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Abstract

The localization of messenger RNAs (mRNAs) is a frequently observed phenomenon and a

crucial aspect of gene expression regulation. It is also a mechanism for targeting proteins to

a specific cellular region. Moreover, prior research and studies have shown the significance

of intracellular RNA positioning during embryonic and neural dendrite formation. Incorrect

RNA localization, which can be caused by a variety of factors, such as mutations in trans-

regulatory elements, has been linked to the development of certain neuromuscular diseases

and cancer. In this study, we introduced NN-RNALoc, a neural network-based method for

predicting the cellular location of mRNA using novel features extracted from mRNA

sequence data and protein interaction patterns. In fact, we developed a distance-based sub-

sequence profile for RNA sequence representation that is more memory and time-efficient

than well-known k-mer sequence representation. Combining protein-protein interaction

data, which is essential for numerous biological processes, with our novel distance-based

subsequence profiles of mRNA sequences produces more accurate features. On two

benchmark datasets, CeFra-Seq and RNALocate, the performance of NN-RNALoc is com-

pared to powerful predictive models proposed in previous works (mRNALoc, RNATracker,

mLoc-mRNA, DM3Loc, iLoc-mRNA, and EL-RMLocNet), and a ground neural (DNN5-mer)

network. Compared to the previous methods, NN-RNALoc significantly reduces computa-

tion time and also outperforms them in terms of accuracy. This study’s source code and

datasets are freely accessible at https://github.com/NeginBabaiha/NN-RNALoc.

Introduction

Numerous studies have implicated the intracellular localization of RNA as a cellular polariza-

tion mechanism, as it plays a crucial role in gene expression regulation [1]. Additionally, mes-

senger RNAs (mRNAs) localization may be preferable to protein localization because a single

mRNA molecule can serve as a template for multiple proteins. Therefore, the prediction of

mRNA localization rather than protein localization is more efficient and saves time. Recent

research suggests, however, that the localization of mRNAs to specific sub-cellular
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compartments may be more common than previously thought, and that signals in the

sequences of both types of molecules can play a role in their transport to specific cellular loca-

tions [2–5]. Notable is the association between incorrect RNA localization within the cell and

neuromuscular disorders and cancer. Previously, oligonucleotides were introduced as a new

type of drug that targets RNAs rather than disease-causing proteins [6–8]. On the other hand,

mRNA localization has been studied for many years, and there are two well-known experi-

mental datasets in this regard: cell fractionation with RNA-sequencing (CeFra-Seq) and

APEX-RIP [9, 10]. CeFra-Seq is a method for mapping the abundance of transcripts in the

Nucleus, Cytoplasm, Membrane, and Insoluble fractions of cells. APEX-RIP is a technique for

mapping Nuclear, Cytoplasmic, Endoplasmic Reticulum (ER), and Mitochondrial transcrip-

tomes. Additionally, RNALocate is a well-known RNA localization dataset. RNALocate is a

web-accessible dataset containing information for over 190,00 RNA-associated sub-cellular

localization entries supported by experimental and predicted evidence [11]. It involves over

105,000 RNAs in 44 subcellular locations in 65 species, including Homo sapiens, Mus muscu-

lus, and Saccharomyces cerevisiae. The gap between existing mRNAs and those whose location

is known is increasing the need for computational predictors despite experimental efforts. In

recent years, computational predictors have emerged that rely heavily on machine learning

techniques [12–14]. RNATracker [9] was the first mRNA localization prediction model to be

developed in 2019. RNATracker predicts the location of mRNAs in CeFra-Seq and APEX-RIP

datasets using convolutional neural network (CNN) and long short-term Memory (LSTM). In

another recent study, a predictive model named RNA-GPS was introduced to predict the local-

ization of the transcripts in the APEX-RIP dataset only [14]. RNA-GPS computes k-mer fre-

quencies for k ranging from 3 to 5 for each transcript and assigns probabilities to mRNA-

location using a random forest model. In 2020, mRNALoc was designed to predict mRNA

sub-cellular localization by extracting k-mer profiles from mRNA sequences and applying a

support vector machine (SVM) and was trained on the RNALocate dataset [12]. Zhang et al.,

developed a computational method, iLoc-mRNA, which was trained on the RNALocate data-

set and applied a SVM model for multiclass classification [13]. It is also noteworthy to mention

that in iLoc-mRNA, predictions were made for one of the following locations: Cytosol/Cyto-

plasm, ribosome, Endoplasmic Reticulum, and nucleus/exosome dendrite/mitochondrion. It

is understood that combining nucleus, exosome, dendrite, and Mitochondria as a single loca-

tion is not appropriate as these are diverse locations which should not be merged into a single

sub-cellular class [12]. Meher et al. presented “mLoc-mRNA” to forecast nine distinct sub-cel-

lular localizations for mRNAs. They used k-mers of sizes 1–6 to transform each mRNA

sequence into a numerical feature vector. They applied the Elastic Net statistical model to

extract the best features from the k-mer features. The sub-cellular localization of mRNAs was

then predicted using a Random Forest classifier [15]. In 2021, a multi-label mRNA sub-cellular

localization predictor named “DM3Loc” was also proposed using Deep Learning, which pre-

dicts the 6 distinct locations of mRNAs in Homo sapiens. They prepared data as the input for

