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Abstract

We present a comprehensive clinically oriented workflow for large-insert genome sequencing
(liGS)-based nucleotide level resolution and interpretation of de novo (dn) apparently balanced
chromosomal abnormalities (BCA) in prenatal diagnosis (PND). Retrospective or concomitant
with conventional PND and liGS, molecular and newly developed clinically inspired bioinformatic
tools (TAD-GConTool and CNV-ConTool) are applied to analyze and assess the functional and
phenotypic outcome of dn structural variants (dnSVs). Retrospective analysis of four phenotype-
associated dnSVs identified during conventional PND precisely reveal the genomic elements
disrupted by the translocation breakpoints. Identification of autosomal dominant disease due to
the disruption of ANKS1IBand WDRZ26by t(12;17)(g23.1;921.33)dn and t(1;3)(q24.11;p25.3) dn
breakpoints, respectively, substantiated the proposed workflow. We then applied this workflow

to two ongoing prenatal cases with apparently balanced dnBCAs: 46,XX,t(16;17)(q24;g21.3)dn
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referred for increased risk on combined first trimester screening and 46,XY,t(2;19)(p13;913.1)dn
referred due to a previous trisomy 21 pregnancy. Translocation breakpoints in the t(16;17) involve
ANKRDI11and WNT3and disruption of ANKRD11 resulted in KBG syndrome confirmed in
postnatal follow-up. Breakpoints in the t(2;19) are within A7P6V1B1 and the 3" UTR of CEPS9,
and are not interpreted to cause disease. Genotype—phenotype correlation confirms the causative
role of WDRZ26in the Skraban-Deardorff and 1941942 microdeletion phenocopy syndromes, and
that disruption of ANKS1B causes ANKS1B haploinsufficiency syndrome. In sum, we show that
an liGS-based approach can be realized in PND care providing additional information concerning
clinical outcomes of dnBCAs in patients with such rearrangements.

Introduction

A causal relationship between a balanced chromosomal abnormality (BCA) and a congenital
anomaly is predicted in up to 40% of cases presenting a clinical phenotype-associated

BCA (Redin et al. 2017). Recognition of de novo (dn) BCAs leading to disorders

constitutes a formidable challenge in prenatal diagnosis (PND). Conventional low-resolution
karyotyping remains the standard approach for assigning rearrangement breakpoints of
cytogenetically visible dnBCAs in the prenatal setting. Breakpoints of some BCAs

have been localized though molecular cytogenomic approaches including FISH, but high-
resolution chromosomal microarrays (CMA) are generally insensitive to BCAs (David et

al. 2003). More recently, massively parallel sequencing-based methods have been used
facilitating nucleotide level resolution of BCAs (Chen et al. 2008; Talkowski et al. 2011).

Long-insert genome sequencing (liGS), with high physical coverage and low sequence
depth, has been applied within an actionable timeframe of a PND, for precise identification
of BCA breakpoints (Talkowski et al. 2012; Ordulu et al. 2016). BCAs must also be
evaluated in the context of copy-number variation (CNV) burden, and the relevance and
expanding knowledge of topologically associated domains (TADs) in mechanisms of disease
(Dixon et al. 2012; Lupiafiez et al. 2015).

In the present study, we apply the liGS approach for identification of structural variant (SV)
breakpoints in four retrospectively analyzed dnBCAs identified during conventional PND
and in two ongoing PNDs with dnBCAs. Two bioinformatic tools to assist prediction of

the phenotypic outcome of SVs and CNVs in the routine clinical setting were developed
including evaluation of the local genomic landscape in which these dnBCAs occurred.
Finally, we consider the predictability of the phenotypic outcome of these dnBCAs
identified during PND.

Materials and methods

Patients, karyotyping and CMA

Two fetal and four adolescent probands with dnBCAs identified by fetal karyotyping during
a conventional PND protocol and their family members were analyzed. Karyotyping and
CMA are described in Supplementary Material and Methods.
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liGS library preparation, sequencing, bioinformatic analysis and resolution

liGS library preparation, sequencing, and bioinformatic analysis of sequencing data were
carried out essentially as described by Talkowski et al. (2011) and Collins et al. (2017).
Briefly, after aligning read-pairs against the reference genome, chimeric and improper
read-pairs were selected, categorized, clustered and filtered against a so-called blacklist,

a list of genomic regions with systematic short-read mappability biases, with an overlap
cut-off = 30% (Collins et al. 2017). Based on cluster analysis, different types of balanced
and unbalanced SVs such as translocations, insertions (ins), inversions (inv), complex (cx)
SV, deletions (del) and tandem duplications (dup) can be identified by liGS. The resolution
of liGS is equivalent to the median insert size plus twice the S.D., i.e., ~ 4.5 kb. SVs
identified in 689 participants with autism spectrum disorder were used as an SV reference
dataset (SVref dataset; Collins et al. 2017). Deletions and tandem duplications identified
by depth-of-coverage and improper cluster analysis were cross validated (Klambauer et al.
2012; Collins et al. 2016) and analyzed using our CNV-ConTool.

