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Abstract

The growing epidemics of obesity, hypertension, and diabetes, in addition to worsening 

environmental factors such as air pollution, water scarcity, and climate change, have fueled 

the continuously increasing prevalence of cardiovascular diseases (CVDs). This has caused 

a markedly increasing burden of CVDs that includes mortality and morbidity worldwide. 

Identification of subclinical CVD before overt symptoms can lead to earlier deployment 

of preventative pharmacologic and non-pharmacologic strategies. In this regard, non-invasive 

imaging techniques play a significant role in identifying early CVD phenotypes. An 

armamentarium of imaging techniques including vascular ultrasound, echocardiography, magnetic 

resonance imaging (MRI), computed tomography (CT), non-invasive CT angiography, positron 

emission tomography (PET) and nuclear imaging, with intrinsic strengths and limitations can be 

utilized to delineate incipient CVD for both clinical and research purposes. In this paper, we 

review the various imaging modalities used for the evaluation, characterization, and quantification 

of early subclinical cardiovascular diseases.

INTRODUCTION

Cardiovascular diseases (CVDs), including coronary artery disease (CAD), heart failure 

(HF), stroke, and atrial fibrillation (AF), represent significant public health problems in 

terms of clinical disease burden, mortality, and costs to health care systems worldwide. 
1-4 Epidemiologically, CVDs increase exponentially from middle age into later adult 

life. However, there is substantial evidence that subclinical atherosclerosis and subclinical 

cardiac dysfunction both begin in early life from the intersection of multiple environmental 

factors over and above genetic predisposition. 5,6 Atherosclerosis is an indolent disease 

process characterized by the response to endothelial damage and vasa vasorum inflammation 

with eventual plaque rupture. It accounts for >50% of silent coronary heart disease (CHDs). 
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3 Moreover, early exposure to cardiovascular (CV) risk factors can also play a significant 

role in the premature development of myocardial hypertrophy and stiffening due to 

interstitial fibrosis, with subsequent subclinical cardiac dysfunction and remodeling, leading 

to HF, AF and other CVDs. 7-10 With the increasing prevalence of CVDs, there is not only 

the need for optimization of traditional risk factor control but also for the identification 

of early subclinical disease markers to improve the stratification of individuals at risk, in 

parallel with the development of newer preventive strategies and treatment modalities. The 

identification and measurement of risk factors early in life are crucial to predicting the 

development of CVDs in middle age and later in life.

Our capacity to phenotype populations has increased exponentially due to the refinement 

of digital imaging and biomarker technology.11 Both non-invasive and invasive imaging 

technologies provide detailed information about the structure and function of the heart 

and vasculature. A recent increase in sensitivity and spatial resolution of imaging devices 

has led to a new era in diagnostic imaging, playing a pivotal role in early phenotyping, 

risk stratification, and disease management. 12The most prominent techniques studied 

include carotid ultrasound, coronary cardiac computed tomography (CT), echocardiography, 

magnetic resonance imaging (MRI) and positron emission tomography (PET). They 

are instrumental to identify and measure incipient atherosclerosis, myocardial perfusion 

abnormalities and subclinical cardiac dysfunction. Coronary artery calcium, carotid-intima-

media thickness, and alteration of LV geometry and size offer the potential to characterize 

increased CVD risk in clinically asymptomatic individuals. 13-15 Therefore, quantitative 

structural and functional imaging provides an enhanced understanding of disease pathologic 

processes by elucidating the relationships among risk factors, subclinical phenotypes, and 

clinical outcomes, allowing for the development of personalized treatment strategies (Figure 

1). In this paper, we review the utility and significance of multi-modality imaging techniques 

in characterizing the subclinical processes of atherosclerosis and cardiac dysfunction, 

underlying subclinical CVD development in early adult life.

IMAGING ATHEROSCLEROSIS:

Pathogenesis

Emerging data show that the presence of triglyceride-rich lipoproteins and retinol-binding 

protein (a substrate for insulin resistance and metabolic syndrome), in addition to 

cholesterol15,16 and low-density lipoprotein (LDL) serum levels, 6,16-19 contribute to the 

development of subclinical atherosclerosis. 18,19 Being a chronic inflammatory disease, 

incipient atherosclerosis starts early life as a low-grade lesion,20-22 proceeding to overt 

clinical disease through mechanisms that include lipoprotein dysregulation, endothelial cell 

dysfunction, immune-cell activation, and plaque formation.17,23-25 This process of plaque 

formation can be categorized into different stages of evolution during the subclinical and 

clinical phases of CAD. In this regard, even asymptomatic individuals with subclinical 

atherosclerosis and plaque formation are at a higher mortality risk of up to 50% in 

men and 64% in women . 26 Risk factors associated with childhood and early adulthood 

atherosclerosis are the same as for CAD in later adulthood. 27-32The Young Finns Study, 

