrated their efficiency in the primary 
and secondary prevention of myocardial infarction and cer-
ebrovascular events [35,36]. However, statins’ use is associ-
ated, rarely, with muscular deterioration and malfunction, 
hepatic dysfunction, a higher chance of developing type 
2 diabetes, and renal insufficiency. Additionally, the afore-
mentioned side effects are not dose-dependent [37,38]. 

Thus, targeting cholesterol synthesis, by statin therapy, 
can prevent glioma tumors’ growth and can be a therapeu-
tic approach in glioma or other types of brain cancers. The 
roles of statin therapy in glioma are illustrated in Fig. 2 and 
it will be explored in the later sections.

Brain de-novo synthesis of cholesterol and statins 
penetration of the blood-brain barrier
The blood-brain barrier (BBB) makes it difficult for the 
brain to absorb cholesterol from the periphery and hence 
the brain has a separate microenvironment for choles-
terol metabolism [39,40]. De-novo synthesis of choles-
terol, primarily by astrocytes and oligodendrocytes, is the 

Fig. 2

General molecular signaling pathways of statins in glioma.
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primary source of cholesterol in the brain [41]. Myelin 
sheath surrounding the brain, which is mainly composed 
of cholesterol, is less permeable to ions and facilitates 
quick and precise electrical signal transmission during 
brain processes [42]. Simvastatin and lovastatin are the 
most lipophilic statins, and hence they penetrate the 

BBB most easily with high in-vivo BBB permeability 
coefficients [43]. There are two primary routes through 
which cells get cholesterol, either from endogenous syn-
thesis and/or exogenous uptake, illustrated in Fig.  3. 
Cholesterol can get in the cells through low-density 
lipoprotein receptor (LDLR)-mediated endocytosis that 

Fig. 3

Cholesterol balance in healthy cells. Both de-novo synthesis from acetyl-CoA produced by glycolysis and exogenous absorption by low-density 
lipoprotein receptors (LDLR) are major sources of cholesterol for cells. Through [3], the inhibition of proteolytic processing and nuclear import of 
sterol regulatory element binding proteins (SREBP2), which results in a reduction in activity in the mevalonate pathway, or through its conversion to 
oxysterols that activate liver X receptors (LXRs), cholesterol can negatively regulate its own levels. By upregulating ABCA1 expression and activat-
ing IDOL transcription, an E3 ubiquitin ligase that ubiquitinates LDLR, LXRs reduce cellular cholesterol levels. ER, endoplasmic membrane; SCAP, 
SREBP cleavage-activating protein.
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allows cells to take up LDL from the periphery and is 
subsequently carried to the lysosome after entering the 
cell. The cholesterol ester is hydrolyzed in the lysosome 
to liberate unprocessed cholesterol [44]. Cells then use 
Acetyl-CoA and NADP (NADPH) as the precursors for 
the de-novo synthesis of cholesterol (also known as the 
mevalonate pathway) [45].

According to research, glioma cells may convert choles-
terol into corticosteroids like progesterone, androstene-
dione, androstenediol, and androstenedione, which may 
speed up glioma progression [46]. Apo-E-carrying choles-
terol is endocytosed by neurons, which are specialized in 
producing electrical activity and rely on adjacent astro-
cytes to transport cholesterol [47]. The cholesterol ester 
is hydrolyzed, and the esterified cholesterol enters the 
lysosome. Niemen-Pick Type C protein 1 (NPC1) trans-
ports the unverified cholesterol from the lysosome to the 
cell membrane or endoplasmic reticulum [48,49]. Two 
major signaling cascades regulate cholesterol homeosta-
sis, which are liver X receptors (LXRs) that bind to sterol 
regulatory elements in transcription factors (SREBPs) 
[50,51]. SREBPs enter the nucleus and trigger the tran-
scription of genes required for cholesterol production 
[50,51]. A cholesterol derivative called oxysterol is pro-
duced in more significant quantities in response to ris-
ing cellular cholesterol levels. The expression of genes 
involved in cholesterol uptake, efflux, and conversion 
to bile acids is stimulated by the activation of LXRs by 
oxysterols, eventually causing a drop in cholesterol con-
centration in cellular tissues. The body’s homeostasis 
of cholesterol is preserved by this feedback system. In 
the end, the LXR network regulatory mechanism lowers 
the level of free cholesterol. It has been demonstrated 
that lipid droplets (LDs) are actively gathered and used 
by GBM cells for their growth and cancerous activity. 
ACAT1, also referred to as acyl-CoA: cholesterol acyl-
transferase 1 (SOAT1), is an essential enzyme for pro-
ducing LDs and cholesterol esterification. According 
to studies, SOAT1 is overexpressed in GBM cells, and 
this overexpression boosts LD formation and cholesterol 
esterification, which results in more lipid accumulation 
and tumor development.