As long as read-pair clusters do not overlap low-complexity regions, our clinically oriented
pipeline includes all translocations, ins, del and dup above 30 kb, and cx SV above 10 kb. A
more detailed description is available in Supplementary Material.

Identification of cluster-specific split-reads, CNVs and bioinformatic tools

For the identification of cluster-specific split-reads encompassing BCA or SV breakpoints, a
custom Python algorithm was developed and applied. This process uses read-pairs with one
of the reads mapped within a breakpoint cluster and the respective paired read unmapped.
Detailed description of this algorithm is available in Supplementary Material.

To assist prediction of the phenotypic outcome of SV and CNVs, two bioinformatic tools
were developed. TAD-Gene Content Tool (TAD-GConTool) using TAD data from Dixon
et al. (2012) and Moore et al. (2015), identifies breakpoint spanning and flanking TADs
and retrieves a series of protein-coding and non-coding RNA genes and genomic elements
localized within the TADs, as well as associated structural and functional information.
Additionally, this tool has the ability to construct the sequence-based nomenclature of the
SVs according to the International System for Human Cytogenomic Nomenclature (ISCN)
2016. This tool will be updated in concert with revisions to ISCN 2016, anticipated to

be ISCN 2020. CNV-Content Tool (CNV-ConTool) was developed to search for overlap
between patient-specific CNVs and those from public databases. This second tool also
retrieves data on genes affected by these CNVs. Detailed descriptions of both bioinformatic
tools are available in Supplementary Material and Methods.

Both TAD-GConTool and CNV-ConTool can be accessed online at http://dgrctools-insa.min-
saude.pt. Source codes are available at https://github.com/DGRC-PT/.

Amplification of junction fragments

Amplification conditions for junction and control fragments of BCA and proband-specific
CNVs are summarized in Supplementary Table 1.
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Lymphoblastoid cell lines (LCLs), RNA extractions and expression studies

Establishment of LCLs from peripheral blood lymphocytes, extraction of RNAs from LCLs,
peripheral blood and amniocytes, and quality assessment and quantification of RNAs were
performed essentially as described previously (David et al. 2003).

Genome-wide assessment of gene expression levels in LCL or amniocytes of the probands
and controls were performed using the Affymetrix Human Transcriptome Array 2.0 (HTA
2.0, ThermoFisher Scientific). Sample and array processing and data analysis were carried
out according to the manufacturer’s instructions and are detailed in the Supplementary
Material and Methods.

Variant interpretation and disease prediction

Results

Variants produced by liGS were interpreted according to ACMG sequence based variant
criteria (Richards et al. 2015) or CNV criteria (Riggs et al. 2019). For disease prediction
(Table 1) bespoke criteria were developed to guide clinicians in the interpretation of
sequencing results and ACMG variant classification, as follows:

Disease causing a structural variant resulting in loss-of-function (LoF) of an annotated gene
transcript causing an autosomal dominant (AD) clinically relevant or major developmental
disorder, where LoF is a known mechanism of the disease;

Disease plausible a structural variant resulting in disruption of an annotated gene transcript
intolerant to LoF variants but not yet associated with human disorders, affected gene
reported with an important biological function, or convergent genomic and biological
evidence (GWAS, gene expression, phenotypic data and other) supporting at least partial
involvement of the disrupted gene in the patient clinical phenotype.

Non-disease causing a structural variant resulting in no disruption of protein-coding

genes within the bpTADs, no human pathology reported to be associated with genomic
elements localized within the bpTADs or no statistically significant GWAS data and/or data
supporting at least partial overlap between the genetic traits associated with the affected
genomic region and the patient phenotype; and

Low potential of disease a structural variant resulting in LoF of an annotated gene transcript
solely causing autosomal recessive (AR) disorders or not associated with an AD clinically
relevant or major developmental disorder causing gene localized within the breakpoint
topological associating domains (bpTADs);

Patient medical histories

A 39 year-old female presented with an elevated risk for aneuploidy following 1st trimester
combined tests with increased nuchal translucency (4.1 mm, > 95th percentile). Chorionic
villus sampling (CVS) was performed at 14 weeks gestation for karyotyping of the fetus
(designated DGRC0016). Neither parent had any relevant family medical history.