CNN using mRNA sequences as the raw data and a novel multi-head self-attention mechanism

capable of producing sequence motifs [16]. The deep learning model “EL-RMLocNet”, which

predicts the subcellular localization of four different RNA classes (mRNA, miRNA, lncRNA,

and snoRNA) in Homo sapiens and Mus musculus species, was developed in [17]. To identify

the most informative features from raw RNA sequences, they used the LSTM network, which

captured the short and long range relations of nucleotide k-mers. In this study, we focus on

the CeFra-Seq and RNALocate datasets, as well as powerful predictive models including

mRNALoc, RNATracker, mLoc-mRNA, DM3Loc, iLoc-mRNA, and EL-RMLocNet as bench-

marks. The rationale for selecting these methods and datasets is that the APEX-RIP dataset is

noisy [12]. We also study a ground neural network (DNN-5mer) that only has two hidden
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layers and extracts k-mer features from sequences. We presented a novel representation of

mRNA sequences based on subsequences of distance k, and we argued that combining this

encoding with conventional k-mer frequency profiles can potentially yield more sequence-

based information from mRNAs. Using a protein-protein interaction (PPI) network, we devel-

oped a neural network-based model that we call NN-RNALoc. Indeed, we utilized the fact that

proteins with similar PPI patterns tend to be primarily located in the same sub-cellular loca-

tion [18, 19] by incorporating this widely-used data into the predictive model. Additionally, it

is essential to note that “Chou’s 5-step rule” [20] can be used to develop a more practical pre-

dictor for a biological system. The Chou’s 5-step rules have the following notable benefits:

clear in logic development, completely transparent in operation, easily repeatable by other

researchers, with a high potential for stimulating other sequence-analysis methods, and very

user-friendly for the vast majority of experimental scientists [21, 22]. Therefore, in this study,

we establish the NN-RNALoc predictor through the following five steps:

1. Select or create a valid benchmark dataset for use in training and validating the predictor.

This step is detailed in the “Data Sources” section.

2. Represent the mRNAs with an efficient formulation and extract k-mer information that

reflects their intrinsic correlation with the to-be-predicted target. This process is outlined

in “Feature Encoding” section.

3. Introduce and develop the potent NN-RNALoc algorithm for prediction purposes. In the

“NN-RNALoc” section, the three primary steps of NN-RNALoc and its workflow are

described.

4. Perform cross-validation tests to objectively evaluate the anticipated accuracy of the predic-

tion. This section describes the third step of the NN-RNALoc workflow, which is also cov-

ered in the “NN-RNALoc” section.

5. In our future work, we will create a user-friendly, publicly accessible web server for the pre-

dictor. More information is provided in the “Conclusion” section.

The remaining sections are organized as follows: in the Materials and Methods section, we

declare the datasets and introduce the features extracted from mRNA transcripts. Then, we

discuss the specifics and steps required to create our model. In the Results section, we describe

the performance of NN-RNALoc on the aforementioned two datasets and compare it to differ-

ent methods: mRNALoc, RNATracker, DNN-5mer, DM3Loc, iLoc-mRNA, mLoc-mRNA,

and EL-RMLocNet. In the Discussion section, we evaluate the performance of NN-RNALoc

on human and non-human transcripts, utilizing novel distance-based subsequence profiles

and canonical k-mer information.

Materials and methods

This section describes the data sources utilized in our research. Then, the details of the features

and the architecture of NN-RNALoc are explained in more depth.

Data sources

mRNA sequences and localization information. Two datasets are considered to bench-

mark the performance of NN-RNALoc against well-known algorithms. The initial dataset is

CeFra-Seq, which is also utilized by the RNATracker technique. As stated previously, CeFra-

Seq contains human transcripts, and localization information of mRNAs is presented as nor-

malized gene expression values for each of four sub-cellular locations: Cytosol, Nucleus,
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Membrane, and Insoluble. Therefore, rather than a single cellular location label for each

mRNA, we have a four-element vector whose elements represent the probability of each

mRNA’s location. In this dataset, there are 11,373 mRNAs, and the sequences come from the

Ensemble dataset [23]. For the second dataset (RNALocate), mRNA sequences and sub-cellu-

lar localization information are extracted from the RNALocate dataset. NN-RNALoc considers

each human and non-human transcript separately, and for each gene, only one isoform is con-

sidered. This study examines the Cytoplasm, Endoplasmic Reticulum (ER), Extracellular

Region (EX), Mitochondria, and Nucleus. In this dataset, only mRNA sequences belonging to

a single location are taken into account. The RNALocate sub-cellular localization data were

obtained from RNALocate at https://www.rna-society.org/rnalocate/. The sequences of

mRNAs were downloaded from GenBank and the mRNA sequence data in the FASTA format

were obtained from the NCBI on December 2022 [24]. In total, this dataset contains 11,180

mRNAs, of which 5,905 are human transcripts and 5,275 are non-human transcripts. Table 1

provides a summary of this dataset. Notably, because the data produced by APEX-RIP is fairly

noisy [9, 12], we did not use it in this study.

Protein-Protein Interaction (PPI) information. The PPI information regarding human

mRNA is extracted from the STRING database [25]. The longest protein-coding isoform

among all isoforms of a gene is considered in this database, and one protein is then assigned to

each mRNA. Thus, we obtain a weighted network for which vertices are the proteins assigned

to mRNAs, the edges represent the interaction between the corresponding proteins, and the

weights represent the STRING-assigned strength of the interaction between two proteins. So,

the PPI information can be shown as a matrix for which entries show how strongly two pro-

teins interact with each other.

Feature encoding

With the explosive growth of biological sequences in the post-genomic era, one of the most

important and challenging problems in computational biology is how to express a biological

sequence using a discrete model or vector while retaining significant sequence-order informa-

tion or essential pattern characteristics. Two types of characteristics are derived from mRNA

sequences. The first is k-mer representation, one of the most commonly employed encodings

for nucleotide sequences [26–28]. The second is a novel representation that we propose for

mRNA sequences. These two characteristics are described in detail below.

k-mer representation. Counting k-mer frequencies is one way to extract a uniform-

length feature vector from these sequences [26, 28]. A k-mer is a potential subsequence of

length k within the mRNA sequence. As there are four neucleotides, there are a total of 4k

Table 1. Total number of mRNAs in each five locations in the RNALocate dataset.