Additionally, SOAT1 inhibition has been shown to 
decrease GBM cell proliferation and cause cell death, 
indicating that it may be a potential therapeutic target 
for treating GBM [52,53]. Blocking the production of 
LD by inhibiting cholesterol esterification through the 
targeting of SOAT1 also reduces the SREBP-1-regulated 
lipogenesis, suppressing the growth of GBM [52,53]. The 
SOAT1 inhibitor avasimibe can prevent the formation 
of cerebral gliomas in xenograft model mice and extend 
animal longevity [54]. Moreover, avasimibe limits the via-
bility of the GBM cell line, EGFRvIII U87, without dam-
aging astrocytes [54–56]. Moreover, avasimibe prevents 
the development of GBM cells by inducing cell cycle 
arrest and activating caspase-8-dependent apoptotic 

pathways [54]. Oxysterols, such as 24,25-epoxy choles-
terol and 7-OHC, are an essential target in metabolic 
treatment because they serve as a conduit for cholesterol 
metabolism between the CNS and the peripheral nerv-
ous system [57,58]. It has been shown that preventing the 
release of cholesterol from lysosomes efficiently triggers 
proliferative autophagy in GBM cells [59].

These findings suggest that, compared with normal glial 
cells, the GBM cholesterol metabolic profile is signifi-
cantly altered by LXR decoupling. Furthermore, as men-
tioned earlier, the data demonstrates that GBM mainly 
relies on outsourcing cholesterol for growth instead of 
de-novo synthesis. Therefore, it is tempting to hypothe-
size that the dependence of GBM cells on CNS-derived 
cholesterol enables them to direct their cellular NADPH, 
a key reducing agent in relatively short supply, towards 
buffering reactive oxygen species and synthesizing other 
macromolecules, as the mevalonate pathway consumes 26 
reducing equivalents of NADPH [60,61]. Furthermore, to 
fulfill the vigorous proliferation requirements of tumors, 
GBM suppresses the synthesis of oxysterols, which uncou-
ples LXR and causes an increase in cholesterol absorption, 
and decreases cholesterol efflux [61]. As a result, inhibiting 
cholesterol absorption by activating LXR has emerged as a 
possible strategy for treating GBM.

Satins effect on the growth of normal and cancerous 
brain cells in vitro
Besides the inhibitory effect of statins on cholesterol bio-
synthesis, they modify the level of critical intracellular 
molecules involved in various intracellular signaling path-
ways, allowing for a broad range of biological activities 
[62,63]. The use of statins was associated with a slightly 
lower overall cancer incidence compared with nonusers 
and those who took other lipid-lowering medications 
[64,65]. In-vitro and in-vivo studies revealed that stat-
ins might be effective in cancer prevention and/or treat-
ment via inhibiting tumor growth and inducing apoptosis 
[66,67]. Further, statins showed cytotoxic and antiprolif-
erative effects against in several human cancer cell lines 
[66,68,69]. Furthermore, statins treatment upregulated 
the expression of the proapoptotic proteins and downreg-
ulated the expression of antiapoptotic proteins in tumor 
cells [70]. Additionally, statins are thought to obstruct 
the two key isoprenoid metabolites, the geranylgeranyl 
pyrophosphate (GGPP) and farnesyl pyrophosphate syn-
thesis within the mevalonate metabolic pathway, which 
in turn prevents the proliferation of malignant cells and 
finally leads to cell death [71,72]. The three statins on 
which the majority of research studies focused when 
addressing how statins affect glioma growth are simvas-
tatin, atorvastatin, and fluvastatin.