Hum Genet. Author manuscript; available in PMC 2023 September 14.
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Ultrasound examination at 20 weeks revealed hypoplastic nasal bone and atrioventricular
septal defect (AVSD) with ventricular septal defect (VSD) confirmed by fetal
echocardiography. Besides AVSD and fetal growth restriction (5th centile), no other fetal
anomalies were observed on subsequent evaluations.

Postnatal echocardiogram confirmed the reported AVSD with small VSD but without
hemodynamic compromise. At 20 months of age, DGCR0016 presented with developmental
delay, most evident in the postural control and locomotor areas, growth restriction and the
characteristic facial gestalt to fulfill the criteria for a clinical diagnosis of KBG syndrome
(KBGS) (Supplementary Table 2) (Low et al. 2016).

The 40 year-old mother of the second prenatal proband, DGCR0019, had a history of
previous pregnhancy termination due to trisomy 21 and was referred for amniocentesis at 17
weeks of gestation due to maternal anxiety. Postnatal medical examination of the newborn
was phenotypically normal. Besides slightly hypohidrotic skin noticed at four months of
age, no other health problem was noted.

Clinical phenotypes of retrospectively analyzed probands are described in Supplementary
Results (DGRC0006-t(8;14), DGRC0013-inv(13), DGRC0025-t(12;17), and DGRC0030-
t(1;3)) and summarized in Table 1. Clinical features of probands DGRC0006 and
DGRCO0013 do not match a specific genetic diagnosis, whereas DGRC0025 (Supplementary
Fig. 1 and Supplementary Table 3) and DGRC0030 (Supplementary Fig. 2 and
Supplementary Table 4) present clinical phenotypes matching a recently reported ANKS1B
haploinsufficiency syndrome (Carbonell et al. 2019) and Skraban-Deardorff syndrome
(SKDEAS OMIM #617616) (Skraban et al. 2017), respectively.

Conventional prenatal diagnosis

Cytogenetic analysis of the CVS of DGRC0016 revealed a de novo apparently balanced
reciprocal translocation, 46,XX,t(16;17)(g24;921.3)dn (Fig. 1a, b). CMA identified an 810
kb de novo deletion at 8g24.21 interpreted to be a variant of uncertain significance based
on a total score of —0.15 (1A, 2H, 3A, 4l and 5A criteria) obtained from the ACMG CNV
interpretation guidelines (Riggs et al. 2019). Karyotyping of the amniotic fluid cells of
DGRCO0019 revealed a de novo apparently balanced reciprocal translocation, 46,XY,t(2;19)
(p13;913.1)dn (Fig. 2a, b). The balanced nature of the translocations was confirmed by
CMA and breakpoints mapped on average with a 7 Mb resolution by karyotyping.

Detection of SVs from liGS data

Two prenatal and four retrospective probands were sequenced using lllumina short-read (25
bp) sequencing of liGS libraries. Metrics for the libraries are summarized in Supplementary
Table 5. Physical coverage was between 42 to 88-fold whereas sequence depth was about
one-fold. Chimeric and improper read-pairs ranged between approximately 4—-8%.

SVs were identified at liGS resolution of ~ 4.5 kb, but clinical reported at resolution of =
30 kb. A summary of identified chimeric read-pair clusters denoting translocations, ins, inv
and cx SV are shown in Supplementary Table 6. At clinical resolution, on average three
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fully resolved, novel or non-polymorphic (< 1%) SVs were discovered, whereas at liGS
resolution, an average of five additional novel or non-polymorphic SVs were identified.

Likewise, a summary of identified del and dup is shown in Supplementary Table 7. At a
clinical resolution of > 30 kb, an average of 18 del and dup were identified per proband,
but only four del and six dup are considered novel or non-polymorphic (< 1%) based on the
SVref dataset (Collins et al. 2017). At liGS resolution, after filtering, an additional 14 del
and 15 dup were detected per patient.

Identification of breakpoints at nucleotide resolution

liGS of the fetal DNA sample DGRCO0016 identified the 16q breakpoint within a 70 bp
region (chr16:89,401,663-89,401,732) at 16¢24.3, and the 17q breakpoint was delimited to
a 2,300 bp region (chr17:46,781,986-46,784,286) at 17921.31 (Fig. 1). A split-read was
found at the der(17) breakpoint. Sequencing of the second fetal DNA sample DGRC0019
identified the 2p breakpoint within a 485 bp fragment (chr2:70,941,289-70,941,773) at
2p13.3, and the 19q breakpoint was mapped within a 132 bp sequence (chr19:32,878,469—
32,878,600) at 19913.11. Junction fragments for both cases were amplified and Sanger
sequenced (Supplementary Table 1 and Supplementary Figs. 3 and 4).