Location Human Species Non-human Species

Cytoplasm 3,427 1,534

Endoplasmic Reticulum 1,173 8

Extracellular Region 26 509

Mitochondria 5 344

Nuclear 1,274 2,880

Total 5,905 5,275

The first column represents each cellular compartment. The second and third column reveal the number of human

and non-human transcripts, respectively.

https://doi.org/10.1371/journal.pone.0258793.t001
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possible k-mers. Some k-mer profiles have been demonstrated to be more important for cer-

tain tasks. Specifically, Hart et al., discussed the significance of 5-mer sites in microRNA-gene

targeting [29]. As shown in Fig 1, for the ACGCCGCCG sequence, all 5-mer structures are

ACGCC, CGCCG, and GCCGC. The k-mer characteristics of this paper are covered by a

highly effective web server called “Pse-in-One” [30]. For an mRNA sequence S, we sort all

5-mer structures lexicographically, then count the frequency of each 5-mer structure in the

main mRNA sequence and divide it by its length. Consequently, we acquire the following attri-

bute vector: F5(S) = [v1, v2, . . ., vn], where each vi is the frequency of the i-th 5-mer and n is

equal to 45 = 1, 024 in this case.

Distance-based sub-sequence profiles. The main drawback of k-mer representation is

that when k increases, the feature vector becomes extremely large and sparse, which can be

memory-inefficient and can reduce the performance of the model. In order to mitigate the

issue of small repeat regions, it may be advantageous to employ larger k-mer sizes. However,

as the number of matching subsequences decreases, large k-mers become computationally

infeasible and result in significant sparsity in the feature vector. In this study, we propose a

novel distance-based representation to partially address this issue. In the novel distance-based

profiles, the distance between the first and last nucleotide of the subsequence that we counted

is k. The frequency of this subsequence is then determined for each pair of nucleotides sepa-

rated by k. Consequently, for an mRNA sequence S and a distance k, the following 16-element

feature vector is obtained: Dk(S) = [w1, w2, . . ., w16], where wi is the frequency of each dis-

tance-based sub-sequence and X is a sub-sequence of size k. For any k, an illustration of all

subsequences to count is provided in Fig 2.

It is obvious that for an mRNA sequence S with a length of m, X can be replaced with a sub-

sequence of nucleotides (A, G, C, and T) ranging from size 0 to m-2. As an example, let’s con-

sider S to be the mRNA with the sequence ACGCCGC with a length of 7, so X can be a sub-

sequence of maximum size 5. For example, in Fig 3, four distance-based substructures of

ACGCCGC are shown in three different colors. The two sub-sequences CGCC and CCGC

with distance 2 are shown in green, one sub-sequence GCCGC with distance 3 is drawn in red,

and one sub-sequence ACGCCGC with distance 5 is illustrated in black. For instance, to calcu-

late w3 and w6 in this sequence, for w3: AXG, we have one sub-sequence ACG (k = 1) and one

Fig 1. All 5-mer structures contained in ACGCCGC sequence. In this example, we have three 5-mers ACGCC, CGCCG and GCCGC that are shown

in three different colors.

https://doi.org/10.1371/journal.pone.0258793.g001
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sub-sequence ACGCCG (k = 4), so the frequency of w3 is 2. For w6: CXC, the sequence con-

tains one sub-sequence CC (k = 0), two sub-sequences CGC (k = 1), one sub-sequence CCGC

(k = 2), one sub-sequence CGCC (k = 2), and one sub-sequence CGCCGC (k = 4). Therefore,

the frequency of w6 is 6. In this work, we tested a wide range of distances, and after many trials

and errors, we found the best range for k to be between 0 and 8. As a result, the length of the

created feature vector is 9 × 16 = 144.

Principle Component Analysis on PPI network. As previously stated, the PPI informa-

tion is represented as an adjacency matrix with the dimension of number of

mRNAs × number of mRNAs. As a result, the PPI matrix in the first dataset has a dimension

of 11, 373 × 11, 373 whereas the PPI matrix in the RNALocate dataset has a dimension of

5880 × 5880. Because the performance of machine learning models can decrease when too

many features are considered, we first employ the Principle Component Analysis (PCA) tech-

nique to reduce the dimension of this matrix [31]. PCA is one of the most widely used methods

for reducing feature space and increasing storage space or the computational efficiency of a

learning algorithm. It applies singular value decomposition to project data into a lower

Fig 2. For an mRNA sequence S and a distance k, we depict the 16-element feature vector, where wi is the

frequency of each distance-based subsequence and X denotes a possible sub-sequences of size k.

https://doi.org/10.1371/journal.pone.0258793.g002

Fig 3. Four distance-based substructures are shown in three different colors for the mRNA sequence S = ACGCCGC. Two sub-sequences CGCC and

CCGC with k = 2 are shown in green, one sub-sequence GCCGC with k = 3 is depicted in red, and one sub-sequence ACGCCGC with k = 5 is illustrated

in black. In addition, the figure depicts the possible subsequences of S between A and G (AXG) and C and C (CXC).

https://doi.org/10.1371/journal.pone.0258793.g003
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dimensional space, emphasizing variation and highlighting strong patterns in a dataset. After

many tests, the number of principal components in this study has been set to 500, and the total

variance explained is more than 70% of the total data.

NN-RNALoc

In this section, we express the main steps of NN-RNALoc.