Simvastatin and the growth of brain cells in vitro
Simvastatin inhibits GBM tumors development by 
enhancing tumor cell death and suppressing cell 
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proliferation and migration [73]. Simvastatin induced 
apoptosis of neuronal cell line by decreasing the amount 
of cholesterol in the cell membrane, damaged the stabil-
ity of lipid rafts, and then inhibited the phosphoinositide 
3-kinase (PI3K)/Akt signaling pathway, and induced 
caspase-3 dependent apoptosis in GBM [72,74,75]. 
Moreover, simvastatin and fluvastatin suppressed GGPP 
synthesis, which prevented extracellular signal-regulated 
protein kinase (ERK1/2) and Akt activation and hence 
induced apoptosis in C6 glioma cells [76]. These studies 
pave the way for simvastatin to be used with other tra-
ditional anticancer medications as a more effective adju-
vant chemotherapy agent.

Atorvastatin and the growth of brain cells in vitro
Yi and colleagues reported that atorvastatin decreased 
cell invasion and migration of human U87 primary GBM 
cell line by preventing the expression of microglial mem-
brane type 1 matrix metalloproteinase (MT1-MMP), 
which is overexpressed in many cancer types and is asso-
ciated with increased cancer invasion and metastasis [77]. 
Atorvastatin could prevent the production of microglial 
MT1-MMP by preventing the p38 mitogen-activated 
protein kinase pathway that regulates various cellular 
processes, including inflammation, apoptosis, cell dif-
ferentiation, and cell cycle arrest [78]. Additionally, the 
apoptotic effect induced by atorvastatin was investigated 
[79,80]. It has been shown that atorvastatin affects the 
expression of crucial proteins associated with apoptosis, 
migration, and invasion of tumor cells in a 3D spheroids 
model of the U87 GBM cell line [79,80]. For instance, 
atorvastatin upregulated the expression of apoptotic 
factors (as caspase-3 and caspase-8) and reduced the 
expression of antiapoptotic proteins (as Bcl-2) on glioma 
spheroids [79,80]. Moreover, atorvastatin inhibited the 
proliferation of GBM cells in a dose range of 1–10 μM, 
in a dose-dependent manner, following 48h of incubation 
[79,80]. Furthermore, atorvastatin treatment reduced 
GBM cells’ invasion and migration [79,80].

Fluvastatin and the growth of brain cells in vitro
Fluvastatin decreased the viability of rat GBM cell 
line C6 in a dose-dependent manner without nega-
tively affecting the number of normal neuron cells 
[81]. Even at high doses, fluvastatin exhibited a neuro-
trophic effect on normal neuron cells, consistent with 
a reported increase in neurite length and branching of 
rat hippocampal neurons after treatment with pravas-
tatin [82,83]. Fluvastatin-induced apoptosis in glioma 
cells is based on the morphological changes such as the 
presence of rounded and shrunken cells with irregular 
and pycnotic nuclei and reduced length of cytoplasmic 
protrusions [81–84]. The underlying mechanism of flu-
vastatin-induced cytotoxicity is not entirely understood. 
However, molecular experiments revealed a crucial role 
of fluvastatin in inducing JNK1/2 phosphorylation while 
inhibiting ERK1/2 phosphorylation [81,84–86]. This 

modulatory effect of fluvastatin on ERK and JNK acti-
vation results in disruptive MAPK pathways in C6 cells 
[81], leading to apoptosis. Furthermore, Fluvastatin, 
at concentration of 2.5 to 5 μM, significantly inhibited 
matrix metalloproteinase 9 activity, by 48–56%, in C6 
cells [81]. This might be responsible, at least in part, for 
the inhibitory effect of fluvastatin on cancer cell inva-
sion and metastasis.