The karyotype of DGRC0016 was revised to t(16;17)(16pter — 16¢24.3::17921.31

— 17qter;17p ter — 17g21.31::16g24.3 — 16qter)dn, and according to next-gen
cytogenetics nomenclature (Ordulu et al. 2014) is described as 46,XX,t(16;17)(g24,921.3)
dn.seq[GRCh38] t(16;17)(16pter — 16924.3(89,401,715)::17921.31(46,784,035) —
17qter;17pter — 17p21.31(46,78 1,998::16024.3(89,401,718) — 16qter)dn. The
translocation was reclassified as unbalanced due to the 2,036 bp deletion identified at the
17921.31 breakpoint (Supplementary Fig. 3).

The karyotype of DGRC0019 was revised to t(2;19)(19 qter — 19q13.11::2p13.3

— 2qter; 19pter- > 19913.11::2p 13.3 — 2pter)dn, and according to next-gen
cytogenetics nomenclature is described as 46,XY,t(2;19)(p13;913.1) dn.seq[GRCh38]
t(2;19)(19qter(-) — 19913.11(32,878,51 5)::2p13.3(+)(70,941,507) — 2qter;19pter —
19913.11(+) (32,878,512)::CATA::2p13.3(-)(70,941,502) — 2pter)dn.

Characterization of breakpoint regions

In DGRCO0016, the 16924.3 breakpoint at position chr16:89,401,715 disrupts 1VS3 of
ANKRD11 (Ankrd11 repeat domain 11, OMIM *611192), whereas the 17¢g21.31 breakpoint
at position chr17:46,781,998 disrupts 1VS1 of WNT3 (Wnt family member 3, OMIM
*165330) (Fig. 1). Haploinsufficiency of ANKRD11 causes AD KBGS (OMIM #148050)
(Sirmaci et al. 2011).

Homozygous pathogenic variants in W//NT73are associated (but not yet independently
confirmed) with recessive tetra-amelia syndrome-1 (TETAMS1, OMIM #165330), a severe
malformation syndrome that includes complete absence of all four limbs and other severe
anomalies (Niemann et al. 2004). As both ANKRD11 and WINT3are transcribed on the
negative strand, the translocation results in two chimeric genes (Supplementary Fig. 5).
Although the chimeric gene at the der(16) breakpoint lacks ANKRD11 exons 1-3, it has an

Hum Genet. Author manuscript; available in PMC 2023 September 14.
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intact ANKRD11 open-reading frame downstream of W/A/T3exon 1, translational initiation
codon and WNT35’ regulatory region.

Regarding the gene content of the 16q24.3 breakpoint-spanning TAD (brTAD) in human
embryonic stem cells (hESC) (Dixon et al. 2012), the mitochondrial metalloprotease protein
coding gene, SPG7 (paraplegin matrix AAA peptidase subunit) associated with AR/AD
adult-onset spastic paraplegia 7 (SPG7, OMIM #607259) is localized 89 kb from the
breakpoint (Supplementary Fig. 3 and Supplementary Table 8) (Sanchez-Ferrero et al.
2013). Concerning the 17g21.31 in the brTAD (Fig. 3), in addition to the disrupted WNT3,
the myosin light chain 4 gene (MYL4) is localized 425 kb distal to the breakpoint and is
etiologic in dominant atrial fibrillation, familial, 18 (ATFB18, OMIM #617280) with an age
of onset of 35 years (Orr et al. 2016). Further distal in the brTAD is /TGB3 or platelet
glycoprotein Illa, which has been reported to cause AR or AD platelet-related mild bleeding
disorders (BDPLT16, OMIM #187800).

