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Abstract

In clinical settings, most automatic recognition systems use visual or sensory data to recognize 

activities. These systems cannot recognize activities that rely on verbal assessment, lack visual 

cues, or do not use medical devices. We examined speech-based activity and activity-stage 

recognition in a clinical domain, making the following contributions. (1) We collected a 

high-quality dataset representing common activities and activity stages during actual trauma 

resuscitation events–the initial evaluation and treatment of critically injured patients. (2) We 

introduced a novel multimodal network based on audio signal and a set of keywords that does 

not require a high-performing automatic speech recognition (ASR) engine. (3) We designed 

novel contextual modules to capture dynamic dependencies in team conversations about activities 

and stages during a complex workflow. (4) We introduced a data augmentation method, which 

simulates team communication by combining selected utterances and their audio clips, and 

showed that this method contributed to performance improvement in our data-limited scenario. 

In offline experiments, our proposed context-aware multimodal model achieved F1-scores of 

73.2±0.8% and 78.1±1.1% for activity and activity-stage recognition, respectively. In online 

experiments, the performance declined about 10% for both recognition types when using 
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utterance-level segmentation of the ASR output. The performance declined about 15% when we 

omitted the utterance-level segmentation. Our experiments showed the feasibility of speech-based 

activity and activity-stage recognition during dynamic clinical events.

Additional Keywords and Phrases:

activity recognition; activity-stage recognition; keyword spotting; context-aware recognition; real-
time application

1 INTRODUCTION

Clinical decision support systems (CDSS) [65, 69] can help reduce errors in complex 

medical teamwork [19]. For CDSS that relies on current task performance as an input, 

timely and accurate activity recognition is critical. Most activity recognition approaches 

in medical domains use visual and sensory data and cannot recognize activities that are 

reported through speech, lack distinct visual cues, or do not use medical devices. However, 

speech and team communication are critical components of medical work. Medical teams 

use speech to assign an activity, report the progress or results of the activity, and plan the 

subsequent activities. The awareness of activities and their temporal progression (activity 

stage) [30] will affect the next-step decision in clinical decision support systems [38, 65]. Gu 

et al. [24] proposed a multimodal network that predicts activities from the manually-derived 

transcripts and audio. This system requires high-performing automatic speech recognition 

(ASR) to replace manual transcripts, a feature limiting implementation in the real-time 

because the performance of ASR is inadequate due to the extreme background noise. 

To address this limitation, Abdulbaqi et al. [1] simplified the recognition problem by 

using a keyword-based approach, training on a limited-size vocabulary and relying on the 

identification of the most frequent keyword associated with each activity. Even when a given 

keyword is associated with more than one activity, this system always infers the activity 

most frequently associated with that keyword. Another approach relied on speech intention 

recognition [22] to distinguish semantic differences in utterances spoken during trauma 

resuscitation events. Although these previous approaches [1, 22, 24] have shown promising 

results in the recognition of activities and speech intentions, they are inadequate for real-

time use and decision support for several reasons. First, the number of previously recognized 

activity labels has been small (between 5–10) compared to >100 different activity types 

potentially performed during most clinical events. Second, speech intentions representing 

the intent of utterances have been too fine-grained with many classes that were not relevant 

to clinical decision support, and were not always linked to activities, which makes them 

inadequate for representing the activity progression. Third, they needed manual transcription 

of human speech which hindered real-time application. Fourth, the conversational context 

has not been considered. Lastly, predictions were made using utterance-level data, but 

utterance-level segmentation is not available for real-time use.

We developed a novel context-aware multimodal network to address the aforementioned 

limitations and bring our model closer to real-time application (Fig. 1). First, we 

extended the number of activities to include 23 commonly performed activities during 
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trauma resuscitation. We also identified four distinct activity-stage labels from speech 

intentions [22] based on previously defined features representing activity progression [30–

32] to supplement a clinical decision support system [65, 69]. Second, we extended the 

keyword-based method [1] by using a selected keyword list rather than entire vocabulary. 

The keyword-based approach avoids the need for a high-performing ASR in real-time 

application. Third, we designed a novel multimodal network that relies on the conversational 

context during trauma resuscitation to recognize contextual dependencies of activities and 

activity stages. Finally, we augmented our dataset by simulating multi-label utterances (i.e., 

several activities appearing in one utterance) to improve the model’s ability to manage 

concurrent activities and activity stages and avoid or manual segmentation of utterances. 

We ran experiments with our model in offline (using manually segmented and transcribed 

speech) and online (using real-time speech recognition without manual segmentation) 

settings. The results showed a consistent performance improvement with our proposed 

context modules and data augmentation methods, while also showing the applicability of 

an offline-trained model in the online setting. In offline and online settings, our model 

outperformed the NLP (Natural Language Processing) and multimodal baselines that were 

constructed using existing techniques [4, 17, 28]. We have developed our system using the 

activities and activity stages specific to trauma resuscitation, but the system can be applied 

to other settings where activity recognition is also based on verbal communication and the 

activities are temporally dependent. For example, our system can be applied to settings such 

as operating rooms and intensive care units (ICU) where many routine activities are also 

performed (e.g., airway and breathing assessment, oxygen administration, and neurological 

exam), and the vocabulary used to communicate these activities is the same across these 

settings. As another example, in daily living activity recognition [2, 44], the activity 

“washing dishes” is likely to happen after “cooking,” and “shaving” usually is followed 

by “washing face.” We believed that modeling the temporal relations between activities in 

general could improve recognition performance. In this way, our system is generalizable 

because these temporal dependencies are common across many use cases.

This work makes five contributions to speech-based recognition and monitoring of 

collocated, dynamic teamwork:

1. A medical dataset with a large set of activity labels that cover commonly 

occurring activities and their stages during a complex workflow.

2. Approaches that do not require a large vocabulary or a high-performing ASR, 

including keyword spotting and selection methods that rely on a small set of 

keywords for activity and activity-stage recognition.

3. An end-to-end multimodal architecture that uses speech sound, keywords, and 

the conversational context and outperforms previous models that lack the context 

of team communication.

4. Generation of a simulated team-communication dataset that contains concurrent 

activities and activity stages that improved the model’s ability to recognize 

concurrent activities and activity stages in data-limited scenarios.
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5. Evaluation and discussion of our model in offline experiments and during real-

time application.

2 BACKGROUND AND RELATED WORK

The initial care of severely injured patients in the hospital (“trauma resuscitation”) is 

performed using a defined sequence of evaluation and treatment steps. Prior work has found 

that efficient and error-free care during trauma resuscitation lowers morbidity and mortality 

[21, 27, 62]. To limit the impact of human factors in this domain, Advanced Trauma Life 

Support (ATLS) was developed as a standard resuscitation protocol [59]. Deviations from 

and errors in application of ATLS are still observed, even among experienced trauma teams 

[20, 48]. Some errors may have no direct impact on patient care, but others can lead to poor 

outcomes, including death [21]. Given the evidence supporting the benefits of adherence to 

ATLS, previous studies have evaluated real-time decision support to improve compliance 

with standard protocols [19]. Although promising, these early systems have had limited 

usability in practice because they required manual data entry and active interaction with the 

system. Activity recognition has been proposed for the resuscitation domain to address these 

limitations by automating data input.

Recognizing human activity is a challenging problem [33]. Different types of activities 

are defined based on the application needs. In clinical settings, recognition is targeted at 

critical activities performed by providers during patient care. Recognition of these activities 

can be used to identify the phases of a clinical process [69], define differences in activity 

sequence performance associated with different outcomes, and track work in runtime for 

providing activity-based decision support [65, 69]. Most prior studies have focused on 

activity recognition in the operating room [55, 58]. Unlike this setting, trauma resuscitation 

follows a more flexible medical workflow under time pressure, with patient information 

emerging throughout the process. Activity recognition in team-based settings like trauma 

resuscitation is challenging for many reasons, including a crowded workspace, concurrent 

and fast-paced activities, and different modalities for conveying information (e.g., visual 

observation, verbal assessment, and signals from devices and instruments). Current research 

on activity recognition mostly relies on visual and sensory data sources to predict activities 

[5, 10, 42]. Visible-light or depth cameras provide rich sources of data about activities 

without interfering with work. Object localization in video frames [43] can also assist with 

activity recognition. This approach has been used in a multimodal network developed to 

detect the workflow phase during trauma resuscitation [41]. Vision-based approaches have 

several limitations, including privacy issues, occlusion in a crowded workspace, and the 

visual similarity of some activities. Unlike vision-based systems, RFID-based recognition 

systems rely on tagging medical objects and tracking their movement for activity recognition 

[40, 42]. Passive RFID cannot address challenges of the limited types of activities that use 

taggable devices and the need for continuous tagging of disposable objects.

