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Abstract

The ELMOD3 gene is implicated in causing autosomal recessive/dominant non-syndromic

hearing loss in humans. However, the etiology has yet to be completely elucidated. In this

study, we generated a patient-derived iPSC line carrying ELMOD3 c.512A>G mutation. In

addition, the patient-derived iPSC line was corrected by CRISPR/Cas9 genome editing sys-

tem. Then we applied RNA sequencing profiling to compare the patient-derived iPSC line

with different controls, respectively (the healthy sibling-derived iPSCs and the CRISPR/

Cas9 corrected iPSCs). Functional enrichment and PPI network analysis revealed that dif-

ferentially expressed genes (DEGs) were enriched in the gene ontology, such as sensory

epithelial development, intermediate filament cytoskeleton organization, and the regulation

of ion transmembrane transport. Our current work provided a new tool for studying how dis-

ruption of ELMOD3 mechanistically drives hearing loss.

Introduction

Human perception of sound depends on the refined structure of the cochlea, and the auditory

sensory epithelium is the specialized region of the cochlea that transduces sound [1]. The

organ of Corti located in the cochlea, contains one row of inner hair cells (IHCs) and three
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rows of outer hair cells (OHCs) [2]. The hair cells are lined with rows of actin-rich stereocilia

arranged in a V-shaped staircase pattern on the apical surface of hair cells. The proper forma-

tion of this V-shaped structure is critical for facilitating proper hearing [3]. However, the

mechanisms that drive proper hair cell function still need to be better understood. The studies

of deafness genes improve our understanding of the development and function of hair cells.

Two pathogenic ELMOD3 gene mutations have been found, leading to either autosomal reces-

sive pre-speech hearing loss or autosomal dominant progressive hearing loss [4, 5]. Our group

identified a heterozygous mutation in the ELMOD3 gene (c.512A>G; p.His171Arg) that segre-

gated with progressive non-syndromic hearing loss in a five-generation Chinese family in an auto-

somal dominant fashion [5]. ELMOD3 gene belongs to the engulfment and cell motility family

(ELMO family), which consists of six members defined by the presence of the ELMO domain [6].

ELMOD3 protein is an atypical GTP-activated protein (GAP) for the ARF family and plays roles

in multiple cellular functions, including in primary cilia formation and traffic of cargoes from the

Golgi to the primary cilium [7, 8]. In rat cochlea, Elmod3 is highly expressed in the stereocilia,

kinocilia and cuticular plate in developing hair cells [4]. Moreover, we found in Elmod3-/- mice,

the absence of Elmod3 resulted in abnormalities of cochlear hair cells in the manner of shortening

and fusion of IHCs’ stereocilia and progressive degeneration of OHCs’ stereocilia [9]. However,

little is known about how disruption of ELMOD3 mechanistically drives hearing loss.

Thus, using patient-specific human induced pluripotent stem cells (iPSCs) to generate an

iPSC-based disease model may provide an approach to studying pathogenesis for hereditary

hearing loss [10]. In this study, we generated a patient-specific iPSC line carrying the heterozy-

gous ELMOD3 c.512A>G mutation for the first time. Besides, we generated an iPSC line from

a healthy sibling of the patient as control. The transcriptome analysis was conducted between

the patient-specific iPSCs (ELMOD3mut) and the healthy sibling derived iPSCs (Control). Fur-

thermore, we performed a gene correction of ELMOD3 c.512A>G mutation iPSCs using

CRISPR/Cas9 genome-editing technology, followed by gene profiling and transcriptome

sequencing. We found several changes in differential gene expression by comparing the tran-

scriptome of ELMOD3mut iPSCs and its corrected isogenic control iPSCs (ELMOD3corrected). It

was shown that the ELMOD3 gene might be involved in biological processes, such as ion

homeostasis and sensory epithelial development, etc. We also performed STRING and PPI

analysis to predict the potential protein interaction network. Through these data, we could

provide supportive evidence for the putative cellular function of the ELMOD3 gene, thus yield-

ing a model system to study how ELMOD3 functions in humans to facilitate proper hearing.

The overall workflow of this study is shown in Fig 1.

Materials and methods

Ethics statement

The Ethics Committee of Xiangya Hospital Central South University (XHCSU) approved the

protocol for this study, and signed informed consent was provided by every donor before sam-

ple collection. The laboratory research on the derivation and use of human iPSC lines was also

approved by XHCSU following local regulations, and all animal experiments were conducted

based on XHCSU ethical guidelines.