In DGRCO0019, the 2p13.3 breakpoint at position chr2:70,941,502 disrupts 1VVS1 of
ATP6V1BI1 (ATPase H + transporting V1 subunit B1, OMIM *192132), whereas the
19913.11 breakpoint at position chr19:32,878,515 is located within the 3" UTR of the
CEP89transcript NM_032816 (centrosomal protein 89, OMIM *615470) (Fig. 2). The
disrupted ATPase is a component of the vacuolar ATPases, a multi-subunit enzyme that
mediates acidification of eukaryotic intracellular organelles. Pathogenic variants within

this gene are reported to cause an AR distal renal tubular acidosis with progressive

nerve deafness (OMIM #267300) (Karet et al. 1999). A homozygous deletion comprising
CEP89and SLC7A9has been reported in a patient with isolated mitochondrial complex

IV deficiency, intellectual disability and multisystemic problems (van Bon et al. 2013).
SLC7AY, causing cystinuria (OMIN #220,100) with AR and AD inheritance with
incomplete penetrance, was identified within the hESC and LCL GM12878 brTADs 8.75 kb
proximal from the 19q13.11 breakpoint (Supplementary Fig. 6d and Supplementary Tables 9
and 10) (Rao et al. 2014; Leclerc et al. 2002).

In DGRCO0006, the 8q12.3 breakpoint disrupts IVS1 of a large intergenic non-coding (Linc)
RNA L/NC01414 or RP11-32K4.1 with a brain-specific expression pattern and unreported
biological function (Supplementary Fig. 7). The 14931.2 breakpoint is in a large gene poor
region.

In DGRCO0013, IVS1 of FLTI1 (Fms related tyrosine kinase 1, OMIM *165070) is disrupted
(Supplementary Fig. 8). FLT1 is a tyrosine kinase receptor for vascular endothelial growth
factors (VEGF) with important roles in angiogenesis and vasculogenesis. Although this
receptor has been implicated in development and homeostasis of many organs, it is not

yet associated with a human disorder (Tjwa et al. 2003). F/tZ knockout mice models show
increased angiogenesis, left ventricle wall thickening and enlargement of the left ventricle
cavity, only the last of which is consistent with the DGRC0013 phenotype (Fong et al. 1995;
Mei et al. 2015). However, it is not unsurprising that a disruption of a single allele in FL71is
not totally representative of the loss-of function phenotype in the knockout mouse. No F/¢Z
knockout mice study showed abnormalities of the tricuspid valve as did DGRCO0013, but the
repression of VEGF was described as part of the mechanism for heart valve morphogenesis

Hum Genet. Author manuscript; available in PMC 2023 September 14.
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(Chang et al. 2004). Moreover, the enhanced expression of £L71 in atrioventricular valves,
per FANTOM CAT browser, correlates with the reported valve abnormality in the patient
(Hon et al. 2017).

In DGCR0025, ANKS1B (Ankrd11 repeat domain 11, OMIM *611192) IVS9 is disrupted
(Supplementary Fig. 9). ANKS1B s a tyrosine kinase effector of activity-dependent post-
synaptic signaling and a component of the postsynaptic density complex (Jordan et al.
2007). ANKS1B shows an enriched brain-specific expression pattern. Recently, monogenic
heterozygous microdeletions in ANKSI1B have been reported to cause a spectrum of
neurodevelopmental phenotypes (Carbonell et al. 2019).

Finally, in DGRCO0030 the breakpoints disrupt exon 12 of WDR26 (WD repeat-containing
protein 26; OMIM *617424) and IVVS1 of ATP2B2 (ATPase plasma membrane Ca2 +
transporting 2; OMIM *108733) (Supplementary Fig. 10). Pathogenic variants in these
genes are reported to cause AD SKDEAS and AD non-syndromic sensorineural hearing
impairment, respectively (Skraban et al. 2017; Smits et al. 2019).

Genomic imbalances

The median size of del and dup at clinical resolution is 64 and 49 kb, respectively.

Two deletions, 53.512 kb at 3p24.1 (27,354,680-27,408,191) and 836.049 kb at 8924.21
(129,061,233-129,897,281), identified in DGRC0016 (Supplementary Figs. 11, 12 and
Supplementary Table 11) were not found in public CNV databases. The deletion at 3p24.1,
classified as a VUS with a total score of —0.45 (1A, 3A, 4 J(-0.30), 5C(-0.15)) according to
ACMG CNV criteria (Riggs et al. 2019), is present in the proband’s phenotypically normal
mother and brother, and, therefore, unlikely to contribute to an abnormal phenotype. As for
the 836.047 kb de novo deletion, none of the affected genes has been considered to cause

a reported phenotype and the deletion is interpreted as VUS according to ACMG CNV
criteria (Riggs et al. 2019). Moreover, although several genetic traits have been associated
by GWAS with the affected genomic region, none of these represent developmental
disorders (Supplementary Table 12). Posteriorly, this SV was considered as unrelated to
the patient’s reported clinical features. Regarding DGRC0019, with the exception of a
12,033 bp deletion within the olfactory receptor family 5 subfamily B pseudogene region
(chrl1g12.1:58,336,732-58,348,764), no other proband-specific alteration was detected
(Supplementary Table 13).