In addition to using vision- and sensor-based systems, audio or speech signals can also 

serve as a valuable information source for human activity recognition. Nicholas et al. [36], 

pretrained a Gaussian Restricted Boltzmann machine (RBM) with a large set of unannotated 

audio streams using unsupervised learning. Their model was fine-tuned to various acoustic 
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classification tasks and showed robustness to a wide range of acoustic scenes based on 

mobile audio sensing. Yohan et al. [14] used multi-sensory data, including speech words and 

scene sounds, to categorize different places. Dawei et al. [44] used a large-scale pretrained 

VGGish model as a feature extractor to generate acoustic embeddings for ambient sounds, 

followed by a classification network, to perform daily living activity recognition and showed 

promising results. Rebecca et al. [2] evaluated the feasibility of using mid-interaction 

segments to distinguish daily living activities, a setting in which mid-interaction segments 

refer to voice assistants’ response time after receiving human queries. A multimodal system 

was built that recognizes concurrent activities during trauma resuscitation using multiple 

data modalities, including depth camera video, RFID sensors, and audio recordings [12]. 

A separate convolutional neural network (CNN) was used to extract features for each 

modality that were fused using a long short-term memory (LSTM) network in the final 

decision layer. These previous studies showed the feasibility of using audio or speech 

related to activity recognition. In clinical settings, vision- and sensor-based systems are 

not applicable to recognizing activities that lack distinct visual cues or do not use medical 

devices, such as those performed or reported through verbal communication. For example, 

airway assessment is performed by asking the patient to answer several questions and 

verbalizing the assessment results to the entire team. Verbal communication associated with 

these activities has many cues about the activity and can serve as a valuable source of data 

for activity recognition in clinical settings [32].

Recent research on predicting activities from manual speech transcripts and audio recordings 

[24] showed promising results, despite the ambient noise and concurrent speech affecting 

system performance. In this previous work, a multimodal transformer network manually 

processed the transcribed speech and audio sound to predict activities. When using only 

audio, the system predicted the activities with an average accuracy of 36.4%. The accuracy 

increased to 71.8% for 11 activities when using both modalities (audio recordings and 

manual transcripts). This network, however, relied on manually generated rather than 

automatically derived transcripts, limiting its applicability to real-time activity recognition. 

A keyword-based approach was developed that avoided the need for full transcripts [1] or 

high-performing ASR in real-time applications. This system built a keyword list for each 

activity by ranking the frequency of each word and switched the keyword list based on the 

activity label when spotting keywords. This approach is not practical because it requires 

knowing the activity label for each utterance to determine the keyword lists. Frequency-

based keyword extraction also has limited performance [24]. Frequency-inverse document 

frequency (TF-IDF) has been used to categorize text documents by weighing each word in 

text documents based on uniqueness [60, 67, 68]. We used a similar approach in this work, 

incorporating a sensitivity score that extracts words specific to activity and activity stages 

from the speech transcripts.

We have observed that activity recognition alone is insufficient for developing effective 

clinical decision support systems [38, 65]. For example, the utterances (“Can we get an 
IV?”) and (“IV is in place”) refer to the same medical activity (intravenous [IV] catheter 

placement) but are semantically different. An earlier study [22] successfully recognized 

speech intentions associated with spoken utterances to determine semantic differences. 

These speech intentions are too fine-grained with many classes irrelevant to clinical decision 
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support and ignored the relation to the activity type. We build on this prior work by adopting 

the activity model with four stages of performance, each with distinct speech patterns 

[30–32]: the “before” stage, such as assessing the need for an activity or requesting an 

activity; the “during” stage, such as speech related to interactions with patients or reporting 

activity progress; the “after” stage, such as reports on activity results; and the “other” stage 

for speech unrelated to activity performance. The utterance (“Can we get an IV?”) now 

indicates the “before” stage, while the utterance (“IV is in place”) indicates the “after” stage. 

Another utterance (“I am working on an IV”) indicates the “during” stage. Different activity 

stages for the same activity can result in different recommendations for decision making. 

Supplementing activity recognition with the recognition of the activity stage helps avoid 

semantic misunderstanding, provides additional information about the performed work, 

improves system recommendations, and brings our system closer to real-time use [65, 69].

To our knowledge, workflow and communication context have not been used for speech-

based activity and activity-stage recognition in clinical settings. Context information has 

been used in natural language processing (NLP) tasks, such as dialog act recognition, where 

the output is based on the current input and context information. In our setting, a discussion 

among several team members about an activity may also indicate the status of that activity. 

A naïve approach would be using a fixed-size context window to collect preceding input 

to provide better predictions. In the area of text classification, the preceding short texts 

were used to classify current texts [37, 56]. A fixed context window is not appropriate 

for scenarios where the occurrence, amount, and length of team communication are 

unpredictable, and where interruptions and parallel conversations are common. To manage 

this dynamic context information, a conversational-level model was used to represent the 

dependencies between different utterances in dialog act recognition [3, 7, 15, 35, 39, 52]. 

A bi-directional conversational recurrent neural network (RNN) has been used to manage 

temporal dependencies [35, 39, 52] between utterances. The attention mechanism has also 

been used to capture the relationships between the utterances in conversation-level model [3, 

7, 15]. These models do not easily transfer to our application for two reasons. First, these 

models were designed for two-people conversations. In contrast, our domain involves team-

based communication with a more complex relationship between the utterances (e.g., the 

conversation might be interleaved or interrupted by another speaker). Second, the sequence-

to-sequence models were designed for an offline setting, using the entire conversation log 

to make a prediction for each utterance. The non-causal nature of these models makes 

them unfit for online deployment. To overcome these limitations, we designed a causal 

context module, which independently uses a unidirectional conversational RNN and an 

attention-based model for interleaved conversation.

The rest of the paper is organized as follows. Section 3 introduces our dataset, including 

activity and activity-stage labels. Section 4 describes the proposed keyword selection 

methods and identifies the smallest set of keywords that achieves performance similar to 

using the entire vocabulary. Section 5 describes our proposed context-aware multimodal 

network for recognizing activity and activity stages using conversational context from team 

communication in real time. Section 6 describes a data augmentation method that helps 

generalize the model’s applicability to concurrent activities and activity stages. Section 7 

presents the experimental design for offline and online settings, and Section 8 presents the 
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results from offline experiments. Section 9 presents the results from using our model in 

online settings. Section 10 discusses the results and future work.

3 DATASET DESCRIPTION

Our dataset was recorded during 168 trauma resuscitations in the emergency room at a 

pediatric hospital between December 2016 and May 2019. The study was approved by 

the hospital’s institutional review board (IRB). The audio data was recorded using two 

fixed NTG2 Phantom Powered Condenser shotgun microphones with a 16000 Hz sampling 

rate. These microphones were pointed at two locations around the patient bed, where key 

members of the team typically stand. All audio recordings were manually transcribed. This 

preprocessing of audio recordings was time-consuming and required domain knowledge. 

Censoring the files with patient or provider information involved generating silence in 

locations of the audio file where this sensitive information was captured. The censoring 

process was also time-consuming because it required listening to the entire case. After 

censoring, the recordings were manually segmented into utterances. Although utterance-

level segmentation is not available in real-time, it is necessary for model training and 

accurate label assignment. Utterances were distinct, medically relevant words or sentences 

spoken by an individual team member and consisted of intelligible speech that could be 

transcribed. The transcription process followed guidelines to ensure that the transcribed 

speech could be used for algorithm training. For each utterance, the transcribers marked the 

start and stop times, the speaker (e.g., emergency medical services (EMS) team member, 

physician examiner, leadership team member, medication nurse, and charge nurse), the 

transcribed utterance, the associated medical activity, and the activity stage. The utterances 

were on average 2.3 seconds long.