Generation and culture of iPSCs

Ten ml of blood was collected from a hearing loss patient with ELMOD3 c.512A>G mutation

and a healthy family member in December 2019 [5]. The generation and culture of iPSCs were

performed as described by Wen et al. [11]. The B lymphocytes were isolated from blood and

immortalized by EBV. EBV-immortalized B lymphocytes were cultured in RPMI 1640
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medium (Gibco, USA) with 10% fetal bovine serum (VISTECH, Australia) and 1 mm sodium

pyruvate (Gibco, USA) at 37˚C in 5% CO2. The expanded EBV-immortalized B lymphocytes

were electroporated with two μg per vector of five episomal vectors (Addgene, USA), namely

pCXLE-hUL, pCXLEhOCT3/4-shp53-F, pCXLE-hSK, pCXWB-EBNA1, and pCXLE-EGFP,

for reprogramming into induced pluripotent stem cells (iPSCs). The Basic Nucleofector™ Kit

for Primary Mammalian Epithelial Cells (Lonza, Switzerland) was used for electroporation.

After electroporation, the cells were seeded in a 12-well plate and cultured in WiCell + VitC

medium (DMEM/F12) (Gibco, USA). The medium should be replaced every 48h. From day 2

to day 12, 0.5 mM sodium butyrate (Sigma, USA) was added to the WiCell + VitC medium.

Eight days after transduction, the cells were transferred to mouse embryonic fibroblast-coated

6-well plates at a density of 1.8×104 cells per well. From day 12, the medium was changed to

WiCell + VitC medium without sodium butyrate. Undifferentiated iPSC colonies were manu-

ally picked and transferred onto Matrigel-coated 24-well plates for further expansion.

sgRNA design

The online tool CHOPCHOP (http://chopchop.cbu.uib.no/) was used to design sgRNA. The

Lenti CRISPR v2 plasmid designed by Zhang’s laboratory was selected as the editing vector.

Fig 1. The overall workflow of this study.

https://doi.org/10.1371/journal.pone.0288640.g001
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The DNA fragments were ligated with the digested empty-loading plasmid using a DNA link-

ing kit (Takara, Japan).

Cell transfections

The four μg CRISPR/Cas9 targeting plasmids and 4μl ssODN (100μM) providing homologous

recombination templates were transferred into 2.5×106 patient-specific iPSCs by electrotrans-

fection. Puromycin resistance genes were used as screening markers to obtain iPSCs success-

fully transfected. Then, these cells were transferred to culture plates at low density until

sufficient clones appeared. Single clones were selected for Sanger sequencing.

Alkaline phosphatase (AP) staining

Following the manufacturer’s instructions, the iPSCs were stained using Alkaline Phosphatase

Kit (Beyotime, China). The photography was performed using a Nikon 300 inverted confocal

microscope.

Immunofluorescence staining

Cells were fixed with 4% paraformaldehyde for 20 min, permeabilized using 1% Triton X-100

(Sigma, USA) for 10 min, and blocked with 5% bovine serum albumin (BSA) for 1h. The

above processes are carried out at room temperature. Following overnight incubation with pri-

mary antibodies in PBS solution with 5% BSA at 4˚C, cells were washed and incubated with

appropriate secondary antibodies for 1h at RT in the dark. DAPI (Beyotime, China) was used

for nuclear counterstaining, and images were observed and photographed using an Olympus

confocal microscope and camera.

Embryoid body (EB) formation assay

For EB formation, iPSCs were harvested by Accutase (Gibco, USA), and then resuspended in

the mTeSR medium (Stemcell Technologies, Canada) supplemented with 20% FBS. The cell

suspension was transferred to ultra-low attachment six-well plates and cultured in KO-DMEM

(Gibco, USA) supplemented with 20% Knockout Serum Replacement, 1% GlutaMax-I, and

1% nonessential amino acids. The medium should be replaced every 48h. After six days, The

suspended spheroid embryoid body was collected and transferred to 6-well plates with gelatin-

coated plates. Six days late, total RNA isolated from the embryoid body was reversely tran-

scribed into cDNA for subsequent experiments. The expression of genes in different germ lay-

ers was examined by RT-PCR and agarose gel electrophoresis (AGE).

Teratoma assay

The iPSCs (1 × 107 cells) were harvested by Accutase (Gibco, USA) and injected into the hind

limb muscles of 8-week-old male nude mice (Charles River, China). The teratomas were dis-

sected 8 to 10 weeks post-transplantation, fixed with 4% PFA and embedded in paraffin. Tissue

sections were stained with hematoxylin and eosin.