Proband-specific del and dup identified in the retrospectively analyzed probands are
summarized in Supplementary Table 14, and inv, ins and cx SV in Supplementary Table
15. Most likely, none of these SVs has a pathogenic implication.

Expression studies

From the disrupted genes in prenatal probands, only ANKRD11 and CEPE9 are ubiquitously
expressed in LCLs. WNT3shows skin enriched expression, whereas ATP6V1B1 has kidney,
lung and skin enhanced expression (Supplementary Figs. 13 and 14). Expression array
profiling of the t(16;17) proband’s LCLs shows that due to low sensitivity of this HTA
2.0 array, the whole gene expression level of ANKRD11 is roughly the same as that in
controls (7.77 vs. 7.85, SD 0.09) whereas that of WNT73is increased (5.86 vs. 4.6, SD

Hum Genet. Author manuscript; available in PMC 2023 September 14.
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0.01) (Supplementary Table 16). The increased W73 exon 5 signal intensity (33.58)

may explain the observed whole gene elevated WN/T3expression (Supplementary Fig. 15).
Expression levels of the remaining genes from both brTAD were roughly similar to controls
(Supplementary Table 16).

HTA 2.0 expression data of cultured human amniocytes are not available in the literature.

Therefore, expression data of the t(2;19) proband’s cultured amniocytes were compared to
LCLs as control. Noticeable altered expression above the threshold of the microarray was

not observed at the level of gene, exon or exon splicing (data not shown).

Predictability of the phenotypic outcome of dnBCA

The pathogenicity of an SV should be assessed separately for each breakpoint and jointly
as a single alteration. In the absence of established guidelines or criteria for classification
of SV, we based our classification on ACMG criteria for sequence variants (Richards et al.
2015). Variant classification and clinical interpretation of BCAs is summarized in Table 1.

During PND of DGRCO0016, the t(16;17) rearrangement at 16q24.3 was classified as PM6
(ACMG criterion PM6—assumed de novo, but without confirmation of paternity and
maternity) and the absence of ANKRD11 exons 1-3 in the der(16) as PSV1 (Table 1).
Therefore, the 16g24.3 rearrangement was interpreted as a likely pathogenic variant, most
likely leading to a KBG syndrome-like phenotype. Postnatally, it was further classified as
PP4 (PP4—patient’s phenotype and family history highly specific for a disease with a single
gene etiology). Moreover, although KBG syndrome is typically milder and less frequently
diagnosed in females, the patient’s clinical features meet the diagnostic criteria for KBG
(Richards et al. 2015) (Supplementary Table 2) and, therefore, the ACMG interpretation was
upgraded to pathogenic (Table 1).

During PND of DGRCO0019, the t(2;19) rearrangement at 2p13.3 was also classified as PM6
and according to our interpretation criteria (Table 1) was predicted to have a “Low potential
of disease.”

For DGRCO0006, none of the affected genes or identified genomic alterations is associated
with pathologies nor show overlap with the patient’s phenotype. Furthermore, GWAS data
do not reach genome-wide statistical significance (Supplementary Table 17). Therefore,
based on our criteria we consider this variant as “Non-disease causing” (Table 1).

In DGRC0013 and DGRC0025, dnBCA breakpoints directly disrupt genes with a low ratio
of observed/expected (oe) number of LoF variants indicating a strong LoF intolerance (Table
1 and Supplementary Tables 18 and 19) but neither are curated in ClinGen. Both SVs (i.e.,
involving FLT1and ANKS1B) can only be scored to PM®6, but based on our criteria are
predicted to be “Disease plausible” (Table 1). Of note, the clinical phenotype of DGRC0025
matches a recently reported ANKS1B haploinsufficiency syndrome (Carbonell et al. 2019).

Finally, in DGRCO0030, the SV disrupting the disease gene WDR26 was classified as PVS1,
PM6 and PP4 corresponding to pathogenic by ACMG criteria (Richards et al. 2015). Thus,
for the WDRZ26 variant our interpretation was “Disease causing” and the proband’s clinical
phenotype coincides with that of age-matched patients with SKDEAS (Skraban et al. 2017).

Hum Genet. Author manuscript; available in PMC 2023 September 14.
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ATP2ZBZis not curated as a dominant disease locus (Supplementary Table 20), but the
ATP2ZB2variant is classified as “Disease plausible” (Table 1).