Prior research using speech for activity recognition in this domain focused only on frequent 

activities for recognition [1, 24]. Utterances from rare activities are also relevant for 

resuscitation outcomes and should not be ignored. Supporting even routine decision making 

requires the recognition of a larger set of activities. For the purposes of our real-time 

application, a medical expert on our team categorized all clinical tasks into broad groups of 

related activities (e.g., involving similar procedures or performed on similar body regions) 

based on standard resuscitation protocol, resulting in 23 activity groups. Each utterance 

in the transcript was then assigned the corresponding activities. Our dataset shows a “long-

tail effect,” with more than nine activities having less than 800 samples (Table 1). This 

imbalance of utterances across activities presents a challenge for activity recognition. In 

addition to activity labels, each activity in the utterance was also labeled with its stage 

[30–32]: before, during, after, or other (Table 2).

4 KEYWORD SELECTION AND SPOTTING

Real-time system execution requires automatic speech recognition (ASR) instead of 

manually generated transcripts. The limited amount of training data and unstructured 

ambient noise in our domain negatively affected ASR performance. We relied on a small 

set of keywords for activity recognition, which simplified the problem and removed the need 

for a real-time high-performing ASR [1]. The goal of keyword selection is to select a small 

GAO et al. Page 7

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



set of words that maintains recognition performance for activities and activity stages. We 

used two different keyword selection methods—frequency-based and sensitivity-based. We 

also discuss different keyword spotting methods and introduce our proposed activity-specific 

training.

4.1 Keyword List

In NLP tasks, standard text preprocessing steps are usually applied to the text before 

further processing. These steps include removing low-frequency words and stopwords, and 

text normalization. We followed all text preprocessing steps, except removing stopwords. 

Stopwords are often removed in the text preprocessing stage because they are not related to 

the corresponding task. Our evaluation of the activity and activity-stage recognition using 

the entire vocabulary showed that removal of stopwords pre-defined by NLTK [45] was not 

needed (Section 8.1.1). Our keyword list was created in two steps. First, we independently 

created the keyword list for each activity and activity stage. Second, we combined these 

keyword lists into a common keyword list retaining a single copy of recurring words.

4.2 Frequency-Based Keyword Selection

A frequency-based approach uses the frequency of words associated with each activity to 

generate a corresponding keyword list. We used a previously described procedure [1] for 

this purpose we used a cutoff frequency threshold to select the keywords that occurred most 

frequently with an activity. For example, if 1,000 words are related to an activity and the 

relative-frequency threshold is 0.1, we can form the keyword list for this activity using the 

words that appeared more than 100 times. We empirically determined the optimal threshold 

value to obtain the keyword list. The main limitation of this method is that the keyword 

list may contain everyday words that appear more frequently than medical terms, leading 

to omission of medical terms from the keyword list. Although ordinary words may have 

specific meanings for different activities [1], they are not as useful as medical terms for 

distinguishing activities and activity stages. This problem could be mitigated by manually 

filtering ordinary words, but this approach is time-consuming, requires domain knowledge, 

and may introduce human errors.

4.3 Sensitivity-Based Keyword Selection

Given the limitations of using a frequency-based approach, we considered the “sensitivity 

measure” to select the words most related to activities, an approach that simultaneously 

accounts for the frequency and semantic relevance of words. The sensitivity score is adapted 

from the concept of frequency-inverse document frequency (TF-IDF) defined as:

sensitivity(w ∣ C) = count(w ∣ C)
∑wicount wi ∣ C * count(w ∣ C)

∑Cicount w ∣ Ci

where w is a given word, C is the given activity or activity-stage category. The first term 

of the product is the frequency score, which calculates how frequently the word w occurred 

in the utterances labeled with activity C compared to other words that occurred with C, 

i.e., how distinguishing the word w is for class C. The frequency score is the same as the 

frequency-based method (Section 4.2.). The second term is the uniqueness score, which 
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calculates specificity, i.e., how frequently the word w appeared with the activity C compared 

to all other activities. We multiplied these two terms to make a tradeoff between frequency 

and uniqueness. Using only the frequency score may lead to overestimating the context 

relevance of generic words because they would have a high rank in activities where they 

appeared frequently, but they could also appear with other activities (Section 4.2). Using 

only the uniqueness score may lead to some words having a high rank even if these words 

rarely appear. We used this sensitivity measure to rank the words for each activity and 

empirically set a cutoff sensitivity threshold for keyword selection.

4.4 Keyword Spotting

The keyword spotting stage [1] selects the most frequent word in the keyword list for a given 

activity and ignores the rest of the list. This model may erroneously assign spotted words 

that occur in several activities or activity stages. Our approach uses all spotted keywords 

from the input text because the combination of multiple keywords contains additional cues 

for activity recognition. We evaluated two keyword spotting approaches (Fig. 2): (1) spotting 

method #1 - replaces the words that do not appear in the keyword list with an out-of-

vocabulary (OOV) symbol, and (2) spotting Method #2 - omits the unspotted words and adds 

a special symbol “none” if no keywords are spotted in the utterance. Our goal with these 

different spotting methods was to determine whether the position of the unspotted words 

affected recognition performance. We used word embedding [46] to represent the keywords 

instead of the one-hot encoding [1]. We discuss how these methods, including keywords 

selection and keywords spotting, affected the model performance in our experiments for the 

context-independent model in Section 8.1.

4.5 Activity-Specific Training

Although using the common keyword list to spot keywords is appropriate, the relationship 

between keywords and their associated activity and activity stage may be underrepresented 

when these keywords occur in more than one activity or activity stage. To strengthen the 

relationship between activity/activity-stage types and associated keywords, we proposed 

keyword specific training, an approach complementary to keyword spotting methods. We 

mixed the use of common keyword list with the keyword lists specific to the activity for 

keyword spotting. For example, when we apply the common keyword list to an utterance 

about medications (“MEDS”), such as “give another epi right now,” the following keywords 

will be spotted: “give,” “another,” “epi,” “right,” and “now.” Conversely, if a keyword list 

specific to the activity “MEDS” is used for keyword spotting, only three keywords will be 

spotted: “give,” “another,” and “epi.” The words “right” and “now” are not activity-specific 

and should not affect recognition results when omitted. We hypothesized that this training 

method would strengthen the connections between activity/activity stage and the associated 

keywords and ensure complete training of the entire keyword list.

5 CONTEXT-AWARE MULTIMODAL MODEL

Our proposed causal context-aware multimodal network was designed to help recognize 

activities and activity stages based on conversational context from the team communication 

during trauma resuscitation. This model consists of two parts: (1) an utterance-level model 
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(“context-independent multimodal model”) based on a convolutional augmented transformer 

that uses the spotted keywords and audio features in utterances [25], and (2) a novel context 

model that learns temporal dependencies in team communication using both unidirectional 

RNN and attention mechanism.

5.1 Context-Independent Multimodal Model

Our context-independent multimodal model used the spotted keywords and audio features 

to simultaneously predict the activity and activity stage. The multimodal network used 

complementary heterogeneous features to provide more accurate predictions [41]. Many 

studies have investigated the fusion of modal features. Recent methods [23, 61] have focused 

on aligning different modalities along the time axis, achieving better performance than 

unaligned methods. Ambient sounds not related to human speech (e.g., alerts) usually come 

from the instruments or equipment in our domain. For this reason, we chose the late fusion 

approach that integrates the features processed by each monomodal model.

5.1.1 Monomodal Model—Transformer and its variants have achieved high 

performance in many domains [17, 18, 25, 47, 63]. The convolution-augmented transformer 

has outperformed the original transformer because of better modeling of local dependencies 

[25]. We built our monomodal model based on the conformer block that consists of self-

attention, convolution, and feedforward modules (Fig. 3).

A multi-head self-attention with positional encoding is used in the self-attention module. 

The self-attention calculates an affinity matrix to measure the contribution of inputs to each 

other. Given an input X = {x1, … , xN}, for , every xt ∈ ℜd , t ∈ [1, N], the attention score 

between xt and any other input xτ is determined as:

αtτ =
exp( 1

dk
xt

TW q
TW kxτ)

exp( 1
dk

∑n xt
TW q

TW kxn )

where Wq, W k ∈ ℝd × dk are the matrices that transform xt to the query space and the key 

space, respectively. The dk is the dimension of the key and query spaces. αtτ is the attentive 

score that measures how xτ contribute to xτ. For the utterance-level recognition, we did 

not apply the attention mask in sequence modeling to prevent the disclosure of future 

information. The final embedding output for xt is obtained as:

zt = ∑
n

αtnW vxn

where Wv is the transformation that maps the input embeddings to the value space. The 

attention mechanism improves performance by providing a global view of the temporal 

sequence. The self-attention can be further improved by incorporating a multi-head 

mechanism that creates multiple attentions to manage complex scenarios. The multi-head 

self-attention splits the Wq, Wk, Wv along dk to generate several submatrices, i.e., W = [w0; 
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… ; wh], where h is the number of heads. The embedding output for xt with multi-head 

attention is obtained as:

zt = W ° ∑
n

αtn
i W v

ixn

where W ° ∈ ℝd × dk is a matrix that aggregates the output from different attention heads and 

i is the attention head index.