Quantitative reverse transcription-polymerase chain reaction (qRT-PCR)

Total RNA was isolated from cells using the Trizol reagent (Sangon, China). One μg RNA was

reverse transcribed using the PrimeScript™ II 1st Strand cDNA Synthesis Kit (Takara, Japan).

The qPCR reactions were performed on Step One plus Real-Time PCR System (ABI) with a

2×SYBR Master Mix (Yeasen, China). The relative expression levels of target genes were calcu-

lated using the 2- 44Ct method, and GAPDH served as the internal control.
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RNA sequencing

The total RNA of triple replicates from three samples (ELMOD3mut, ELMOD3corrected and

healthy control iPSCs) was extracted for further analysis. One μg of total RNA was isolated

and used to generate RNA-seq libraries. The library preparations were sequenced on an Illu-

mina Novaseq platform, generating 150 bp paired-end reads. The FPKM of each gene was

obtained by quantitative analysis after filtering the raw data and reference genome alignment.

Then we selected differentially expressed genes (DEGs) with the DESeq2 method (adjusted P-

value < 0.05 and | log2 (fold-change) |> 1). To discern the implications of DEGs, we per-

formed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-

way enrichment and protein-protein interactions (PPI) network analysis on the DEGs. The

above analysis used the common online platforms and databases, including Metascape (http://

metascape.org) [12], KEGG (http://www.genome.jp/kegg), the STRING (The Search Tool for

the Retrieval of Interacting Genes/Proteins) database (https://string-db.org/), and Cytoscape

(http://cytoscape.org/). The Molecular Complex Detection (MCODE) tool was used to extract

functional modules.

Results

Generation of a human iPSC line from a patient carrying the heterozygous

c.512A>G variant in the ELMOD3 gene

In our previous study, a heterozygous ELMOD3 c.512A>G (p.His171Arg) variant was identi-

fied as a causative variant in a five-generation Chinese family affected by late-onset and pro-

gressive autosomal dominant non-syndromic hearing loss (ADNSHL). The details about

hearing loss history and auditory evaluation of the affected members were described previ-

ously by Li et al. [5]. Here, we generated two human iPSC lines by reprogramming the donated

Epstein-Barr virus (EBV)-immortalized B lymphocytes of two family members (a 59-years-old

male patient and his 51-years-old healthy female sibling respectively), henceforth named as

ELMOD3mut and healthy control. Detailed clinical characteristics of these siblings are shown

in Table 1.

Both the ELMOD3mut and the healthy control iPSC lines exhibited a typical pluripotent

stem cell-like morphology. The newly raised colonies after the reprogramming process

appeared in blue when treated with an AP kit, showing that both iPSC lines presented AP

activity and the potential of multi-differentiation (Fig 2A). The two studied clones were posi-

tive for NANOG, SOX2 and OCT-4 self-renewal markers, and also positive for SSEA-4 and

Tra-1-60 pluripotency surface markers (Fig 2B and 2C). The two iPSCs can differentiate in
vitro towards the three embryonic germ layers. RT-PCR analyses showed that the embryoid

body expressed meaningful marker genes of endoderm, mesoderm and ectoderm (Fig 2E and

2F). Both iPSC lines were competent to differentiate into three germ layers in an in vivo tera-

toma assay (Fig 2G). To summarize, ELMOD3mut and healthy control iPSC lines exhibited

normal iPSC morphology, expressed pluripotency markers and differentiated into cells of

three germ layers, which could be used in subsequent experiments.

Table 1. Clinical characteristics of the patient and the healthy sibling.

ELMOD3 c.512A > G Sex Age Onset Age PTA threshold (dBHL) Tinnitus Vertigo

Left Right

Patient Yes Male 59 37 89 83 No No

Healthy sibling No Female 51 / 30 30 Yes No

https://doi.org/10.1371/journal.pone.0288640.t001
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Fig 2. Generation and characterization of ELMOD3mut, control and ELMOD3corrected iPSCs. (A) The ELMOD3mut

and control iPSC clones show typical embryonic stem cell-like and positive alkaline phosphatase (AP) staining. Bar,

100μM. (B-D) Immunofluorescence staining in all iPSC lines showed expression of pluripotency markers OCT4,

NANOG, TRA-1-60, SOX2 and SSEA-4. Bar, 100μM. (E) The ELMOD3mut and control iPSC line form embryoid body

in vitro. Bar, 100μM. (F) The agarose gel electrophoresis of marker genes of three embryonic germ layers in all iPSC

lines. (G) HE staining of teratomas generated from subcutaneous injection of all iPSC lines in NOD/SCID mice.