The relationship between the duration of statins 
therapy and the clinical outcome of reducing the risk of 
brain cancer, including glioma
The New England Veterans Integrated Service 
Network-1 pharmacy-epidemiology database found that 
statin users had a statistically significantly lower risk for 
all cancers compared with nonusers after adjusting for age 
and multiple confounders [87]. Simvastatin, lovastatin, 
atorvastatin, pravastatin, and rosuvastatin were the exam-
ined statins. Recent observational studies reported the 
unique benefits of statins when used for at least 5 years, 
to specific types of cancer, such as breast, lung, and pan-
creatic cancers [41,88]. However, long-term use of statins 
did not change the incidence of all cancers; even long-
term users may benefit more from the protective impact 
of these medications, according to the extensive time 
interval found [89,90]. In the pooled dataset, there were 
significant inverse relationships between simvastatin and 
lovastatin and glioma incidence among individuals who 
used statins for longer than 5 years compared with non-
users [91,92]. However, the use of atorvastatin, pravasta-
tin, and rosuvastatin did not show promising outcomes 
in glioma incidence [91,92]. This could be due to high 
in-vivo BBB permeability coefficients for lovastatin and 
simvastatin unlike the hydrophilic pravastatin [64,93,94]. 
In contrast, one cohort analysis found no link between 
taking statins (i.e. lovastatin and simvastatin) for more 
than 5 years and the chance of developing brain cancer 
[95]. The results of these contradictory studies may be 
causative, where the prospect of gendering age-specific 
effects might guide trials of tailored treatment inter-
ventions. Additionally, the incidence of brain tumors is 
rising due to improvements in diagnosing or managing 
primary brain tumors [95–101]. The currently available 
approaches for glioma treatment include surgery, radi-
ation, chemotherapy, and pain management [12,102]. 
Additionally, it is a common practice to treat newly diag-
nosed patients of GBM with radiation and temozolomide 
simultaneously following maximal surgical resection. 
Ionizing radiation is the only known modifiable risk fac-
tor for glioma compared with other malignancies [102]. 
Surgical resection treats most malignant primary brain 
tumors, and progression-free survival and overall survival 
rates are associated with the degree of resection [103,104].  
Thus, radiation and  chemotherapy are used in conjunc-
tion with surgery. However, radiation and surgery are 
associated with the risk of causing cognitive deterioration, 
establishing new tumors, or growing more aggressive and 
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treatment-resistant cancer strains [105,106]. Additionally, 
chemotherapy must be administered at higher doses for 
treating brain cancer than other malignancies to cross the 
BBB [107]. Thus, previous observational studies have 
failed to identify consistent anticancer benefits of statins 
use for longer duration of action in glioma [64].

Only a few clinical studies have looked at the risk of gli-
oma among statin users [108–110]. Atorvastatin, a syn-
thetic lipophilic statin approved in 1996, was chosen in 
a clinical trial for its high CNS bioavailability, low toxic-
ity, and adequate capacity to decrease LDL cholesterol 
[108]. Atorvastatin was safely added to standard chemo-
radiation; although it was tolerated did not improve pro-
gression-free survival or overall survival [108]. Another 
study found a slight but statistically significant associa-
tion between long-term statin use and increased survival, 
independent of oncological therapy [109]. However, a 
third study showed that statin’s effect is still debatable, 
and further investigation is probably unnecessary [110].

Statins and brain metastases, particularly metastatic 
breast cancer
The most frequent intracranial tumors in adults are brain 
metastases (BM), and many studies have investigated the 
possible impact of statins in preventing and treating BM 
from breast cancer [42,111,112]. Most molecular research 
studies on the risk of metastatic spread have been con-
ducted on breast cancer with early staging and showed 
that markers such as p16 kinase inhibitor, which is a 
tumor suppressor protein, is linked to the development 
of BM with metastatic lymph nodes from breast cancer 
patients [113].