Childhood Determinants of Adult Health Study, as well as the Bogalusa and Muscatine 
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studies, showed that an increase in childhood BMI, systolic and diastolic blood pressure, 

LDL levels, diabetes, presence of cigarette smoking and low levels of HDL were associated 

with greater atherosclerotic burden and advanced lesions in younger adults.27,33

Vulnerable atherosclerotic plaques have a thin fibrous cap with a necrotic center that 

contains macrophages and exhibits neovascularization. 24,34,35 Continued plaque growth 

results from plaque inflammation and a repeated rupture followed by local healing. This 

may lead to progressive impingement of the vessel lumen causing significant stenosis 

due to fibrosis and calcification. Therefore, macrophages, smooth muscle cell involvement 

and necrotic core lipidic infiltration play distinctive roles in progressive plaque formation 

leading to plaque rupture and calcification. Consequently, the majority of acute thrombus 

formations causing partial or total coronary obstruction derive from plaque rupture and 

luminal exposure of the lipid-rich core secondary to plaque erosion or disruption of 

the fibrous cap.25,34,35 Plaque calcification can occur early in plaque formation resulting 

from coronary intima and media inflammation followed by healing. It can be used as 

an indicator of subclinical atherosclerosis.36 37Intimal calcification is the main process 

associated with coronary atherosclerosis, while aortic medial calcification is primarily 

associated with diabetes, aging, and CKD, and is frequently mediated by calcium-phosphate 

disequilibrium.36,37

Calcification of the abdominal aorta (AAC) can precede the development of coronary artery 

calcification. 38 Prior autopsy studies have shown aortic atheroma formation by age 10 

years in males.31 Moreover, abdominal atherosclerosis is strongly associated with coronary 

atherosclerosis. 22Wall shear stress varies in diverse vascular beds and different locations 

within the same arterial bed, accounting for different topographic atherogenic time courses 

and calcification rates. Accelerated disease, for example, is frequently seen at arterial 

bifurcations.39 Also, plaques formed in the carotid bulb are unique because of the presence 

of proteoglycan-rich lipid pools located deep in the intima, with speckled calcification in 

the absence of smooth muscle cells.40 In this regard, it is the creation of lipid pools by 

macrophages that lead to the development of advanced atheromatous plaques, with necrotic 

cores that release proteolytic enzymes and degrade surrounding tissue, therefore activating 

the apoptotic pathway.41,42 43Such necrotic core can be visualized and evaluated by vascular 

ultrasound, multi-detector CT and MRI.

In summary, an armamentarium of established imaging techniques can play a crucial role 

in the early diagnosis and risk stratification of subclinical CVD. 43,44 Such techniques can 

be used to measure luminal impingement and stenosis, vessel wall thickness, plaque, and 

necrotic core volume as well as coronary artery calcification. The latter is routinely used 

to localize and quantify the extent of atherosclerosis using computed tomography (CT), as 

detailed below.43

Coronary Computed Tomography

Coronary Artery Calcium Score (CAC)—Although an indolent and regulated process, 

CAC is associated with arterial stiffness and an increased risk of clinically overt CVDs. 

Coronary artery calcium can be quantified by computed tomography and has evolved over 

the past few decades to play a significant role in CVD risk stratification and prediction 
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of clinical outcomes. 45 Multiple-row detector CT scanners are currently used to assess 

subclinical and clinically overt atherosclerosis although originally, electron beam CT was 

used for this purpose. 46Using Agatston’s score method which is a sum of attenuation in 

Hounsfield units from areas containing diverse calcified lesions in the coronary arteries, 

CAC is routinely quantified clinically.46 CAC quantification has been correlated with 

atherosclerotic plaque burden for the entire heart, as well as for individual coronaries and 

different arterial segments of the coronary arterial tree (Figure 2).47-49

Young adults have traditionally been classified as having a low risk for CVD, in part because 

the Framingham risk score is heavily weighted on age. 50,51 On the other hand, CAC scores 

from prospective studies, including the Multi-Ethnic Study of Atherosclerosis (MESA), have 

been employed as tools to assess the risk of CVD outcomes. 52. Among younger individuals, 

the Coronary Artery Risk Development in Young Adults (CARDIA) study enrolled 5115 

young adults (18 to 30 years) with a 30-year follow-up, establishing the clinical utility of 