Tumor sections represent differentiated structures as noted. Bar, 100μM.

https://doi.org/10.1371/journal.pone.0288640.g002
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We further observed the nuclear morphology and cytoskeleton of the ELMOD3mut and

healthy control iPSC lines. A high nuclear-cytoplasmic ratio was observed in both iPSC lines,

and no significant difference in F-actin density between ELMOD3mut and healthy control iPSC

lines was observed (S1 Fig).

Global changes in gene expression of the ELMOD3mut iPSCs carrying the

heterozygous c.512A>G mutation

We applied RNA sequencing of the ELMOD3mut and the healthy control iPSC lines, and a hierar-

chical cluster heatmap was generated (Fig 3A). The RNA sequencing statistics disclosed that there

were 112 differentially expressed transcripts between ELMOD3mut and control iPSC lines, of

which 52 DEGs were up-regulated and 60 DEGs were down-regulated (Fig 3B, S1 and S2 Tables).

We utilized Gene Ontology (GO) analysis to investigate the biological processes associated

with the DEGs. The up-regulated genes are mainly enriched in "negative regulation of biologi-

cal process", "metabolic process", and "response to stimulus" GO terms (Fig 3C). In contrast,

among the down-regulated genes caused by the ELMOD3 c.512A>G mutation, "cellular pro-

cess", "immune system process", and "metabolic process" are the most significantly enriched

GO terms (Fig 3D). Interestingly, both up-regulated and down-regulated genes were enriched

in identical biological processes, including the "metabolic process", "response to stimulus", and

"developmental process".

However, there were not only ELMOD3 gene mutations but also genomic differences (such

as sex differences) among iPSCs derived from different individuals. Therefore we assume that

global changes in gene expression between the above studied iPSC lines could not fully reflect

the transcriptomic changes caused by ELMOD3 c.512A>G mutation in humans.

CRISPR/Cas9-mediated gene correction in the ELMOD3mut patient-

derived iPSCs

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated

protein 9 (Cas9) system is a powerful gene editing tool. Here, we used this system for gene

repair in ELMOD3 patient-derived iPSC line. The Small guide RNAs (sgRNA) were designed

using the online tool CHOPCHOP (http://chopchop.cbu.uib.no/) and 16 suspicious off-target

sequences were selected (see S3 Table for Off-targets sequences, S1A Fig). Sanger sequencing

revealed that the ELMOD3 c.512A>G mutation had been successfully corrected (S3B Fig).

Then the 16 sequence regions were validated by PCR amplification and sequencing, showing

that none of these 16 suspicious sites occurred (S3C Fig).

The generated iPSC line was named as ELMOD3corrected. Subsequently, the stemness-related

gene expression and pluripotency in the ELMOD3corrected iPSC were identified. Immunofluo-

rescence staining indicated that the ELMOD3corrected iPSC line could express the pluripotent

stem cell marker NANOG, SOX2, Tra-1-60, OCT4, and SSEA4 (Fig 2D). We also tested its dif-

ferentiation potential. The ELMOD3corrected iPSC line can not only form embryos in vitro, but

also grow in the subcutaneous muscles of NOD-SCID mice, showing that it has multiple differ-

entiation potential (Fig 2G). In conclusion, the ELMOD3corrected iPSC line has a multi-differen-

tiation potential and was suitable for the following experiments.

RNA-sequencing analysis of differentially expressed genes (DEGs) between

ELMOD3mut and ELMOD3corrected iPSC lines

A hierarchical cluster heatmap was generated to analyze the gene expression pattern (Fig 4A).

A total of 789 DEGs were identified between ELMOD3mut and ELMOD3corrected iPSC lines, of
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which 403 were up-regulated and 386 were down-regulated (Fig 4B, S4 and S5 Tables). We

found that ELMOD3 c.512A>G mutation resulted in significantly down-regulated expression

of genes encoding members of the Zinc-finger protein (ZNF) family.

Through GO analysis, 40 GO terms were significantly enriched (-log10 adjusted P-

value > 2). We found that GO terms associated with "biological regulation", "response to stim-

ulus", "developmental process", "growth", and "multicellular organismal process" were most

Fig 3. Differentially expressed genes between ELMOD3mut and control iPSCs. (A) The heatmap showed a

hierarchical clustering analysis of DEGs in ELMOD3mut iPSCs. Red and blue indicate genes with high and low

expression levels, respectively. (B) Volcano plot showing the expression change of each gene and their significance.