The convolution module uses the separable convolution [13] to enhance the capturing of 

local relations in the conformer. The input first goes through the step-wise convolution with 

the gating mechanism [16]. It then follows a depth-wise convolution with the batch norm 

[29] and swish activation [53]. A stepwise convolution is used for the final output.

The feedforward block enriches the model’s representation ability. It is composed of two 

linear projection layers with an activation function (GELU) in between [26]. A residual 

connection and layer normalization [6] are used to guarantee a gradient flow for stable 

training in these three modules.

Finally, the conformer block is built using two feedforward blocks, one self-attention block, 

and one convolution block (Fig. 3). The monomodal model is a stack of conformer blocks to 

provide better performance.

5.1.2 Structure of the Context-Independent Multimodal Model—We used two 

monomodal models for processing keywords and audio signals. The inference speed of the 

monomodal models prevented real-time application. The input sequence length for different 

modalities often varied: the number of speech-signal frames was often tenfold the number 

of words in the corresponding text, leading to slower inference speed for the audio model. 

We applied downsampling in the audio model to accelerate the inference speed using two 

approaches: (1) a common sub-sampling layer was applied before the conformer, and (2) a 

strided convolution module, which progressively downsamples the features, was used in the 

conformer block for different modalities [9] instead of the non-strided module [25].

Our context-independent multimodal model used late fusion to integrate the keyword 

and audio modalities into a shared representation space (Fig. 4). The multimodal model 

concatenated the output from the keyword and audio monomodal model and passed it 

through a non-linear transformation. The classifiers were then used to make predictions.

5.2 Causal Context Module

Previous work on speech-based activity recognition used individual utterances for prediction 

and did not consider the preceding conversational context [1, 22, 24]. Although these models 

achieved promising results, the performance decreased with an increasing number of activity 

labels because the individual utterances did not carry sufficient information. Using input 

from medical experts, we identified three types of verbal communication during trauma 

resuscitation. The first type is about reporting results from evaluations performed by a 

provider. Activities associated with these utterances usually can be recognized from the 
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utterance alone, without the conversational context (e.g., “blood pressure is 112 over 85”). 

The second type includes dialog between team members, like discussion about diagnostic 

results and the next steps, or synchronizing the teamwork. The third type is a dialog between 

team members and the patient to assess the patient’s condition or obtain information, which 

requires the patient feedback. The latter two types of verbal communication usually require 

the context of previous utterances to determine the activity. To help distinguish between 

the activities, we introduced the context module that captures the dependencies between 

utterances.

To leverage the context of previous utterances while addressing the limitations discussed 

in prior work [3, 15, 35, 39, 52], we introduced a causal context module using a 

unidirectional conversational RNN and attention-based historical conversation interaction 

to capture continuing and interleaved conversations in a real-time setting.

5.2.1 Unidirectional Conversation RNN—Although a bidirectional conversational 

RNN showed promising results in dialog act recognition [7, 35, 39, 52], the non-causal 

property makes it unsuitable for real-time application. For real-time use, we replaced the 

bidirectional with a unidirectional conversational RNN. We used this unidirectional RNN to 

capture an ongoing conversation.

5.2.2 Attention-Based Historical Conversation Interaction—Conversational RNN 

has difficulty managing the dependencies between interleaved conversations that often occur 

in team communication in our domain. Although the attention mechanism has been used in 

dialog act recognition, these approaches were either unsuitable for online settings [7, 15], 

or calculated the attention score using only one previous context vector [3], which could 

not fully utilize the attention mechanism’s ability to model long-range dependencies. Our 

attention-based historical conversation interaction is a stand-alone module, which uses the 

encoder-decoder attention. It is defined as:

yt = Enc‐DecAttn ut , u1 …ut − 1

where ut represents the output from the context-independent multimodal model at time 

t. The attention-based historical conversation interaction stored the preceding utterance-

level representations as historical dialogue, which allowed it to retrieve long-past 

historical information. The current utterance-level representation was used as the query 

for the encoder-decoder mechanism. The attention-based historical conversation interaction 

managed the interleaved-style conversations while preserving the causal property for the 

real-time model.

5.2.3 Structure of the Context-Aware Multimodal Model—The two context 

modules formed our proposed context module (Fig. 5). These two modules were used 

independently to capture different kinds of dependencies. The context module was applied 

on top of the context-independent multimodal model. The concatenation of the output of the 

context-independent model and the output of the context module were used to make the final 

predictions.
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6 DATA AUGMENTATION

Our data were transcribed and segmented into utterances for accurate label assignment. 

The transcribers transcribed most speech into utterances about individual activities. For a 

small subset, segmenting chunks of text based on individual activities was not possible, 

leading to a small number of utterances related to multiple activities and activity stages. The 

utterance-level segmentation is not available in a real-time setting. We used a fixed-length 

sliding time window of speech signal for recognizing the activities and activity stages. The 

time window could not capture enough information if the window length was too short 

because utterances were fragmented. If the time window was too long, it would cause a 

delay in real-time recognition, which is not expected. For use in a real-time setting, we 

choose the window length of five seconds as a tradeoff between the fragmentation problem 

and delays. Because this window length (5 seconds) was longer than the average length of 

utterance-level segmentation (2.3 seconds), utterances within the window were more likely 

to refer to multiple activities and activity stages. To enhance the model’s ability to recognize 

concurrent activities and their stages, we introduced two data augmentation methods. We 

first simulated context-independent utterances with multiple activities and stages. Second, 

we simulated team communication during trauma resuscitation. Our data augmentation 

method is described below. We justify the feasibility of data augmentation for both offline 

experiments and real-time application in Sections 8 and 9.

6.1 Simulating Context-independent Utterances

The goal of simulating context-independent utterances was to strengthen the model’s ability 

to simultaneously recognize multiple activities. We composed new utterances by randomly 

selecting the utterances from our training dataset. Some utterances can only be recognized 

within a given context. Selecting these utterances may confuse the training of the model. 

To avoid this issue, we identified a set of context-independent utterances and assumed 

these could be recognized without contextual information because they preserved enough 

information for recognition. We identified context-independent utterances based on activity/

activity stage specific training (Section 4.5). If activity-specific keywords were spotted in an 

utterance then we classify this utterance as context-independent. Finally, we simulated new 

utterances by randomly selecting and combining these context-independent utterances.

6.2 Simulating Team Communication During Actual Trauma Resuscitations

In addition to simulating context-independent utterances, we simulated team communication 

for data augmentation (Fig. 6). We identified two subsets of conversations from available 

transcripts in several steps. First, we collected all utterances that formed a conversation 

about each activity in a given resuscitation. We started with the activity related to the first 

utterance of a transcript and traversed the subsequent utterances until an utterance about a 

different activity was encountered. The previous sentence was considered as the termination 

of the first conversation. The resulting set of adjacent utterances and the associated audio 

clips formed an activity-related conversation. We then used the activity in the current 

utterance as the start of the next conversation and continued in this way until the end of the 

transcript. Finally, we divided the conversations into the subsets related to patient pre-arrival 
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and post-arrival phases. We simulated team communication during resuscitation cases using 

these steps (Fig. 6):

1. We selected several pre-arrival conversations as the beginning of a simulated 

team communication.

2. Repeat either (a) or (b)

a. We appended a context-independent utterance (either simulated as in 

Section 6.1 or an original) to a randomly-selected conversation that 

occurred after patient arrival.

b. We inserted a context-independent utterance into a randomly-selected 

conversation that occurred after patient arrival to represent an 

interleaved conversation.

3. We repeated Step 2 until the simulated team communication reached the 

maximum specified number of utterances.

7 EXPERIMENTAL SETUP

We trained and evaluated both the context-independent and context-aware models (described 

in Section 5). For offline experiments, we first compared different keyword generation 

and spotting methods using the context-independent model. After identifying the optimal 

keyword list and the spotting method, we evaluated the proposed context-aware model 

and performed an ablation study. We then ran online experiments to evaluate model 

performance in an online setting. We also performed experiments to show the efficiency 

of data augmentation with offline and online settings.