CAC scoring in young adulthood. The prevalence of CAC was found to be 10.2% at the 

CARDIA 15-year follow-up visit, with a mean Agatston score of 21.6, which was associated 

linearly with increasing age. The mean CAC score at follow-up year 25 increased to 244.4 

on average. Moreover, the presence of any degree of CAC was associated with an increased 

risk of CHD (HR 5.0, 95% CI 2.8-8.7) and CVD (HR 3.0, 95% CI 1.9-4.7), and CAC 

>100 was associated with increased mortality. CARDIA also showed the prognostic value 

of a CAC risk score that included traditional risk factors which discriminate between low 

and high risk of developing CAC in middle age. This score was validated and found that 

it could help decrease the number of screened individuals needed to find one person with 

positive CAC from 3.5 to 2.2.53 Recently, a national-level consortium of prospective studies 

including CARDIA, CAC consortium and the Walter Reed Cohort composed of individuals 

30-45 years old, showed an overall 21% prevalence of any degree of CAC. Males had 

higher mean CAC scores and a higher prevalence of nonzero CAC compared to females. 54 

Moreover, white individuals had higher CAC prevalence than black individuals.54,55

Risk factors for CAC include age, gender, elevated blood pressure, diabetes, obesity, 

cigarette smoking, LDL and HDL.56,57CAC has also been shown to be associated with 

other atherosclerotic risk factors such as increased lipoprotein lipase A2, increased 

abdominal obesity and elevated fibrinogen among young adults. 58-60 Antiphospholipid 

positivity during young adulthood was associated with CAC,61 and higher telomerase 

activity accompanied by shorter telomeres has been shown to predict the presence of 

CAC. 62Moreover, CAC is also associated with adverse cardiac remodeling in middle-

aged individuals, providing yet another dimension of its value as an early phenotype of 

atherosclerosis. Indeed, higher CAC is associated with greater left ventricular mass, higher 

LV end-diastolic volume, higher maximal left atrial volume (LA) and higher E/è ratio. 

Individuals with zero CAC from young adulthood to middle age have better LV function 

than those with detectable CAC. 63

In the CARDIA study, higher Pathobiological Determinants of Atherosclerosis in Youth 

(PDAY) risk scores at the baseline examination, year 5,and year 10 were associated with 

higher odds of CAC at exams conducted in years 15 and 25, showing that CAC reflects 

chronic risk exposure.64,65 CAC and abdominal aortic calcification are not only associated 
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with subclinical CAD but have also been shown to associate with a reduced subclinical 

cognitive function such as lower processing speed, attention and working memory among 

middle-aged adults independent of other risk factors.66 Therefore, CAC in younger adults 

can be used as an early and effective imaging marker of subclinical CAD. However, the 

cumulative effect of radiation exposure associated with the number of individuals needed 

to screen for detection of CAC-positive young adults remains an important consideration 

limiting the usefulness of CAC as a routine screening tool in young adult populations.

Coronary CT Angiography—Coronary CT angiography (CTA) provides the highest 

diagnostic accuracy among non-invasive imaging modalities for visualizing the coronary 

anatomy, characterization of subclinical and flow-limiting CAD, and detecting significant 

stenosis when compared to invasive coronary angiography(ICA).67-69 CTA not only 

correlates well with ICA but also demonstrates a high negative predictive value and high 

per-patient sensitivity, especially in stable symptomatic patients.70,71 CTA is a reliable 

method for ruling out relevant plaques and stenosis in coronaries and quantifying the 

degree of specific stenotic lesions. 72-75 Moreover, although CAC is associated with 

significant atherosclerosis, the absence of CAC does not exclude obstructive CAD, 

especially in younger individuals. 74,76 With the advent of radiomics and machine learning 

techniques, CTA may identify coronary inflammation and help in the refinement of risk 

stratification.77,78 Recently, ACC/AHA guidelines established CTA as the non-invasive 

imaging modality of choice for a patient with acute or stable chest pain. In stable chest pain 

patients and negative CAC score, CTA has better diagnostic accuracy and can provide better 

prognostic information that includes coronary anatomy, assessing non-calcified plaque, 

characterization of plaque burden and plaque volume, which makes it a desirable tool to 

diagnose CAD in patients with chest pain or angina equivalent symptoms.79-81 However, 

excessive radiation exposure and cost-effectiveness make CTA undesirable as a screening 

tool among low-risk patients and populations.14 Table 1 describes the summary of selected 

studies that examine the role of coronary imaging in the development of atherosclerotic 

CVD .