Red dots represent the expression of genes in ELMOD3mut iPSCs significantly up-regulated compared to normal

control. Green dots represent the expression of genes in ELMOD3mut iPSCs significantly down-regulated compared to

normal control. (C-D) GO enrichment analysis of differently expressed genes in ELMOD3mut iPSCs. GO terms

enriched with up-regulated genes are shown in (C). GO terms enriched with down-regulated genes are shown in (D).

https://doi.org/10.1371/journal.pone.0288640.g003
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Fig 4. Differentially expressed genes between ELMOD3mut and ELMOD3corrected iPSCs. (A) The heatmap showed a

hierarchical clustering analysis of DEGs between ELMOD3mut and ELMOD3corrected iPSCs. Red and blue indicate genes with

high and low expression levels, respectively. (B) Volcano plot showing the expression change of each gene and their

significance. Red dots represent the expression of genes in ELMOD3mut iPSCs significantly up-regulated compared to

Correction iPSCs. Green dots represent the expression of genes in ELMOD3mut iPSCs significantly down-regulated compared
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significantly up-regulated (Fig 4C), while the down-regulated genes were mainly enriched in

such as "developmental process", "localization", and "signaling" GO terms (Fig 4D).

Then, we performed KEGG pathway enrichment analysis for down-regulated and up-regu-

lated genes. Focusing on significant enrichments, the up-regulated DEGs were involved

mainly in pathways such as "mineral absorption", "neuroactive ligand-receptor interaction",

"chemokine signaling pathway", and "PI3K-Akt signaling pathway" (Fig 4E). On the other

hand, ELMOD3mut iPSCs showed enrichment of down-regulated genes for pathways such as

"neuroactive ligand-receptor interaction", "cAMP signaling pathway", "calcium signaling path-

way", "axon guidance", and "cell adhesion molecules" (Fig 4F).

Furthermore, PPI network analysis of predicted DEGs between ELMOD3mut and

ELMOD3corrected iPSC lines was performed based on the STRING database. A total of 382 up-

regulated genes (Fig 5A) and 361 down-regulated genes (Fig 5G) were mapped to the PPI net-

work. The Molecular Complex Detection (MCODE) tool was used to extract functional mod-

ules. Among the up-regulated DEGs, genes related to "GPCR ligand binding", "GPCR

downstream signaling", "post-translational protein phosphorylation", "intermediate filament

cytoskeleton organization", and "mesenchyme migration" were significantly enriched (Fig 5B–

5F). The down-regulated DEGs were most significantly enriched in "GPCR ligand binding",

"cAMP signaling pathway", "ephrin receptor signaling pathway", "chloride transport", and

"neuroactive ligand-receptor interaction" (Fig 5H–5L).

It is worth noting that, among the up-regulated DEGs in this study, one module included a

total of 7 genes:MYL7, TNNI3, VIM, PRPH, NEFL, KCNMA1, and ACTG2 was associated

with "intermediate filament cytoskeleton organization" (Fig 5E), whereas another module con-

sisted of a total of 6 genes: ACTC1, ACTA1, ACTA2, ALDHA3, BTF3, and SLC25A6 were

mainly enriched in "mesenchyme migration" (Fig 5F). Amongst these DEGs, four genes were

tested in a qRT-PCR assay and the expression of tested genes was significantly up-regulated in

ELMOD3mut iPSCs, which was consistent with the RNA-seq results (S3A and S3B Fig). These

findings echo our earlier research that defects in the Elmod3 gene caused the inner ear hair cell

stereocilia structural abnormalities in mice.
Moreover, we also found DEGs related to neural development and ion transport, especially

potassium ion transport. There were 26 down-regulated genes linked to "regulation of ion

transmembrane transport", including LRRC55, CACNG8, NOS1AP, KCNH2, GJA5, etc., of

which 16 genes linked to "potassium ion transport" including KCNB1, KCNC3, KCNG1,

KCNH2, KCNK2, KCNN3, and KCNN4 (Fig 6, left). In the ELMOD3mut iPSC line, genes

related to "sensory organ development", especially "ear morphogenesis" were significantly up-

regulated, including TBX1, ATOH1 and ALDH1A3 etc. (Fig 6, right). We verified the expres-

sion levels of several of these genes by qRT-PCR, and the result was also consistent with RNA-

seq results (S3C–S3F Fig).

Discussion

Hearing loss (HL) is one of the world’s most common sensory deficits with exceptionally high

genetic heterogeneity [13]. 50% to 60% of hearing loss in babies is due to genetic causes [14].

Different mutations at one causative gene could result in different patterns of inheritance and

various phenotypes. For example, ELMOD3mutation (c.794 T>C; p.Leu265Ser) is responsible

to ELMOD3corrected iPSCs. (C-D) GO enrichment analysis of differently expressed genes between ELMOD3mut and

ELMOD3corrected iPSCs. GO terms enriched with up-regulated genes are shown in (C). GO terms enriched with down-

regulated genes are shown in (D). (E-F) KEGG pathway enrichment analysis of DEGs specific for ELMOD3mut iPSCs.