7.1 Dataset Preparation for Offline Experiments

We trained and evaluated the proposed models using 168 trauma resuscitation transcripts 

with 28,468 utterances (Table 1). Because of the small dataset, we applied five-fold cross-

validation based on the unit of individual transcripts. We separated a fraction of transcripts 

(10%) from the training set to serve as the validation set. Each data sample (an utterance) 

contained a unique identifier indicating the sequential order of the utterance from the 

start of the resuscitation, a normalized human-transcribed utterance (text cleaned from the 

punctuations, Arabic numerals converted to text, and text normalization and contraction 

expansion), an audio clip, and the corresponding activity and activity-stage labels. Keyword 

lists were generated based on the entire dataset using different generation methods (Sections 

4.2 & 4.3). We used a window size of 25 ms with a shift of 10 ms for commonly used 

80-dimensional filterbank feature extraction from audio. We evaluated the efficiency of our 

proposed data augmentation with different numbers of simulated utterances obtained from 

the training set, including 5,000, 10,000, 15,000, and 20,000 sample size.

7.2 Label Alignment for System Evaluation in Online Experiments

We used the context-aware model trained with data collected offline to evaluate its 

performance in real time. For real-time application, we used an input based on a five-second 

sliding time window instead of utterance-level segmentation. The system-generated label 
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predictions were stored for post-event validation. After the event, we used a manually 

generated transcript with utterance-level segmentation to assign the activity and activity-

stage labels to each time-window of speech. For each time-window, we checked if it 

overlapped with time intervals generated from the start-end timestamps of the manually 

segmented utterances. We omitted utterances that partially overlapped with the given time 

window (shorter than one-third of the original utterance interval and shorter than one half of 

the time window). We then merged the activity and activity-stage labels for the remaining 

overlapped utterances. We used these aligned labels to evaluate our system in an online 

setting.

7.3 Model Implementation and the Training Configuration

We implemented our models using Pytorch [51] 1.8.0 with one Nvidia GTX 2080 GPU and 

CUDA version 10.1. Adam [34] was used as an optimization algorithm, setting the initial 

learning rate as 1e-3. Dropout [57] was set as 0.15 in all experiments to avoid overfitting. 

No other regularization or procedures were applied. We used a batch size of 256 utterances 

in all experiments. The random seed was fixed for reproducibility. We used binary cross 

entropy as the loss function to update our model for multilabel classification. To address 

the imbalance of the dataset (Section 3), we calculated weights based on statistical analysis 

of the dataset and applied the weights to the binary cross entropy to rescale the penalty for 

different activities and activity stages. The run time for the five-fold validation was about 

two days. We used F1-score as the evaluation metric. During training, we halved the learning 

rate if the weighted F1-score among all activities in the validation set did not increase in 

three consecutive epochs. Early stop criteria were triggered if the F1-score could not be 

improved in 15 epochs.

7.4 Baseline Models

To provide a strong baseline for a fair comparison of our proposed approach, we designed 

several baseline models using existing techniques. Bidirectional Encoder Representations 

from Transformers (BERT) [17] leverages large amounts of unannotated data by using 

self-supervised pretraining. BERT has shown promising performance by fine-tuning the 

pretrained model in various natural-language tasks. In audio domains, this technique has 

been known as self-supervised representation learning. We used the HuBERT [66] to extract 

audio feature, with the pretrained model showing generalizability to various audio tasks. We 

designed three models based on these techniques:

• Model #1: A monomodal model that used the BERT base model [17] (contains 

around 110 million trainable parameters) pretrained with BooksCorpus [70] and 

English Wikipedia, and its pretrained tokenizer. We added two classifiers that 

used the representation generated by BERT for activity and stage predictions.

• Model #2: Model #1 modified to replace BERT with a pretrained Clinical BERT 

base model [4], trained with a publicly available clinical-domain corpus that 

addresses the domain-shifting. We also used the Clinical BERT base and its 

pretrained tokenizer for fine-tuning.
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• Model #3: A multimodal model that concatenates the audio representation 

extracted by HuBERT [28] with the text representation extracted by either 

BERT or Clinical BERT. We selected either a BERT or Clinical BERT text 

representation based on which one performed better in model #1 and model #2. 

We then fused different modalities and used two classifiers to predict activity 

and activity stage. We did not use audio representation alone because it did 

not contain sufficient cues to distinguish between activities and activity stages. 

Audio could be used as a supplementary modality to improve the recognition 

performance.

8 RESULTS FROM THE OFFLINE EXPERIMENTS AND DISCUSSION

We first selected the optimal keyword list and model configuration for context-independent 

model (Section 8.1). We then evaluated our proposed context-aware model (Section 8.2). 

The data augmentation experiments are presented in Section 8.3. Finally, Section 8.5 

presents our analysis.

8.1 Experimental Configuration and Results for the Context-Independent Model

We performed a series of experiments for the context-independent model. First, we showed 

that regular stopwords are needed in our study domain. Second, we evaluated different 

keyword selection methods and identified the best keyword list and spotting method. Finally, 

we performed an ablation study that compared the model configuration and our proposed 

activity-specific training. We used the best-performing context-independent model for father 

experiments.

8.1.1 Evaluating the Impact of Removing Regular Stopwords from 
Vocabulary—We performed two experiments to evaluate the performance of the context-

independent model with and without stopwords in the keyword list. In the first experiment, 

we used the entire vocabulary. In the second experiment, we used a filtered vocabulary 

where we removed regular stopwords that were introduced by NLTK [45]. We used the 

same configuration for the context-independent model in both experiments, setting up a 

3-layer context-independent model with a word embedding size of 256 and the number 

of heads in multi-heads attention set at 8. We used the spotting method #1 (described in 

Section 4.4) and repeated the five-fold validation. We then independently compared the 

weighted F1-score among the different categories for activity and activity stage (Table 3). 

The recognition performance for activity and activity stage decreased when we removed 

the regular stopwords (the activity had a 0.9% performance decline and activity stage had 

a 3.6% performance decline). This result showed that regular stopwords improved activity 

and activity-stage recognition, suggesting they should not be removed in advance. In the 

remaining experiments, we did not remove these regular stopwords from the keyword lists.

8.1.2 Selecting the Methods for Keyword List Generation—Our goal was 

to minimize the vocabulary size (keyword list) needed for activity and activity-stage 

recognition while preserving high system performance (Section 4). In these experiments, 

we set a series of thresholds that resulted in different vocabulary sizes (Table 4). We did 
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not enforce the same vocabulary size for frequency and sensitivity-based selection methods 

because we thresholded statistical parameters for these different selection methods (relative 

frequency versus sensitivity score). Because we were studying the effects of keywords 

selection, we used the same model configuration (described in Section 8.1.1). We repeated 

the five-fold validation for each keyword list.

For activity recognition results (Fig. 7), we observed that the sensitivity-based keyword 

selection method performed better than the frequency-based method for vocabularies with 

less than 1,000 words. As the vocabulary size increased, the performance differences 

between different selection and spotting methods decreased. The performance improvement 

was small when the vocabulary exceeded 2,000 words because most domain-specific 

keywords were already included when smaller-size keyword selections were used.

For activity-stage recognition results (Fig. 7), we observed that frequency-based method had 

nearly identical performance compared to sensitivity-based method when the vocabulary 

size was smaller than 500. The sensitivity-based method performed slightly better when the 

vocabulary size increased (greater than 500).

We also observed that the performance for activity and activity-stage recognition using 

an appropriate-size keyword list had better performance compared to using the entire 

vocabulary, suggesting that keyword-based methods are more robust in the recognition tasks 

with limited-size data. We chose the keyword list based on the sensitivity method with 

a vocabulary size of 729 words (“sensitive-729”) to make a tradeoff between recognition 

performance and the keyword list size. We used this keyword list in the remaining 

experiments.