Step 1: Combine of the following three feature vectors:

1. 5-mer frequencies (a vector of length 1,024)

2. Subsequence distance-based profiles (a vector of length 144)

3. Reduced PPI matrix using PCA method (a vector of length 500 for each mRNA)

We combine the collected data into a single 1668-dimensional feature vector (1,024 + 144

+ 500). This vector serves as the final input for our neural network model for the prediction

task.

Step 2: Design of a neural network model

We propose an artificial neural network (ANN) for assigning probabilities of a mRNA

belonging to a specific location based on our developed features. A neural network can be rep-

resented as a sequence of matrix multiplications interleaved with nonlinear functions. An

ANN is made up of a number of smaller units known as neurons, which can be repeated in

multiple layers. To prevent the neural network from becoming complex and thus more diffi-

cult to train efficiently, we employ a model with a shallow architecture consisting of one hid-

den layer and 200 neurons. Dropout is also used in the hidden layer to mask randomly 50% of

the connections during model training to prevent overfitting. We use the Rectified Linear Unit

(Relu) activation function in the hidden layer, which is described as follows [32]:

ReluðxÞ ¼ maxð0; xÞ: ð1Þ

The Softmax function as the non-linear function is applied in the last layer of the model to

assign a probability to each location (xi) and is formulated as bellow [33]:

SoftmaxðxiÞ ¼
expðxiÞP
j expðxjÞ

ð2Þ

Finaly, we use Kullback-Leiber-Divergence as the loss function. For probability distribution

P andQ defined on the same probability space X, Kullback-Leiber-Divergence is defined as

[34]:

KLðQ k PÞ ¼ Sx2XQðxÞ log
QðxÞ
PðxÞ

� �

: ð3Þ

Step 3: Training of the prediction model

The selection of hyper-parameters of the model is based on the training dataset. All parame-

ters were chosen with the intent of minimizing the loss function. For training the model, we

employ the 10-fold cross-validation method [35]. The outcomes are then evaluated using a

range of values for hidden layers (no hidden layer, 1, 2, and 3), neurons in each fully connected

layer (1,000, 700, 500, 200, and 100), and dropout rates (0.1, 0.2, 0.3 and 0.5). Table 2 displays

the most optimal parameters utilized by this model. A validation set consisting of 10% of the

training data is also applied to monitor the loss function during the training process and detect

overfitting. The Keras Library [36] is used to implement NN-RNALoc. In addition, the Adam
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optimizer with Nesterov momentum is used to train the model [37]. Fig 4 depicts the compre-

hensive workflow of NN-RNALoc.

Evaluation criteria

As stated previously, we work with two datasets, and due to the differences in their structures,

we compare different metrics to evaluate the performance of the model on each dataset. As

described previously, the CeFra-Seq localization values are continuous. We therefore consider

correlation measurements when evaluating model performance similar to [9] study. The initial

measure is Pearson Correlation. Pearson Correlation is a method for measuring the linear

Table 2. Selected hyper-parameters for NN-RNALoc.

Parameter Value

Epochs 300

Batch size 512

Hidden layer 1

Fully connected neurons 200

Dropout rate 0.2

https://doi.org/10.1371/journal.pone.0258793.t002

Fig 4. The overview of NN-RNALoc method. In Step 1, we first aggregate all information gathered from both sequence-based features as well as

protein-protein interaction (PPI) matrix. In Step 2, we design a neural network model with the mentioned architecture. In Step 3, the model is trained

and evaluated using 10-fold cross-validation. We report a probability vector of length 4 for each mRNA in the CeFra-Seq dataset and the location with

the highest probability as the mRNA’s predicted location in the RNALocate dataset.

https://doi.org/10.1371/journal.pone.0258793.g004
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correlation between predicted and observed values. It has a value between 1 and -1, with +1

representing a total positive linear correlation, 0 representing no linear correlation, and -1 rep-

resenting a total negative linear correlation. In order to better evaluate the performance of the

model, we also consider the Spearman correlation between predicted and experimental values

to capture the order of locations to which an mRNA belongs. In addition, we employ classifica-

tion metrics in the RNALocate dataset because localization information is discrete values simi-

lar to [12] study. True Positive (TP), True Negative (TN), False Positive (FP), False Negative

(FN), Precision, Recall, F-score, Accuracy (ACC), and Matthews Correlation Coefficient

(MCC) are computed for this dataset in order to compare the performance of the NN-RNALoc

method to that of other methods. These criteria are defined below:

Precision ¼
TP

TP þ FP
; Recall ¼

TP
TP þ FN

;

F � score ¼ 2
Recall� Precision
Recallþ Precision

;

ACC ¼
TPþ TN

TP þ FPþ FN þ TN
;

MCC ¼
TP � TN � FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ

p

:

The criteria listed above are some of the most prevalent metrics used in classification prob-

lems to evaluate the performance of a model. Clearly, relying solely on a single statistical mea-

sure (such as ACC) can lead to overoptimistic results, particularly when analyzing datasets

with imbalances. As a result, we also evaluate enhancements to the MCC measure, which is a

more reliable statistical rate that yields a high score only if the predictive model achieves suc-

cess in all categories. In Table 3, we have summarized all the metrics used to evaluate the per-

formance of the models on the two benchmarks.

Results

Time complexity

Many of the methodologies, including mRNALoc, are provided as server-based tools, making

it impossible to compare their time complexity. But the source code and implementation of

RNATracker are available, so we can compare how long it takes to run RNATracker, DNN-

5mer, and NN-RNALoc. On a Linux Ubuntu machine with 15 CPUs (Intel Xeon(R) 2.00

GHz) and the CeFra-Seq dataset, NN-RNALoc takes approximately 3 hours, which is signifi-

cantly faster than RNATracker (RNATracker requires 7 days for training in full length mode

and 8 hours in fixed length mode on GTX1080Ti graphic card). On the RNALocate dataset,

Table 3. A summary of the localization information for two datasets and metrics used to assess models

performance.