TAD analysis

It is now clearly established in the literature that disruption of TADs and the creation of
neo-TADs are dominant mechanisms of SVs (Lupifiez et al. 2015; Franke et al. 2016).
The main source of knowledge of TAD maps are generated by chromosome conformation
capture (Hi-C) data. Details of TADs involved in DGRCO0016 are presented in Fig. 3.
None of the t(16;17) breakpoints disrupt an interaction loop (data not shown) (Rao et al.
2014). Hi-C contact heatmaps of the t(2;19) breakpoint regions for LCLs and IMR90 are
shown in Supplementary Fig. 6. Although the 2p13.3 breakpoint disrupts two interaction
loops (Supplementary Fig. 6a, b) (Rao et al. 2014), none of the involved genes shows LoF
sensitivity.

Discussion

Genome sequencing data of two ongoing fetal and four retrospective samples with dnBCA
identified during conventional PND were analyzed by liGS, followed by comprehensive
structural analyses of candidate genes from the disrupted bpTADs and prediction of the
phenotypic outcome. Moreover, to facilitate implementation of this analysis, two new
bioinformatic tools applicable in the clinical setting have been developed. Using this
information and the developed bioinformatic tools, we propose an analytical workflow for
identification and interpretation of de novo SVs in their genomic landscape (Fig. 4).

In DGCRO0016, translocation breakpoints disrupt a single allele of ANKRD11 and of WNTS3,
wherein haploinsufficiency of ANKRD11 causes AD KBGS. KBGS wias first reported

by Herrmann et al. (1975) in three unrelated families with the surnames initials being

K, B and G. The common phenotypic characteristics of this multiple congenital anomaly
comprises, among others, a characteristic facial appearance (including protruding ears and
hypertelorism), hand anomalies, neurologic involvement, and postnatal short stature (Skjei
et al. 2007), which are consistent with the phenotype observed in the patient and fits KBGS
diagnostic criteria (Low et al. 2016).

In DGCRO0019, translocation breakpoints disrupt genes tolerant to LoF variants, A7TP6V1B1
and CEP89. No gene causing AD or developmental disorder was identified within

the bpTADs. The predicted outcome was confirmed by absence of a postnatal clinical
phenotype. Nevertheless, longer term follow-up would be warranted to exclude any later
onset of a disorder that might be associated as recently demonstrated for prenatally detected
dnBCAs (Halgren et al. 2018) or natural history of individuals with postnatal dnBCAs
(Currall et al. 2018).

Of the four retrospectively analyzed dnBCAs, similarly to the aforementioned DGCRO0016,
disruption of WDRZ26 predictably will lead to SKDEAS. The patient’s clinical phenotype
highlights that these phenocopies, SKDEAS and 1g41qg42 deletion syndrome, are primarily
caused by disruption of WDRZ26.
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Although the breakpoints of dnBCAs inv(13) and t(12;17) disrupt genes not yet curated
in ClinGen, the fact that these are significantly LoF intolerant genes involved in several
biological processes, reinforced by convergent evidence, led us to predict that they

are “Disease plausible”. Furthermore, DGRC0025 clinical phenotype overlaps ANKSIB
haploinsufficiency syndrome.

Finally, for the postnatal phenotype of DGRCO0006, the t(8;14) variant is predicted as
“Non-disease causing.” Although pathogenic cx SVs smaller than our clinical resolution
cutoff have been reported (Sanchis-Juan et al. 2018), at the higher resolution of liGS no
additional presumably pathogenic SV was identified in DGRC0006. Exome sequencing (ES)
has not been performed, and other non-genetic factors unrelated to the translocation may be
responsible for the phenotype (e.g., environmental or multifactorial factors).

Short-read sequencing by either genome sequencing (GS) or ES has been applied in the
prenatal setting. ES in fetuses with structural anomalies was recently elucidated in a large-
scale study (Lord et al. 2019; Petrovski et al. 2019) revealing a genetic etiology in about
10% of affected fetuses. However, short-read sequencing is not optimal for the identification
of SVs. The physical coverage of GS is relatively low, whereas ES is high but will miss
breakpoints localized within non-coding sequence. The long-insert size of the liGS libraries,
intended for the identification of BCAs and CNVs, and low read size results in high physical
but low sequence coverage.