Carotid Imaging

Carotid Ultrasound—As atherosclerosis is a subintimal process, the measurement of the 

distance between the lumen intima and media-adventitia interface by ultrasound captures the 

earliest manifestation of atherosclerosis and arterial fibrosis. In early clinical trials, carotid 

ultrasound was used to measure carotid intima-media thickness (IMT). 82,83Pignoli et al 

showed that carotid IMT measurements correlate well with atherosclerotic histology and are 

a biological marker of future CVD risk. 84 Carotid IMT has been established as a predictor 

of clinical cardiovascular outcomes. 85-88 In this regard, the Cardiovascular Health Study 

showed that a difference of 0.20mm in the Common Carotid IMT was associated with a 40% 

increase in MI and stroke. 89 Similarly, the Bogalusa Heart Study has shown that an increase 

in IMT of the common carotid and carotid bulb was associated with smoking, higher total 

cholesterol to HDL cholesterol ratio, high blood pressure, high insulin level and greater 

waist circumference in young adults. 90 Moreover childhood BMI and LDL levels predict 

carotid IMT in young adulthood.27,33,40-42
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Generally, B-mode is preferred over M-mode using the linear-array transducer operating at 

a frequency of 13MHz to image the common carotid artery and 9MHz frequency to image 

the carotid artery bulb and proximal internal carotid arteries. 91,92Images are acquired at 

end-diastole with the image from each side obtained at the level of the common carotid 

before bifurcation. Subsequently, two images are acquired at the carotid arterial bulb and 

two images are obtained in the proximal 2cm of the internal carotid artery after the flow 

divider with the first image taken at 45° to horizontally, while the second obtained more 

vertically, at 20-25° angle. The maximum IMT is defined for the common carotid artery 

and the internal carotid artery as the mean of maximal IMT of the near and far walls on 

both the left and right sides of the carotids. Stenosis is assessed as any diminution of the 

lumen in any arterial segment separately for right and left carotids which indicates the 

development of atherosclerotic plaque of any type causing luminal narrowing.92,93 While 

these separate carotid IMT segments can be added as a risk score for predicting CVD and 

may have an association with traditional risk factors, these segments separately can have 

distinct associations with risk factors and outcomes.93 Shear stress at the carotid artery 

bifurcation are oscillatory and has a cyclically constant lumen to intimal gradient, acting as a 

substrate to foam cells that form typical cholesterol-rich plaques in that specific location.91

Measurements of carotid IMT by ultrasound have good reproducibility (70-80%) and 

are easily accessible. 94,95However, due to the typical anatomic distribution of carotid 

atherosclerotic plaques there are a few challenges. Fibrotic plaques and xanthomas are 

commonly found on ultrasound while progressive plaques are rare. Common carotid artery 

IMT might not be representative of atherosclerosis as plaques form mostly at low-shear 

stress segments such as the internal carotid artery. 91Additionally, the intima-media layers, 

in the absence of atherosclerosis, can thicken due to aging and hypertension. 96-98 Finally, 

information on plaque composition is limited by vascular ultrasound. Table 2 describes the 

summary of selected studies that examine the role of carotid imaging in the development of 

CVD.

Carotid Magnetic Resonance Imaging—High-resolution magnetic imaging resonance 

imaging (MRI) is the best tool to provide information on plaque volume and composition 

in the carotid arteries and abdominal aorta. 99-102Plaque characterization can be achieved 

through a combination of T1, T2 and proton density weight imaging. 103 Furthermore, an 

MRI of the carotid artery can describe and differentiate the components of a plaque–fibrous 

cap, necrotic core, presence of hemorrhage, and calcification. 100,102,104 Contrast-enhanced 

MRI can be used to better highlight the plaque fibrous cap.102High spatial resolution, 

high signal-to-noise imaging and improved plaque characterization make MRI a favorable 

imaging modality for atherosclerosis. However, there are several challenges to widespread 

use including imaging artifacts, claustrophobia, cost and accessibility.