Dataset Localization information Metrics

CefraSeq Normalized gene expression valuess Regression metrics: Pearson Cor. and Spearman Cor

RNALocate Single location Classification metrics: Precision, ACC, F-score, MCC

We use correlation measurements for CefraSeq, and classification metrics for RNALocate dataset. Pearson Cor:

Pearson Correlation; Spearman Cor: Spearman Correlation; ACC: Accuracy; MCC: Matthews Correlation

Coefficient.

https://doi.org/10.1371/journal.pone.0258793.t003
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NN-RNALoc’s time is 2 hours, which is significantly less than RNATracker’s computation

time requirement of 6 hours. On the other hand, the computational time of DNN-5mer is

comparable to that of NN-RNALoc. Consequently, in terms of training time, we can conclude

that NN-RNALoc significantly outperforms RNATracker, while having the same time com-

plexity as DNN-5mer.

Assessment and comparison

The results of 30 times of 10-fold cross-validation on the CeFra-Seq dataset are displayed in

Table 4. In the Cytosol, Insoluble, Membrane, and Nuclear regions of the CeFra-Seq dataset,

NN-RNALoc finds Pearson correlations of 0.69, 0.65, 0.54, and 0.55, respectively. In every

location, these correlations are stronger when compared to the RNATracker fixed length

mode method. Using NN-RNALoc, the number of mRNAs with a Spearman correlation of 1,

indicating a perfect association of ranks, is 2893, which is slightly better than RNATracker

(2849). As demonstrated in Table 4, NN-RNALoc achieves approximately 17% greater overall

Pearson correlation than RNATracker’s fixed length mode. Due to the fact that mRNALoc is a

standalone tool trained on five different locations than CeFra-Seq, it was not possible to com-

pare it to NN-RNALoc for this dataset. DNN-kMer is a multilayer perceptron-based predictor

that extracts k-mer features from sequences (1-mers to k-mers). In both data sets, the DNN-

kMer model was trained on 1-mers to 8-mers, and the best results were obtained when all

1-mer to 5-mer information was taken into account. Therefore, DNN-5mer’s inputs are a

1364-dimensional (41+ 42+ 43+ 44+ 45) vector. As a result, using 1-mers to 5-mers as features,

we evaluate the performance of NN-RNALoc and DNN-5mer. DNN-5mer has only two hid-

den layers with the same number of neurons as the input vector. In the hidden layer, the Relu

activation function is utilized. Despite the fact that both NN-RNALoc and DNN-5mer have a

simple architecture, DNN-5mer performs significantly worse, with Pearson correlations of

0.63 in the Membrane, 0.55 in Insoluble, 0.42 in the Membrane, and 0.48 in the nucleus. Over-

all, NN-RNALoc achieves a Pearson correlation approximately 35% higher than DNN-5mer.

In addition, we ran NN-RNALoc with only k-mer frequencies (for k from 1 to 5) to evaluate

the effect of incorporating the distance-based profile into the model. As Table 4 represents, in

this context (comparing NN-RNALoc(no PPI) and NN-RNALoc(k-mer profile)) the Pearson

correlations were 9% lower in total, demonstrating the advantages of using distance-based

profiles.

RNALocate is the most well-known dataset in this field and was used for validation for

all the algorithms mentioned in the previous studies. The performance of NN-RNALoc on

RNALocate is benchmarked against RNATracker, DM3Loc, mRNALoc, iLoc-mRNA,

EL-RMLocNet, and mLoc-mRNA methods. We report the area under the Receiver Opera-

tor Characteristic (ROC) curve (AUC-ROC) and the area under the Precision-Recall (PR)

Table 4. Average Pearson correlations of 30 times 10-fold cross-validation in each location of Cefra-Seq dataset obtained by different methods.

Location NN-RNALoc NN-RNALoc(no PPI) NN-RNALoc(k-mer profile) RNATracker fixed RNATracker full DNN-5mer

Cytosol 0.69 0.67 0.66 0.68 0.70 0.63

Insoluble 0.65 0.61 0.60 0.62 0.64 0.55

Membrane 0.54 0.52 0.47 0.47 0.54 0.42

Nuclear 0.55 0.52 0.50 0.49 0.54 0.48

NN-RNALoc (with employing PPI, k-mer and distance-based profiles); NN-RNALoc(no PPI) (k-mer and distance-based profiles); NN-RNALoc(only k-mer);

RNATracker (fixed length mode); RNATracker full (full length mode);DNN-5mer (1-mers to 5-mers)

https://doi.org/10.1371/journal.pone.0258793.t004

PLOS ONE NN-RNALoc

PLOS ONE | https://doi.org/10.1371/journal.pone.0258793 September 14, 2023 10 / 19

https://doi.org/10.1371/journal.pone.0258793.t004
https://doi.org/10.1371/journal.pone.0258793


curve (AUC-PR) for a fair comparison of the tested methods similar to RNATracker,

DM3Loc, mRNALoc, iLoc-mRNA, EL-RMLocNet, and mLoc-mRNA studies. Table 5

summarizes the AUC-ROC, AUC-PR, and Average MCC for different methods for the

human part of the RNALocate dataset. For Cyt location, NN-RNALoc and mRNALoc out-

performed others based on AUC-ROC and AUC-PR, respectively. For ER, iLoc-mRNA

and NN-RNALoc outperformed others based on AUC-ROC and AUC-PR, respectively.