8.1.3 Ablation Study for the Context-Independent Model—After identifying the 

optimal keyword list, we performed an ablation study to find the best setting for the 

context-independent model. Our study included the effects of various hyperparameters on 

the model configuration, different keyword-spotting methods (Section 4.4), the proposed 

activity-specific training (Section 4.5), and the effect of different modalities. Changes in the 

model configuration included modifying the number of layers used in the encoder (3 vs. 6), 

the dimension of text embedding (256 vs. 384), and positional embedding. We also selected 

between the pre-norm (as in [25]) or post-norm style (our adaption) of the encoder, and 

between a single modality (text) or combined modalities (text+tudio) as input. The audio 

modality alone was not considered because aforementioned limitations. These different 

model configurations had only a small impact on the recognition performance (Table 5). The 

two spotting methods achieved comparable performance for activity recognition. Spotting 

method #1 outperformed spotting method #2 on activity-stage recognition because the 

unspotted keywords from method #1 provided additional position information in the text, 

helping distinguish the difference in activity stages. Our proposed activity/activity-stage 

specific training strengthened the relations between activity, activity stage, and associated 

keyword lists. The ablation study of different modalities showed that the multimodal models 

outperformed the single-modality model (text) in both activity and activity-stage recognition 

(Table 5, last row).
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Based on the results from the ablation study, we chose the original setting (post-norm, 256, 

3) with spotting method #1 and used activity-specific training in the remaining experiments.

8.2 Experimental Configuration and Results for the Context-Aware Model

8.2.1 Comparing Context-Independent and Context-Aware Models—We next 

performed the experiments with the proposed context-aware multimodal model. The 

context-aware model outperformed the context-independent model by a large margin for 

activity recognition (66.7% versus 71.5%) and had a slight improvement in performance 

for activity-stage recognition (76.3% versus 77.6%). To understand how the context-aware 

model made these improvements, we independently analyzed the performance for each 

activity and activity stage and compared it with the context-independent model (Table 6, 

columns 1 & 4). We highlighted in bold face the activity (HEENT, PR, E, BK, GCS, 

IVPLAC, LOG, SUM, A) and activity stage (During) when major improvements were made 

using the context-aware model. The recognition results for these activities and activity 

stages are affected by the conversational context, showing that conversational context is 

needed for recognizing specific types of activities and activity stages. The improvement 

for the remaining activities and activity stages was lower, implying a smaller effect of 

conversational context.

8.2.2 Ablation Study for the Context-Aware Model—We next performed an 

ablation study to assess how each of the three context modules contributed to the recognition 

of activities and activity stages. We constructed three models (Table 6): a model that 

only contained conversational-RNN (RNN), a model that only contained attention-based 

historical conversation interaction (Attention), and our proposed model that combined the 

first two (context-aware model). The results for each class are shown independently (Table 

6, columns 3, 4, and 5). By comparing the results for each activity and activity-stage, 

we observed that: (1) the RNN model performed better than the Attention model for 

these activities, including HEENT, E, BK, CS, GCS. The conversations for these activities 

are usually continuous and short-duration because providers take the initiative to perform 

activities and report results. RNN is better at handling these continuous local conversational 

dependencies; (2) the Attention model performed better than the RNN model for some 

activities, including PR, SUM, A, and CP. These activities either had longer-duration (PR, 

SUM), or required feedback from patients (A, CP). The long durations or possible delayed 

responses were the main causes of interleaved conversations, when other activities were 

more likely to overlap and break the continuity of the communication. The Attention model 

was better at handling these discontinuous dependencies in conversation; (3) both RNN 

and Attention achieved comparable performance in activity-stage recognition; and (4) the 

context-aware model performed better than the RNN and Attention models. These results 

were observed because our model combined the advantages of both RNN and Attention 

models, allowing it to handle complex team communication as the observations (1) and (2) 

were not always true in real scenarios. For example, the GCS activity is usually performed 

by a single provider and is a “continuous” conversation. Sometimes GCS is assigned to 

several providers and is associated with a “discontinuous” conversation, interleaved with 

other activities. In another example related to activity A, a delayed response from the patient 

may cause an interleaved conversation. The providers did not need to wait for the response 
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when visible injuries were observed or the patient lost consciousness. Based on these results, 

we used the context-aware model in the remaining experiments.

8.3 Data Augmentation and its Effect for Offline Settings

Data augmentation improved the performance of the context-aware model and partially 

the performance of the context-independent model (Table 7). We empirically analyzed 

the effectiveness of the proposed data augmentation methods, gradually increasing the 

number of simulated samples from 5,000 to 20,000. Models trained with data augmentation 

performed better than those trained without data augmentation. This performance 

improvement first increased as the number of simulated data grew and then converged to 

performance comparable to when augmented with 15,000 or 20,000 samples. For the rest 

of our analysis, we used the data augmentation with 15,000 simulated samples because 

it most improved the performance with the fewest simulated samples. Data augmentation 

improved the performance for both activity (1.7%) and activity-stage (1.5%) recognition in 

the context-aware model. For the context-independent model, data augmentation improved 

activity recognition (1.8%), but contributed less to activity-stage recognition (0.1%). Data 

augmentation was more effective for the context-aware model because it improved the 

recognition of the “during” activity stage. These findings suggest that our proposed data 

augmentation improved the performance of both models in the offline setting.

8.4 Comparisons to Baseline Models

We compared our proposed approaches to three baseline models. We first evaluated the 

single-modality baseline Models #1 and #2 (BERT and Clinical BERT). The performance 

of activity stages improved in both BERT and Clinical BERT compared to the context-

independent (text) model (Table 8). We propose that pretraining with a large amount of 

unannotated data helped the model distinguish the semantic differences in activity stages. 

BERT achieved activity-recognition performance comparable to the context-independent 

(text) model. Clinical BERT showed an improvement in activity-recognition performance, 

proving more helpful to activity recognition in clinical domains. For the multimodal baseline 

Model #3, we combined text representation from Clinical BERT with audio presentation 

from HuBERT [28]. We observed that this combination improved recognition performance, 

showing how different modalities influence performance in our domain. The improvement 

with ClinicalBERT+HuBERT over ClinicalBERT was about the same as the improvement 

of our context-independent (text+audio) over context-independent (text) (Table 8). We 

suspect that this comparable performance improvement was caused by instruments sounds 

that helped activity recognition more than human speech (and HuBERT was pretrained 

with clean human speech). Applying data augmentation to ClinicalBERT+HuBERT further 

improved the performance and showed that our proposed data augmentation improved 

performance in a limited-data scenario (last column in Table 8). Data augmentation showed 

less performance improvement when the model (ClinicalBERT+HuBERT) was pretrained 

with a large unannotated dataset compared to the model trained from scratch (context-

independent). Although the ClinicalBERT+HuBERT baseline outperformed the context-

independent model, it had two limitations. First, the ClinicalBERT+HuBERT baseline has 

more parameters than the context-independent model, leading to high computational costs. 

Second, the ClinicalBERT+HuBERT baseline ignores the conversational context, which led 
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to a better performance of the context-aware model (last row in Table 8). Despite these 

limitations, the baseline models showed promise for improving context-independent model 

by self-supervised learning using a large unannotated in-domain corpus. This approach will 

be evaluated in our future work.

8.5 Analysis and Discussion

We analyzed the context-aware model performance for each activity and activity stage and 

conducted an error analysis for the low-performing activities (CS, AM, SUM, CPR, BC). 

The main error-type was misclassifying the activity group as “none,” particularly for the 

activities AM and CPR (Table 6). Activities BC and BA were sometimes confused, and 

SUM was often misclassified with its finer-level activities, such as A, AA, BA, and E. 

For the remaining activities, the context-aware model performed well (more than 70% of 

F1-scores) (Table 6). In activity-stage recognition, the main confusion occurred between the 

“before” and “other” stages. Some “other” stage utterances were related to requesting items 

or information that were unrelated to medical activities (e.g., “What time is it?”). When 

comparing the model performance for a subset of activities used in previous research [1], our 

system significantly outperformed the previous work (Table 9).

We also jointly evaluated the activity and activity-stage recognition considering four 

scenarios (Table 10): (1) both activity and activity stage were correctly recognized (TT), (2) 

the activity was correctly recognized while activity stage was incorrectly recognized (TF), 

(3) the activity was incorrectly recognized while activity stage was correctly recognized 

(FT), and (4) both activity and activity stage were incorrectly recognized (FF). In most 

cases, activity and activity stage were simultaneously recognized correctly (TT), but in a 

subset of cases only one was recognized correctly (TF or FT). To ensure accurate decision 

support recommendations, activity and activity stage need to be correctly recognized. If the 

clinical decision support system is used to recommend future activities in the workflow, an 

incorrect activity-stage recognition could lead to an incorrect recommendation. To achieve 

high reliability in the actual application, our speech-based activity recognition system should 

be combined with other modalities, such as computer vision for detecting activity stage 

[41]. Tracking the workflow and predicting future activities could also be achieved based on 

learning from the past cases [65].