The lack of transcriptome data on gestational age- and sex-matched first trimester cells

from CVS and amniotic fluid is a current limitation for the introduction of gene expression
analysis in the clinical prenatal setting. Clearly, the future of prenatal diagnosis for SVs

will require generation of gene expression data by RNA-Seq linked to Hi-C of CVS cells
and amniocytes, as is available now in public databases for adult tissues. Presently, the
interpretation of current PND of dnBCAs could be limited to disruption of major dominant
genes leading to Mendelian disorders as occurred for ANKRD11, WDRZ26 and ANKS1B.
Nonetheless, cytogenetics laboratories should be attentive to take into consideration the
architectural features of genomes to address fully the disease potential of a SVs (Lupiéfiez et
al. 2015).

In comparison to karyotyping and CMA analysis, we demonstrate the benefits of an liGS-
based approach and our clinically inspired pipeline for identification of dnBCA breakpoints
and interpretation of the genomic landscape on which these occurred in the prenatal setting.
We show the predictability of the clinical outcome of these BCAs and plan to provide
updated bioinformatic tools to facilitate data analysis and a workflow for implementation of
genome sequencing in the diagnostic prenatal setting.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Ideograms, partial karyotype and liGS-based localization of the t(16;17)(g24.3;921.3)dn
breakpoints at genomic and gene levels. a, b Ideograms and GTL-banded normal and
derivative metaphase chromosomes. Chromosome 17 ideogram is shaded in yellow. Beside
the derivative ideograms the karyotype and liGS-based resolution of the breakpoints

are specified. Filled diamonds or arrows indicate chromosome breakpoints. Karyotype
resolution indicates the size of the identified disrupted chromosome band. c, d Localization
of the t(16;17)(g24.3;921.3)dn breakpoints at genomic and gene level based on the
translocation-specific chimeric cluster. Black and blue arrowheads depict chimeric reads
aligned to chromosomes 16 and 17, respectively. Below, gene structure of the disrupted
genes, reference transcript numbers and the translational initiation codons (ATG) are
indicated. A split-read between positions chr17:46,781,986 and chr16:89,401,732 identified
at the der(17) breakpoint is shown by a double arrowhead
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the disrupted ATP6B1, reference transcript number and the tra
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framework to be followed by clinical geneticist

—> Normal - de novo in proband
A\

» Unbalanced - pathogenic

Parental karyotype

R b ' Clinical geneticist
b Sequencing .
Large-insert genome sequencing (liGS) or mate-pair Clinical [ 3K J
sequencing, with 2 x 25 to 150 bp reads interpre?ation and —p
iGsS counseling °
report
¢ Bioinformatic analysis pipeline At liGS At clinical
) _—» Filtered read-pair clusters resolution resolution
ii
~ Chimeric pairs > }nterchn SV clusters v) i R
(translocations and ins) TAD-gene analysis Vi) . .
~ Improper pairs with TAD-GConTool =g Analysis of disrupted or
» Intrachr. SV clusters dysregulated genes and CNVs,
Sequence data (inv, ins and cx SV ) orthogonal confirmation and
files validation
: > CNV clusters iv) CNV analysis with >
~ Proper pairs (del and dup) > Merged CNV-ConTool
CNV data

> Filtered altered DoC regions
iii)

Identification of split-read

Fig. 4.

Pr?)posed workflow for nucleotide level resolution and interpretation of de novo structural
rearrangements in their genomic landscape in prenatal diagnosis. a In the case of BCAs
associated with fetal anomalies or de novo SVs, concomitantly with the conventional PND
protocol, liGS should be performed for nucleotide level resolution of the rearrangement
breakpoints in their genomic landscape. Inherited BCASs are referred to a clinical geneticist
to lay out the follow-up required, including potential inclusion of liGS. Foreseeably, upon
improvement of liGS-based methods, all prenatally identified non-polymorphic SV may be
analyzed by such an approach. b Long-insert-based genome sequencing such as mate-pair,
with short or medium reads, from 2x25 to 150 bp, can be used. Increasing the sequence
coverage enables identification of SNV and indels from the same sequencing data. ¢ The
proposed bioinformatic workflow: (i) Sequence data decoded in different types of read-pairs,
(ii) Clusters denoting different types of balanced and unbalanced SVs (translocations, ins,
inv, cx SV, del and dup) are identified at the liGS resolution, (iii) Identification of cluster-
specific split-reads, (iv) Genomic regions comprising deletions and tandem duplications
revealed by the two procedures merged, (v) Potentially pathogenic candidate genes, genomic
loci and CNVs revealed by bioinformatic tools TAD-GConTool and CNV-ConTool, and
(vi) Analysis of the disrupted or dysregulated genes and CNVs, orthogonal confirmation,
validation, and preparation of report by a certified medical geneticist
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