For EX, mLoc-mRNA and RNATracker outperformed others based on AUC-ROC and

AUC-PR, respectively. For the Nuc location, mLoc-mRNA and RNATracker outper-

formed others based on AUC-ROC and AUC-PR, respectively. As seen in Table 5, none of

the methods outperform the other methods in all locations and for Cyt and ER locations,

NN-RNALoc outperformed well-known methods. Similar to some previous methods, we

only considered single-location mRNA sequences in the RNALocate dataset. Except for

DM3Lo and mLocmRNA methods, which predict multiple locations for each mRNA

sequence, all other methods only predict a single location. If the actual location of an

mRNA sequence was presented in the prediction results of the mLocmRNA and DM3Lo

methods, and it was reported as a true prediction. It is obvious that by predicting multiple

locations, these methods improve the performance of their algorithm in some locations

compared to other methods, as shown in Table 5. Similarly, Table 6 represents the result

of different methods on the non-human part of the RNALocate dataset. In this case,

NN-RNALoc outperformed existing methods for the Nuc location and obtained nearly

similar results to other methods. In terms of average MCC, NN-RNALoc performs better

than other methods, which shows that our method works well overall.

The performance of NN-RNALoc’s on the RNALocate dataset for the best threshold has

been reported as follows: The Precision, Recall, and F-score values for Cytosol using NN-RNA-

Loc are 74%, 72%, and 74%, respectively. Endoplasmic Reticulum (ER) has a precision of 56%,

a recall of 48%, and an F-score of 52%. In the Extracellular Region (EX) and Mitochondria,

due to a lack of training samples (only 26 and 2, respectively), the Recall and F-score are close

to zero. The precision of prediction in nucleus is 52%, whereas recall and F-score are 70% and

60%, respectively. In fact, NN-RNALoc increased the total F-score in all locations by about

17% compared to mRNALoc and by 56% compared to RNATracker. However, in the nucleus,

the average F-score obtained for NN-RNALoc and mRNALoc is nearly identical. The overall

accuracy of prediction using NN-RNALoc is higher than both RNATracker and mRNALoc.

NN-RNALoc additionally achieves an MCC of 0.40, which is greater than RNATracker and

mRNALoc (they both achieve an MCC of 0.34 and 0.37, respectively). Results have been

shown in S1 Table.

In addition, we used other shallow learning algorithms e.g. SVM, RF, Extreme Gradient

Boosting (XGBoost), and light gradient-boosting machine (LGBM) [38] for our learning

process methods instead of using NN. SVM-RNALoc used SVM on k-mer and distance-

based profile features, XGBoost-RNALoc employed XGBoost on k-mer and distance-

based profile features, and LightGBM-RNALoc applied LightGBM on k-mer and distance-

based profile features. Table 7 and S2 Table indicate the results of these algorithms for the

Cefra-Seq and RNALocate datasets, respectively. The results show that NN-RNALoc for

most locations outperforms other methods. Hence, we used the NN method to predict

locations based on k-mer and distance-based profile features. Moreover, we applied the

DNN-kMer method which is a multilayer perceptron-based predictor that extracts k-mer

features from sequences (1-mers to k-mers) and compared them with NN-RNALoc (please

see Table 4). The results show that NN-RNALoc outperforms the other shallow learning

approaches.
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Discussion

To evaluate the effect of incorporating PPI information into our model, the following analysis

was performed on both the CeFra-Seq and RNALocate datasets. We only utilize 5-mer and

also distance-based sub-sequence information derived from mRNA sequences and compare

the results to the scenario in which PPI information is also incorporated into the model. When

Table 5. Results of AUC-ROC and AUC-PR for different methods on the human part of the RNALocate dataset.

Method Compartment AUC-ROC AUC-PR Average MCC

NN-RNALoc Cyt 0.76 0.71 0.40

ER 0.71 0.79

EX 0.65 0.63

Mit 0 0

Nuc 0.79 0.77

NN-RNALoc (noPPI) Cyt 0.73 0.67 0.30

ER 0.66 0.55

EX 0 0

Mit 0 0

Nuc 0.70 0.74

RNATracker Cyt 0.73 0.31 0.34

ER 0.62 0.18

EX 0.75 0.99

Mit 0 0

Nuc 0.75 0.86

DM3Loc Cyt 0.74 0.31 0.24

ER 0.69 0.25

EX 0 0

Mit 0 0

Nuc 0.77 0.87

mRNALoc Cyt 0.60 0.76 0.37

ER 0.37 0.14

EX 0.40 0.98

Mit 0 0

Nuc 0.60 0.76

iLoc-mRNA Cyt 0.51 0.72 0.20

ER 0.81 0.57

EX 0 0

Mit 0 0

Nuc 0.51 0.72

EL-RMLocNet Cyt 0.74 0.45 0.38

ER 0 0

EX 0.75 0.67

Mit 0 0

Nuc 0.68 0.56

mLoc-mRNA Cyt 0.75 0.71 0.38

ER 0.75 0.72

EX 0.76 0.77

Mit 0.98 0.99

Nuc 0.80 0.79

https://doi.org/10.1371/journal.pone.0258793.t005
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the reduced PPI matrix is used in the model for the Cefra-se dataset, NN-RNALoc achieves

almost 11% higher Pearson correlation in total for all locations, as shown in Table 4. We con-

duct the same analysis on the RNALocate dataset and human-related transcripts too, utilizing

only sequence-based information in the model. These results, which are the same as those

found in the first dataset, also show that when NN-RNALoc uses PPI information in the sec-

ond dataset, its performance totally improves with 10% increase in MCC and 2% in accuracy.