The findings of most studies about the possible impact of 
statins in preventing and treating BM from breast cancer 
have been inconsistent. In one study, women with breast 
cancer who were on statin therapy at the time of diagno-
sis showed a decreased risk of developing BM than those 
who were not on statins [114]. Another study found no 
significant link between statin therapy and the risk of 
BM in 30% of breast cancer participants [115]. However, 
further results of the same study demonstrated that 
clinically appropriate doses of simvastatin added to car-
boplatin and vinorelbine chemotherapy courses did not 
improve the overall survival in metastatic breast cancer 
(MBC) patients [114]. Additionally, simvastatin medica-
tion in MBC proved to be extremely well tolerated since 
there were no side effects from simvastatin or severe tox-
icity from chemotherapy [114].

Whole-brain radiation therapy (WBRT) is the cornerstone 
of BM treatment independent of the initial tumor histol-
ogy [116]. However, trials have shown more significant 
toxicity and/or no tumor control or survival advantages 
associated with WBRT. Most patients with BM have a 
dismal prognosis, with an estimated survival measured in 
months using WBRT [117]. Statins might have possible 

radiosensitizing effect through inhibiting nuclear fac-
tor-B, and activating autophagy, among other mechanisms 
[44,118]. Therefore, simvastatin was added to WBRT to 
assess its efficacy and safety in patients with BM from 
breast, lung, and other cancers [115,119]. Simvastatin 
was chosen above other statins for its greater ability to 
cross the BBB, and they have potential neuroprotective 
effects [115]. However, simvastatin did not improve the 
radiological response 4 weeks after radiation and had no 
impact on the 1-year progression-free survival and 1-year 
overall survival rates, consistent with the results of the 
radiological response analysis [115]. Additionally, it is 
debatable whether simvastatin must be used for more 
extended periods, at greater dosages, or with shorter 
intervals between doses to manifest its radiosensitizing 
effect significantly [120]. Thus, clinical studies with vari-
ous participants and dose schedules are required to eval-
uate the radiosensitizing impact of statins.

Statins and hypoxia-growth-dependent glioma
In addition to cholesterol levels and angiogenesis, the 
growth of many human malignancies is primarily influ-
enced by hypoxia [121]. Hypoxia can result in increased 
tumor invasion, decreased apoptosis, chemo- and 
radio-resistance, and resistance to antiangiogenic ther-
apy [122,123]. The effect of statin monotherapy on can-
cer treatment alone is limited. Consequently, it might be 
possible to restrict the tumor resistance from hypoxia by 
combining statin therapy with thiazolidinedione or pio-
glitazone [124–126] to allow for creating a potent chem-
otherapeutic regimen. To test this hypothesis, three 
malignant glioma cell lines from humans (U87, U138, and 
LN405) and one from rat (RG II) were examined [126]. 
Statin and pioglitazone combination therapy showed a 
considerable cytotoxic impact after 48 h, and after 144 h, 
it became significantly stronger [126]. This cytotoxicity 
proposed the upregulation of proapoptotic proteins like 
Bax and Bim in conjunction with a downregulation of 
antiapoptotic proteins such as Bcl-2. Additionally, acti-
vation of phosphorylation cascades as mitogen-activated 
protein kinase pathway, Ras, and Rho members of cell 
regulators occurred in malignant tissues [127–129]. Ras 
activation also activates other pathways necessary for 
malignant glioma growth, advancement through the cell 
cycle, and prevention of apoptosis [127–129].

Conclusion
Statins have been found to reduce the incidence of sev-
eral cancers, such as glioma. However, only a few preclin-
ical and clinical studies have looked at the risk of glioma 
among statin users for a longer period (i.e. for more than 
5 years). Increasing evidence from in-vitro studies and a 
few clinical studies suggests that statins might be effec-
tive in inhibiting glioma growth and induction of apop-
tosis. For instance, statins have been linked to a slightly 
lower overall glioma incidence in statin users for less 
than 5 years compared with nonusers. However, previous 
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research studies have failed to identify consistent anti-
cancer benefits of statins use, either in short-or long-term 
use, in glioma. Hence, more clinical studies are needed 
to withdraw definitive conclusions about statins use in 
glioma. The lack of financial incentive to conduct large-
scale randomized controlled trials may be a significant 
factor in the need for more studies with this focus.
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