9 RESULTS FROM THE ONLINE EXPERIMENTS AND DISCUSSION

We also evaluated the context-aware model in online experiments. We built and trained our 

ASR model using one training set from a five-fold validation (Section 9.2). We performed 

two types of online experiments and compared their results to the offline setting. First, 

we ran the experiments using ASR output in place of manual transcripts with the utterance-

level segmentation. We then replaced the utterance-level segmentation with time-window 

segmentation and validated the model in a real-time setting.

9.1 Training of the ASR

Recent deep learning-based ASR [8, 11, 25, 54, 63] has provided reliable performance. 

To replace offline manual transcripts, we built a customized end-to-end ASR model using 
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ESPNet toolkit [64]. We used the pretrained WavLM [12], which was trained using self-

supervised learning with large-scale training dataset as the front-end in the acoustic model. 

We set the acoustic model as a 6-layer encoder, followed by a 3-layer decoder based on the 

conformer architecture [25]. A 6-layer transformer was used as the language model [63]. We 

used one set of a five-fold validation for training and testing in the ASR experiment. We 

used raw data augmentation with the Librispeech corpus [49] and spectrum augmentation 

[50] during training. This customized ASR achieved a 46.7% of word error rate (WER) in 

the testing set. The main contributor to the high WER was the ambient noise, reverberation, 

and low-volume speech. These factors and the limited size of the training dataset negatively 

affected ASR performance.

9.2 Replacing Manual Transcripts with the ASR Output

Although the performance of the ASR was inadequate, we evaluated substituting the manual 

transcripts with the ASR output as the input for our keyword-based activity and activity-

stage recognition. We compared the performance of activity and activity-stage recognition 

for two context-aware models. The first model was trained on the entire vocabulary and 

the second on a selected keyword list (“sensitive-729” from Section 8.1.2). We then 

segmented the audio based on the utterance-level segmentation from the manual transcripts 

and replaced the manual transcript with the ASR output. When using the manual transcripts, 

our keyword-based model performed marginally better than the model based on the entire 

vocabulary (Table 11, row 1). Data augmentation further improved performance (Table 

11, third column). When using the ASR output to replace the manual transcripts (Table 

11, row 2), the system performance declined by about 10%. The keyword-based model 

performed better than the model based on the entire vocabulary, most likely because the 

keyword-based model was less affected by ASR performance. These findings suggest that 

the keyword-based model is more robust and that data augmentation improved performance. 

The proposed models (Table 11, columns 2–4) with the context module all outperformed the 

baseline model (ClinicalBERT+HuBERT) with data augmentation (Table 11, last column). 

This result showed that capturing the conversational context is critical in activity and 

activity-stage recognition during complex workflows such as trauma resuscitation. The 

pretrained tokenizer in [4, 17] was more negatively affected by a poorly performing ASR 

than our word-level model. This may be because the pretrained tokenizer would encode 

the out-of-vocabulary words that were wrongly generated from poorly performing ASR, 

negatively impacting recognition results.

9.3 Real-Time Activity and Activity-Stage Recognition

Although our context-aware model achieved moderate performance after replacing manual 

transcripts with the ASR output, the utterance-level segmentation is not available in real 

time. To evaluate our model in a real-time setting, we used a time-window segmentation. 

We aligned the utterance-level labels with each time window (Section 7.2) and measured 

the system performance in a real-time setting (Table 11, last row). The performance of each 

model further declined when relying on the time-window segmentation and compared to 

aligned labels. The main cause of this decline may be utterance fragmentation that occurred 

during the label alignment. For example, an utterance may span two time-windows, but the 

keywords associated with the activity may only occur in the second window. Because of the 
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causal property for the real-time model, the information for the first window is inadequate 

for the model to recognize the corresponding activity. The performance further improved 

with data augmentation. This finding suggests that concurrent activities and activity stages 

occurred more frequently in fixed-length time windows. Our model achieved reasonable 

performance for a real-time setting such as dynamic and complex medical workflow 

(Table 11, shaded in grey). This baseline model (ClinicalBERT+HuBERT) performed worst 

because it ignored the conversational context and was more affected by a poorly performing 

ASR when using a tokenizer.

10 CONCLUSION AND FUTURE WORK

We developed a system for recognizing 23 types of medical activities and 4 activity stages. 

We introduced a dynamic keyword spotting and selection method that relies on a small 

set of keywords. Using multiple data sources, such as audio sound, keywords, and the 

context of previous sentences, we developed a context-aware multimodal architecture to 

recognize activities and corresponding activity stages. This proposed system addresses the 

following requirements for an online model: (1) alleviating the need for a high-quality 

ASR; (2) capturing the conversational context during a complex workflow; (3) recognizing 

both activities and activity stages, a required feature for developing a clinical decision 

support system. We have built this system specific to trauma resuscitation scenario, 

but it can be generalized to the scenarios where activity recognition is also based on 

verbal communication and had common routine activities, such as surgery and ICU. 

We introduced a data augmentation method to improve performance and evaluated the 

system using manually transcribed speech (offline experiments) and real-time speech (online 

experiments). In offline experiments, the results for 23 activity types and 4 activity stages 

showed an average F1-score of 73.2 % and 78.1% for activity and activity stage recognition, 

respectively. In online experiments, our model performance declined by about 10% in 

both activity and activity-stage recognition when using utterance-level segmentation with 

the ASR output and declined around 15% when using time-window sliding with the 

ASR output. Although models were trained with utterance-level data and performed on 

time-window segments, online experiments showed the feasibility of using speech to detect 

activity and activity stage in complex medical workflows.

The performance of our model may still be inadequate for some activities in a real-time 

decision-support system due to the poorly performing ASR and a limited training dataset. 

Our future work will focus on complementing speech-based activity recognition with 

computer vision-based methods. Some activities for which our speech-based system showed 

lower accuracy (CPR, BC) have clear visual cues and could be reliably recognized using 

computer vision. Our future work will consider four approaches to improve the performance 

of our current system: (1) improving the training objective for imbalanced datasets; (2) 

designing a more realistic data augmentation method; (3) pretraining the model with a 

large amount of in-domain unannotated data using self-supervised learning; (4) improving 

the ASR performance by semi- and self-supervised learning to supplement a limited-size 

human-annotated dataset.
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CCS CONCEPTS:

• Computing methodologies → Machine learning • Applied computing → Life and 

medical sciences → Health care information systems.
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Fig. 1: 
The overall framework of clinical decision support system. This paper focuses on Phase 1.
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Fig. 2: 
Examples of different spotting methods. OOV = out-of-vocabulary word.
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Fig. 3: 
Conformer block.
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Fig. 4: 
Context-independent multimodal model.
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Fig. 5: 
Context-aware multimodal model.
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Fig. 6: 
Workflow for simulating team communication during a trauma case
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Fig. 7: 
Activity and Activity-stage recognition weighted F1-score for 5-fold validation using 

different keyword lists.
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Table 1:

The statistics of activity-stage-related utterances in our dataset of transcripts from 168 trauma resuscitations.

# Activity-stage Utterances

1 Before 5,655

2 During 4,347

3 After 11,307

4 Other 8,857
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Table 2:

The statistics of activity-related utterances in our dataset of transcripts from 168 trauma resuscitations.

# Activity Code Utterances

1 No activity performed None 7,584

2 Head, eye, ear, nose, throat assessment HEENT 3,117

3 Pre-arrival activities PR 2,748

4 Extremity examination E 2,155

5 Medications MEDS 1,319

6 Back examination BK 1,464

7 Adjunctive procedures ADJ 1,327

8 Glasgow coma scale (GCS) evaluation GCS 1,164

9 Intravenous (IV) catheter placement IVPLAC 1,155

10 Blood pressure and vital sign measurment BP 1,004

11 Cervical collar activities CS 1,077

12 Log roll of patient LOG 984

13 Circulatory status assessment CC 905

14 Temperature managmenet (exposure control) EC 824

15 Airway management AM 643

16 Summary of reports SUM 582

17 Airway assessment AA 571

18 Respiratory assessment (breathing assessment) BA 504

19 Abdomen examination A 444

20 Chest palpation CP 435

21 Cardiopulmonary resuscitation (CPR)-related activities CPR 434

22 Pelvic examintation PE 432

23 Respiratory support (breathing control) BC 249
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Table 3:

Performance comparison between using the original vocabulary and filtered vocabulary. The numbers in the 

parentheses indicate the vocabulary size (in words). Weighted average F1-score is reported.