Fig 5 compiles the results for a more precise comparison of the performance of the NN-RNA-

Loc algorithm with PPI information (NN-RNALoc) and without PPI information (NN-RNA-

Loc(no PPI)) besides other methods. Fig 5(a) displays the resulted average of Pearson

correlation for the CeFra-Seq dataset for four locations, and Fig 5(b) shows the average of F-

score values for the five locations in the RNALocate dataset. According to Fig 5, considering

PPI information improves the results for all locations in both datasets and has the greatest

influence on predicting the insoluble location in CeFra-Seq dataset and Endoplasmic Reticu-

lum location in the RNALocate dataset. To evaluate the impact of including distance-based

profiles in the model, we omit this information from the feature vector. As previously dis-

cussed in the results and as shown in Table 4 and Fig 5, the poorer performance of NN-RNA-

Loc on both datasets when only k-mer frequencies (for k from 1 to 5) are used can potentially

demonstrate the impact of distance-based profiles. We then examine the non-human tran-

scripts within the RNALocate dataset. Due to the large number of species whose transcripts

are included in the dataset, the PPI information cannot be used in this instance. Consequently,

only 5-mer and distance-based subsequence profiles of mRNA sequences are utilized in the

model. Table 5 compares the performance of NN-RNALoc, mRNALoc, and RNATracker on

non-human species. In this instance, the total accuracy obtained by NN-RNALoc is 74%

which is 4% higher than RNATracker and 9% higher than mRNALoc. Moroevr, in this dataset,

NN-RNALoc achieves MCC of 55% which is 8% higher than RNATracker and 12% higher

Table 6. Results of AUC-ROC and AUC-PR for different methods on the non-human part of the RNALocate dataset.

Method NN-RNALoc RNATracker mRNALoc iLoc-mRNA EL-RMLocNet

Compartment Cyt ER EX Mit Nuc Cyt ER EX Mit Nuc Cyt ER EX Mit Nuc Cyt ER EX Mit Nuc Cyt ER EX Mit Nuc

AUC-ROC 0.71 0 0.4 0.71 0.54 0.77 0 0.45 0.9 0.68 0.71 0.63 0.48 0.76 0.44 0.23 0.65 0 0 0.69 0.73 0 0 0.7 0.78

AUC-PR 0.77 0 0.38 0.93 0.72 0.69 0 0.5 0.85 0.7 0.57 0.1 0.23 0.99 0.71 0.16 0.48 0 0 0.56 0.8 0 0 0.59 0.68

MCC 0.55 0.43 0.47 0.38 0.5

The names of compartments are abbreviated as Cyt: Cytosol, ER: Endoplasmic Reticulum, EX: Extracellular Region, Mit:Mitochondria, Nuc: Nucleus.

https://doi.org/10.1371/journal.pone.0258793.t006

Table 7. Average Pearson correlations of 30 times 10-fold cross-validation in each location of Cefra-Seq dataset obtained by NN-RNALoc, SVM-RNALoc, RF-RNA-

Loc, XGBoost-RNALoc, DNN-RNALoc, LGBM-RNALoc.

Location NN-RNALoc SVM-RNALoc RF-RNALoc XGBoost-RNALoc LGBM-RNALoc

Cytosol 0.69 0.65 0.77 0.45 0.65

Insoluble 0.65 0.43 0.37 0.56 0.33

Membrane 0.54 0.33 0.45 0.36 0.45

Nuclear 0.52 0.35 0.43 0.47 0.42

NN-RNALoc (with employing NN on k-mer and distance-based profiles features); SVM-RNALoc (with employing support vector machine on k-mer and distance-

based profiles features); XGBoost-RNALoc(with employing extreme gradient boosting on k-mer and distance-based profiles features); LGBM-RNALoc (with employing

light gradient-boosting machine on k-mer and distance-based profiles features).

https://doi.org/10.1371/journal.pone.0258793.t007
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Fig 5. Comparison of Pearson correlations and F-measure values of NN-RNALoc algorithm with other methods for two datasets. (a) The average

of Pearson correlation for the CeFra-Seq dataset for four locations. (b) The average of F-score values for the five locations in the RNALocate dataset.

https://doi.org/10.1371/journal.pone.0258793.g005
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than mRNALoc. Finally, for a more detailed evaluation and to determine the impact of each

distance-based k-mer on the prediction of mRNA location, the following experiment was con-

ducted on the CeFra-Seq dataset. We independently considered each distance-based profile

for k ranging from 0 to 8. Fig 6 depicts the average Pearson correlation in each of four loca-

tions when a single distance-based k-mer profile was used. Using 8-mer distance-based pro-

files yields the highest correlation in Cytosol, Insoluble, and Nuclear, which are represented by

blue, orange, and green curves, respectively, as shown in Fig 6. However, for Membrane,

which is depicted by a red curve, the highest correlation is obtained using a 4-mer distance-

based profile, despite the fact that the differences in Pearson correlations are negligible. There-

fore, in order to find all possible patterns in mRNA sequences, we decided to look at the com-

bination of distance-based profiles for all k-mers in the range of 0 to 8.