Pathways enriched with up-regulated genes are shown in (E), while down-regulated genes are in (F).

https://doi.org/10.1371/journal.pone.0288640.g004
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Fig 5. PPI network analysis of total DEGs in ELMOD3mut and ELMOD3corrected iPSCs. (A-F) PPI network of up-

regulated DEGs and modules 1–5 identified from the whole PPI network. (A) the whole PPI network of up-regulated

DEGs. (B) GPCR ligand binding. (C) GPCR downstream signalling. (D) Post-translational protein phosphorylation.

(E) Ntermediate filament cytoskeleton organization. (F) mesenchyme migration. (G-L) PPI network of down-regulated

DEGs and modules 1–5 identified from the whole PPI network. (G) the whole PPI network of down-regulated DEGs.

(H) GPCR ligand binding. (I) cAMP signaling pathway. (J) Ephrin receptor signaling pathway. (K) Chloride transport.

(L) Neuroactive ligand-receptor interaction.

https://doi.org/10.1371/journal.pone.0288640.g005
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for autosomal recessive non-syndromic HL and another ELMOD3mutation (c.512A>G; p.

His171Arg) causes non-syndromic progressive HL in an autosomal dominant fashion [4, 5].

Deafness genes, such as GJB2 and TMC1, show similar clinical manifestations [15–18]. In this

case, it is necessary to carry out a series of animal and cell studies on different mutation sites

for these genes.

The ELMOD3 protein belongs to the engulfment and cell motility family (ELMO family),

which has the same ELMO domain. The human ELMO protein family consists of six mem-

bers, which could be further divided into two subgroups, ELMOs and ELMODs, based on pro-

tein size and domain architecture [6]. The ELMOD proteins share GAP activity and a

conserved ELMO domain, a ~160 residue domain also present in human ELMO proteins [7,

19]. The c.512A>G mutation in the ELMOD3 gene was found in amino acid 171, substituting

a highly conserved histidine residue with arginine [5]. In a previous study, we confirmed that

Elmod3-/- mice exhibited progressive hearing loss and hair cells stereocilia morphology anom-

alies [9]. Whereas the mechanisms underlying stereocilia morphology anomalies are still not

fully understood. There are many differences in phenotype between animal and human mod-

els due to differences in genetic background, organ development timelines, and underlying

regulatory mechanisms between species [20, 21]. Therefore, in this study we chose to generate

patient-specific human iPSCs carrying c.512A>G mutation, which could be used as an iPSC-

based disease model for pursuing how disruption of ELMOD3 causes hearing loss.

Since 1998, when Thomson and his colleagues reported the first human embryonic stem

cell lines [22], iPSCs have led to a better understanding of the mechanisms that mediate nor-

mal and abnormal early human development. Personalized iPSC lines can be derived, enabling

studies of the molecular pathogenesis of inherited diseases [23]. Given the inner ear’s complex

cellular and molecular structure, and all cell types within the inner ear are present in small

amounts, iPSC-based modeling of hearing and hearing loss promises to revolutionize scientific

Fig 6. Integrated analysis of specific gene sets in DEGs of ELMOD3mut and ELMOD3corrected iPSCs. The diamond

represents ELMOD3. The blue square represents the genes enriched in the GO term regulation of ion transport, and

the blue square with the frame indicates genes related to potassium ion transport. The green square represents the

genes enriched in the GO term sensory organ development, and the green square with the frame indicates genes

related to ear morphogenesis.

https://doi.org/10.1371/journal.pone.0288640.g006
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approaches to hearing loss [24]. In the past few years, iPSCs have begun to play an important

role in illuminating the details of human inner ear development, particularly the formation of

functional hair cells [25, 26].

In the current work, we successfully reprogrammed B lymphocytes from a hearing loss

patient with ELMOD3 c.512A>G mutation into iPSCs, based on the Yamanaka method [27].

The iPSCs cell model established in this study is not only an effective tool to study how disrup-

tion of ELMOD3 mechanistically drives hearing loss, but also provides a potential tool to carry

out gene therapy research in the future. To our knowledge, this is the first documented disease

model of induced pluripotent stem cells from deafness patients caused by an ELMOD3 gene

mutation.