Selection Method Activity Activity-Stage

Original Vocabulary (4,717) 65.7±1.4% 75.4±1.2%

Filtered Vocabulary (4,591) 64.8±0.9% 71.8±1.6%
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Table 4:

Frequency and sensitivity thresholds and vocabulary sizes. When a threshold was 0, we used the entire 

vocabulary.

Selection Method 0.01 0.005 0.0025 0.0015 0.001 0.00075 0.0005 0.00025 0.0001 0.0

Frequency-based 140 237 371 500 661 768 999 1651 2881 4717

Sensitivity-based 139 248 340 436 512 729 1100 2240 2948 4717
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Table 5:

The results for ablation study of Context-independent model. Two-step training first uses activity-specific 

keyword lists, followed by the common list.

Model Configuration* Spotting Method Modality Activity/Activity-stage specific spotting Activity Activity-stage

Post-norm, 256, 3 #1 Text+Audio 66.3±1.0% 76.1±1.3%

Post-norm, 256, 6 #1 Text+Audio 66.0±1.4% 76.1±1.9%

Post-norm, 384, 3 #1 Text+Audio 66.2±1.3% 76.0±1.6%

Pre-norm, 256, 3 #1 Text+Audio 66.1±1.1% 75.9±1.2%

Post-norm, 256, 3 #1 Text+Audio • 66.7±0.9% 76.3±1.2%

Post-norm, 256, 3 #2 Text+Audio 65.9±1.1% 75.3±1.2%

Post-norm, 256, 6 #2 Text+Audio • 66.4±1.1% 75.5±1.3%

Post-norm, 256, 3 #1 Text • 64.9±1.2% 75.2±1.8%

*
The model configuration in the table represents pre- or post-norm style, the dimension size for word embedding, and the number of layers used in 

the model.
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Table 6:

F1-scores (in percentages) for activities and activity stages using the context-aware model with three designs 

(last three columns). Boldfaced numbers highlight significantly improved performance compared to the 

context-independent model (first column).

Model Configuration Context-independent RNN Attention Context-aware

Weigted F1-scores for All Activities 66.7±0.9 70.9±1.0 71.1±1.0 71.5±1.2

No activity performed (None) 67.8±2.5 70.0±2.0 69.5±2.5 70.0±2.6

Head, eye, ear, nose, throat assessment (HEENT) 71.1±3.6 76.1±2.9 75.3±2.7 76.2±3.1

Pre-arrival activities (PR) 56.0±3.8 65.4±3.1 67.5±4.1 68.6±3.5

Extremity examination (E) 66.1±5.4 76.1±3.0 75.1±3.7 75.9±2.8

Medications (MEDS) 71.6±4.7 72.7±5.7 74.9±4.5 74.5±6.7

Back examination (BK) 51.9±2.3 71.3±4.1 70.1±4.2 71.4±3.6

Adjunctive procedures (ADJ) 68.4±2.6 70.7±2.9 69.7±4.3 70.5±3.1

Glasgow coma scale (GCS) evaluation (GCS) 66.8±2.3 72.3±2.9 71.5±2.7 72.6±2.5

Intravenous (IV) catheter placement (IVPLAC) 69.6±4.3 74.5±3.4 74.4±2.7 74.6±2.6

Blood pressure and vital sign measurment (BP) 75.7±3.6 76.8±3.2 76.8±3.4 77.8±2.8

Cervical collar activities (CS) 60.3±4.7 63.6±5.7 62.9±3.7 63.5±3.7

Log roll of patient (LOG) 69.8±5.4 76.3±4.3 76.5±4.0 76.4±4.0

Circulatory status assessment (CC) 75.5±4.3 76.0±3.3 76.5±3.1 76.1±3.5

Temperature managmenet (exposure control) (EC) 74.7±1.5 77.3±2.6 77.3±0.7 77.4±1.0

Airway management (AM) 53.3±5.4 57.4±7.7 57.9±6.9 57.9±7.5

Summary of reports (SUM) 44.2±4.7 46.6±6.4 49.0±8.3 50.5±5.5

Airway assessment (AA) 77.7±3.6 77.7±4.0 78.2±3.6 77.7±4.3

Respiratory assessment (breathing assessment) (BA) 67.1±4.1 68.9±3.5 66.3±3.0 70.0±4.1

Abdomen examination (A) 66.6±5.9 71.8±7.4 73.1±3.5 73.6±5.0

Chest palpation (CP) 71.9±5.3 72.2±6.1 74.4±2.9 73.9±5.4

Cardiopulmonary resuscitation-related activities (CPR) 58.2±2.2 61.0±4.3 61.3±2.5 62.2±1.9

Pelvic examintation (PE) 67.1±3.2 71.4±3.8 71.2±2.6 71.8±3.0

Respiratory support (breathing control) (BC) 48.7±6.8 49.9±6.1 50.0±6.4 50.1±6.6

Weigted Fŝcores for All Activity Stages 76.3±1.2 77.6±1.2 77.5±1.0 77.6±1.0

Before 68.9±2.3 69.2±2.3 69.4±2.2 69.2±2.1

During 77.5±2.5 81.7±3.0 81.4±2.7 81.8±2.9

After 80.6±2.2 81.7±2.1 81.6±2.0 81.7±2.0

Other 73.9±2.0 75.6±1.5 75.5±1.5 75.8±1.6
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Table 7:

Performance comparison between without-data-augmentation and data-augmentation. Weighted Average F1-

scores for activity/activity-stage recognition are reported.

Context-independent Context-aware

W/O Data Augmentation 66.7±0.9/76.3±1.2% 71.5±1.2/77.6±1.0%

Data Augmentation (5,000) 67.4±0.9/76.4±1.1% 72.3±1.2/77.9±0.9%

Data Augmentation (10,000) 68.0±1.1/76.4±1.2% 72.9±0.9/77.9±1.0%

Data Augmentation (15,000) 68.5±1.2/76.4±1.2% 73.2±0.8/78.1±1.1%

Data Augmentation (20,000) 68.6±1.3/76.3±1.2% 73.2±0.7/78.2±1.2%
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Table 8:

Performance comparison to baselines. Weighted Average F1-scores for activity/activity-stage recognition are 

reported.

W/O Data Augmentation Data Augmentation (15,000)

Baselines

BERT (text) 65.0±1.0/76.0±1.6% —

ClinicalBERT (text) 65.5±1.1/76.1±1.5% —

ClinicalBERT+HuBERT (text+audio) 67.3±0.7/76.6±1.3% 68.7±0.9/76.9±1.2%

Our models

Context-independent (text) 64.9±1.2/75.2±1.8% —

Context-independent (text+audio) 66.7±0.9/76.3±1.2% 68.5±1.2/76.4±1.2%

Context-aware (text+audio) 71.5±1.2/77.6±1.0% 73.2±0.8/78.1±1.1%
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Table 9:

Comparing our context-aware system performance with prior work [1] on their set of activities. F1-score is 

reported.

Model╲ Activity Extremity 
examination (E)

Back examination 
(BK)

GCS evaluation 
(GCS)

Head, eye, ear, nose, 
throat assessment 

(HEENT)

Circulatory status 
assessment (CC)

Previous System 
[1] 63.2% 66.5% 56.8% 59.9% 56.7%

Our System 75.9±2.8% 71.4±3.6% 72.6±2.5% 75.3±3.3% 75.7±3.5%
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Table 10:

Confusion matrix of the correctness (true/false) for activity and activity-stage recognition.

Activity╲ Activity-Stage T (Activity-stage correctly recognized) F (Activity-stage incorrectly recognized)

T (Activity correctly recognized) 52.7±1.6% 11.1±1.0%

F (Activity incorrectly recognized) 19.6±1.0% 15.8±0.9%
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Table 11:

Performance comparison between manual transcripts and the ASR output. Weighted Average F1-scores for 

activity and activity-stage recognition are reported. The number of words used in each case is shown in the 

first row.

Entire vocabulary 
(4717)

Keyword-based 
(729)

Keyword-based (729) 
with data augmentation

ClinicalBERT+HuBERT with 
data augmentation

Utterance-level segmented & 
manual transcripts 69.3/75.1 69.6/76.8 72.0/77.4 68.1/74.8

Utterance-level segmented & 
ASR 58.7/61.2 60.0/62.7 60.9/65.2 54.1/59.3

Time window sliding & ASR 53.9/58.1 55.4/59.9 57.4/61.6 50.9/55.2
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