Our method has been evaluated using two different datasets. The first dataset, CeFra-Seq,

uses a continuous set of values to represent the localization probability of each of the four com-

partments. Hence, we predict a probability value for each compartment of this dataset. Then,

we use Pearson and Spearman correlations to assess the performance of the models in the

CeFra-Seq dataset. Using our method, we can either select one location using the maximum

probability value or select multiple locations by setting a probability threshold. The second

dataset, compiled from the RNALocate dataset, is among the most commonly used datasets

for RNA localization and all methods applied for the comparison report their results on this

dataset. The element information of this dataset is a binary vector indicating whether a specific

Fig 6. Pearson correlation obtained by NN-RNALoc on CeFra-Seq dataset when employing each distance-based profile for k

in range 0 and 8, individually. Four locations are represented in four different colors; blue: Cytosol, orange: Insoluble, green:

Nuclear, red: Membrane.

https://doi.org/10.1371/journal.pone.0258793.g006

PLOS ONE NN-RNALoc

PLOS ONE | https://doi.org/10.1371/journal.pone.0258793 September 14, 2023 15 / 19

https://doi.org/10.1371/journal.pone.0258793.g006
https://doi.org/10.1371/journal.pone.0258793


RNA is present at a given location or not. Given that this dataset contains five locations, the

length of this binary vector is also five. We use a classification method on this dataset to predict

the localization of a given mRNA. For evaluating the performance of the classification algo-

rithms, precision, recall, f-score, MCC, and ACC were used. We also reported AUC-ROC and

AUC-PR for classification performance comparisons. It is crucial to note that for NN-RNA-

Loc, the probability of each location for each mRNA is computed, then sorted, and the location

with the highest probability is reported as the specific mRNA location. To assign more than

one location to an mRNA, a threshold can be considered, and all locations with probabilities

greater than the chosen threshold can be assigned to the mRNA sequences. However, in order

to compare the results of this method with those of other methods, we assign the most proba-

ble location. It is worth mentioning that while there is no approach that outperforms the others

for predicting all locations, we intend to integrate several methods to predict locations based

on a voting measure in our future study.

Conclusion

NN-RNALoc is one of the few methods proposed that uses neural network-based approaches

to examine the cellular localization of mRNAs. As a result of the explosive growth of biological

sequences discovered in the post-genomic era, and in order to use them in a timely manner

for a variety of bioinformatics problems such as RNA and protein localization or drug develop-

ment, a significant amount of sequence-based information, such as PTM (posttranslational

modification) sites in proteins, has been successfully predicted [39]. The rapid development of

sequential bioinformatics and structural bioinformatics, as well as the introduction of compu-

tational methodologies for this purpose, have led to an unprecedented revolution in this field

of study. Consequently, computational (or in silico) methods were also utilized in this study.

Localization of messenger RNA (mRNA) molecules within the Cytoplasm provides a founda-

tion for cell polarization, thereby underpinning developmental processes such as asymmetric

cell division, cell migration, neuronal maturation, and embryonic patterning [40]. The enor-

mous benefit of mRNA targeting is that it allows for the regulation of gene expression in both

space and time; thus, RNA localization would be beneficial for understanding cellular func-

tions [40]. NN-RNALoc is a neural network-based tool that aims to predict the subcellular

localization of mRNA based on the interaction information of the proteins encoded by the

mRNA transcripts. In this way, we have come up with a different distance-based subsequence

profile for representing mRNA sequences. This novel encoding, which is more compact and

less likely to add redundant data, was created to address the memory and time issues that arise

as k in k-mer representation increases. Using distance-based sub-sequence profiles, k-mer fre-

quencies, and reduced PPI matrix data, the results demonstrate that NN-RNALoc, a neural

Table 8. Performance of NN-RNALoc, RNATracker(fixed length mode) and mRNALoc on non-human mRNAs of RNALocate dataset.

Methods NN-RNALoc mRNALoc RNATracker

Criteria Cyt ER EX Mit Nuc Cyt ER EX Mit Nuc Cyt ER EX Mit Nuc

Precision 0.77 0.00 0.38 0.98 0.72 0.57 0.01 0.23 0.99 0.77 0.69 0.00 0.50 0.85 0.70

Recall 0.54 0.00 0.03 0.98 0.96 0.57 0.33 0.18 0.85 0.76 0.54 0.00 0.001 0.75 0.92

F-score 0.63 0.00 0.05 0.98 0.82 0.57 0.02 0.20 0.92 0.77 0.60 0.00 0.003 0.79 0.79

Average Accuracy 0.74 0.65 0.70

Average MCC 0.55 0.43 0.47

The names of compartments are abbreviated as Cyt: Cytosol, ER: Endoplasmic Reticulum, EX: Extracellular Region, Mit:Mitochondria, Nuc: Nucleus.

https://doi.org/10.1371/journal.pone.0258793.t008
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network with a simple and transparent architecture, outperforms three previously introduced

and powerful methods. This simplicity also drastically reduces the computation time required

for model training. The application of a dimensional reduction technique, such as PCA, to the

PPI data, which is a high-dimensional matrix, is significantly more advantageous than the use

of raw interaction patterns. In the future, additional dimension reduction techniques, such as

auto-encoders and PPI-specific compression techniques, can be investigated. In addition, it is

important to note that future research can utilize the incorporation of other important but dif-

ficult-to-implement features, such as the knowledge of protein 3D structures or their com-

plexes with ligands, which is crucial in numerous studies such as drug design [41]. Therefore,

in future versions of NN-RNALoc, the incorporation of protein structural information could

also be investigated. Moreover, as demonstrated by a number of recent publications [42, 43]

demonstrating new findings or approaches, user-friendly and publicly accessible web-servers

will significantly increase their impacts [20, 21]. So, in our future work, we will try to make a

web server that can be changed by the user and show the results.

Supporting information

S1 Table. Results of 30 times 10-fold cross-validation of NN-RNALoc (with and without

employing PPI information) compared with RNATracker(fixed length mode) and mRNA-
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S2 Table. Results of AUC-ROC (ROC) and AUC-PR (PR) for each location of human part

of RNALocate database obtained by NN-RNALoc, SVM-RNALoc, RF-RNALoc, XGBoost-

RNALoc, DNN-RNALoc, LightGBM-RNALoc.
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