When new iPSC lines are developed, it is essential to perform exhaustive characterization of

the new lines [28]. We have carried out a panel of assays, including morphological observation,

AP activity detection, pluripotency marker expression, and teratoma formation potential. The

results showed that ELMOD3mutant iPSCs exhibited similar pluripotency properties as con-

trol iPSCs. A comprehensive transcriptome profiling of iPSCs from patients with the heterozy-

gous ELMOD3 c.512A>G mutation was performed using next-generation RNA-Sequencing.

Compared to control iPSCs, transcriptome analysis of ELMOD3mut iPSCs showed that there

were 112 DEGs significantly altered. However, the DEGs in the above transcriptomics analysis

could be biased due to different gender and other genomic differences between this patient

and his healthy sister. For example, the top 5 up-regulated genes of ELMOD3mut iPSCs were

located on the Y chromosome (RPS4Y1, KDM5D, USP9Y, NLGN4Y and EIF1AY).

In order to exclude such differences in gene expression profiles between different individu-

als, we also generate a corrected isogenic control iPSCs (ELMOD3corrected) using CRISPR/Cas9

technology, which is based on the single-guide RNA (sgRNA) encoding DNA-binding speci-

ficity and combined with a single nuclease (Cas9) [29]. Sanger sequencing revealed that the

ELMOD3 c.512A>G mutation was successfully corrected, and no off-targeting had occurred.

After genetic correction with CRISPR/Cas9, the ELMOD3corrected iPSCs retained the multiple

differentiation potential. Compared with the control iPSCs, several genes located on the Y

chromosome whose expression was significantly up-regulated in the ELMOD3corrected iPSCs

(S6 Table). Of the 35 up-regulated genes shared between ELMOD3mut group (ELMOD3mut vs

control) and ELMOD3corrected group (ELMOD3corrected vs control), 11 were located on the Y

chromosome. This indicates that gender factors should be considered in transcriptome analy-

sis if different gender samples are used.

Transcriptome comparison between ELMOD3mut and ELMOD3corrected iPSC lines revealed

more exciting findings. The transcriptional landscapes of the above two studies are quite differ-

ent, while we still find some features in common, such as two sets of DEGs were both enriched

in "response to stimulus" and "developmental process". It should be noted that compared to

ELMOD3corrected iPSCs, the ELMOD3 c.512A>G mutations led to the up-regulation of genes

associated with the biological process “sensory epithelial development”. Moreover, previous

studies showed that ELMOD3 was expressed in the stereocilia of hair cells in rat and mouse

models [4, 9], and defects in the ELMOD3 gene lead to morphological abnormalities of the hair

cells’ stereocilia in mice [9]. Deletion of Elmod1 in vitro results in the decreased ability of cells

to form primary cilia, and the loss of a subset of proteins from cilia [8]. ELMOD3 interacts with

Rab1A and Flotillin2 to regulate lumen formation via vesicle trafficking [30]. The current work

found a series of DEGs related to sensory epithelial development and cytoskeleton organization

through functional enrichment and PPI network analysis, including ATOH1, VIM, PRPH and

NEFL, which may be involved in the pathogenesis of ELMOD3 causing deafness.

ATOH1 (Atonal BHLH Transcription Factor 1) plays a crucial role in hair cell development

and maturation [31]. Atoh1-/- mice exhibited severe hearing loss and vestibular dysfunction,
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with complete loss of cochlear hair cells and vestibular hair cells [32]. In E15.5-E17.5, Atoh1

depletion resulted in rapid hair cell death, but the removal of Atoh1 after this period did not

affect the number of new hair cells [33]. Overexpression of Atoh1 induces hair cell regenera-

tion in the adult cochlea [34]. Our study showed that ELMOD3mutation resulted in increased

expression of ATOH1. This may be the compensation for the effects of ELMOD3mutations.

However, with the cochlea’s maturation, cochlear cells’ ability to respond to Atoh1 will be

gradually weakened [35]. Whether ELMOD3 and ATOH1 interacted with each other is worth

exploring in future studies. Furthermore, previous studies on the mechanism of ELMOD3
induced deafness mainly focused on abnormal stereocilia morphology. Loi et al. found that

ELMOD3-SH2D6 gene fusion leads to autism spectrum disorders [36], which suggests that the

ELMOD3 gene has more functions yet to be discovered.

We also found that several DEGs linked to the biological process “potassium ion transport”

were significantly down-regulated. Hereditary progressive hearing loss is closely related to

decreased cell surface expression and impaired potassium channel conductance in outer hair

cells [37]. The human genome contains roughly 70 K+ channel-encoding genes [38]. Many of

these genes play essential roles in auditory processes, such as KCNQ4 [39], KCNQ1 [40],

KCNMA1 [41] and so on. They are expressed in different parts of the cochlea and play differ-

ent roles. In both studied transcriptome analyses, LRRC55 expression was significantly down-

regulated. LRRC55 belongs to large conductance K+ channels, termed BK channels, which play

an essential role in cell excitability and maintenance of K+ homeostasis [42]. BK channel

expression has been identified in the cell bodies of SGN and hair cells [41, 43]. Compared to

ELMOD3corrected iPSCs, there were 26 down-regulated genes linked to "regulation of ion trans-

membrane transport" and 16 genes linked to "potassium ion transport" were down-regulated

in the ELMOD3mut iPSC line. These results suggest that ELMOD3 might be involved in regu-

lating cochlear K+ homeostasis.

In summary, we generated a patient-specific iPSC line carrying ELMOD3 c.512A>G muta-

tion and a healthy control iPSC line for the first time. Subsequently, the patient-specific iPSCs

were corrected by CRISPR/Cas9. In addition, we applied transcriptome profiling to compare

these iPSC lines. In-depth analysis of high throughput RNA sequencing data between the

patient-specific iPSCs and the corrected iPSCs, we attempt to know more about how disrup-

tion of ELMOD3 mechanistically drives hearing loss. Although we should acknowledge that

this study is based only on transcript levels, our current work provided a new tool for studying

the cellular function of ELMOD3 and gave hints about biological processes which may be

related to ELMOD3. ELMOD3 may affect the process of sensory epithelial development and

the regulation of ion transmembrane transport via some other proteins. Thus, more extensive

studies and awareness of these associations are needed. Also, if inner-ear-like tissue could be

derived from these iPSC lines in the next step, coupled with transcriptome and proteome pro-

filing could be conducted at that stage, we could further extend our understanding of the

molecular etiology of ELMOD3 causing hearing loss.

Supporting information

S1 Fig. Immunofluorescence staining of the nuclear morphology and cytoskeleton of all

iPSC lines. Bar, 100μM.

(TIF)

S2 Fig. Establishment of correction of the ELMOD3 gene in patient-derived iPSCs with

CRISPR/Cas9. (A) The schematic of gDNA targeting and mutation site G is highlighted in

red. (B) Sanger sequencing confirmed that the ELMOD3mutation had been corrected success-

fully. The original heterozygous mutation was replaced by a new nonsense mutation. C(+/+):
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control iPSC. P(+/-): ELMOD3mut iPSCs. P(+/+): ELMOD3corrected iPSCs. (C) Sequencing

results of 16 possible off-target sites.

(TIF)

S3 Fig. qRT-PCR validation of the transcript levels of three group genes. Black bars indicate

relative gene expression in ELMOD3corrected iPSCs and gray bars in ELMOD3mut iPSCs. All

data are presented as the means±SD; the P-value was calculated by t-test. *: P < 0.05; **:
P< 0.01; ****: P< 0.0001. (A-B) Intermediate filament cytoskeleton organization and mesen-

chyme migration group. (C-D) Ear morphogenesis group. (E-F) Potassium ion transport

group.

(TIF)

S4 Fig. Differentially expressed genes between ELMOD3corrected and control iPSCs. (A) The

heatmap showed a hierarchical clustering analysis of DEGs between ELMOD3corrected and con-

trol iPSCs. Red and blue indicate genes with high and low expression levels, respectively. (B)

Volcano plot showing the expression change of each gene and their significance. Red dots rep-

resent the expression of genes in ELMOD3corrected iPSCs significantly up-regulated compared

to normal control. Green dots represent the expression of genes in ELMOD3corrected iPSCs sig-

nificantly down-regulated compared to normal control. (C-D) Venn diagram representing the

quantity of shared genes between group A (ELMOD3mut vs control) and group B (ELMOD3cor-

rected vs control).

(TIF)

S1 Table. The list of up-regulated genes between ELMOD3mut and control iPSC lines.

(XLSX)

S2 Table. The list of down-regulated genes between ELMOD3mut and control iPSC lines.

(XLSX)

S3 Table. 16 off-target sequences.

(PDF)

S4 Table. The list of up-regulated genes between ELMOD3mut and ELMOD3corrected iPSC

lines.

(XLSX)

S5 Table. The list of down-regulated genes between ELMOD3mut and ELMOD3corrected

iPSC lines.

(XLSX)

S6 Table. The list of up-regulated genes between ELMOD3corrected and control iPSC lines.

(XLSX)

S7 Table. The list of down-regulated genes between ELMOD3corrected and control iPSC

lines.

(XLSX)

S1 Raw images. The original images.

(TIF)
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