Aortic Imaging

Epidemiological studies have shown that AAC is associated with CVD mortality, incident 

CHD, myocardial infarction and stroke. 105-108 Severe AAC is also a predictor of carotid 

atherosclerosis. Furthermore, there is evidence that coronary atherosclerosis is seven 

times more likely to occur if there is the presence of abdominal aortic atherosclerosis. 
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22The Progression of Early Subclinical Atherosclerosis (PESA) study showed that 25% 

of individuals with the subclinical disease had infrarenal atherosclerosis. Aortic medial 

calcification, like extra coronary calcification, is independent of atherosclerosis and related 

to aging, while intimal calcification correlates closely to atherosclerosis.109 110 In addition, 

similar to coronary atherosclerosis, abdominal atherosclerosis is associated with aging, 

smoking, hypertension and LDL cholesterol levels in young individuals. 22AAC can be 

quantified by computed tomography and assessed semi-quantitatively by X-ray and DEXA 

scanning. Electron beams or multidetector CT are the most accurate methods to facilitate 

the quantitative detection of aortic calcification. The Agatston score, corrected for slice 

thickness and attenuation threshold of >130 Hounsfield units is generally used for aortic 

calcification assessment (Figure 3).110

AAC increase with age and is associated with traditional risk factors, especially in smokers. 

Moreover, smoking cessation has been shown to reduce the deleterious effects of smoking 

on abdominal aortic atherosclerosis.111-113 In the CARDIA study, The AAC score was an 

early indicator of atherosclerosis as it reflects atherosclerotic CVD when CAC is zero.114 

The prevalence of AAC was 53% among young adults,114 and AAC scores were generally 

found to be higher than CAC scores. CARDIA also showed that calcification magnitude in 

the abdominal aorta may have less CV prognostic impact compared with the same score in 

the coronaries (CAC). 114 AAC alters normal aortic physiology by inducing or augmenting 

aortic stiffness. 115 In this regard, greater ankle-branchial index and pulse wave velocity 

are associated with AAC. 115,116AAC also associates with adverse cardiac remodeling and 

diastolic dysfunction, especially in older age.

In summary, being an early indicator of CVD and easily detected by X-ray-based imaging 

technologies, AAC has advantages over other early markers of CV atherosclerosis as 

an accessible imaging marker. In addition, aortic atherosclerosis can also be detected 

by transesophageal echocardiography and MRI although radiography and computed 

tomography are the most commonly used techniques for AAC detection and diagnosis. AAC 

has however a lower prognostic predictive power for CVD when compared to CAC. Table 

2 describes the summary of selected studies that examine the role of aortic imaging in the 

development of CVD .

Microvascular disease

Emerging data shows among patients that have angina without obstructive coronary disease, 

microvascular dysfunction (MVD) as a forerunner etiology, with a pooled prevalence of 41% 

affecting young women twice as much as men .117-119 MVD can coexist with obstructive/

non-obstructive atherosclerosis and without macrovascular atherosclerosis. Studies have 

also shown MVD as a precursor to cardiomyocyte injury and stiffness leading to HF and 

even a potential role in takotsubo cardiomyopathy. 120-122 Being a syndrome of structural 

and functional abnormalities in coronary microcirculation, MVD is also associated with 

an increased risk of major cardiovascular events (MACE). 123 However diagnosis of 

MVD is quite challenging since patients have normal findings on physical examination. 

Disruption of adaptive mechanisms such as a change in the arterial diameter in response 

to flow changes causing shear stress, myogenic constriction in response to increased 
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pressure and decreased microvascular resistance to maintain blood flow distally in the 

coronary circulatory system are potential mechanisms leading to MVD. 117,118 MVD 

encompasses the disruption of microvasculature – endothelial dysfunction, coronary spasm, 

inflammation, and atherosclerosis. 101 As the microcirculation is beyond the resolution of 

direct angiography- both invasive and non-invasive, there is a huge gap in understanding and 

defining the clinical phenotypes of MVD.

Coronary flow reserve (CFR) or myocardial perfusion reserve (MPR), which is a ratio 

of maximal hyperemic coronary flow to baseline coronary flow at rest, can reflect both 

epicardial stenosis and MVD.124,125 MPR can be best quantified using positron emission 

tomography (PET), although CT or MR perfusion by describing the kinetics of contrast 

material traversing the myocardium over time can also assess MPR.

MVD can also be evaluated by contrast echocardiography based on the assessment of 

injected microbubbles – those that get destroyed by ultrasound vs those that do not, 

containing or not high molecular weight gas. Using the mean velocity of the myocardial 

microbubble and cross-sectional area, myocardial blood flow can be quantified. Similarly, 

transthoracic Doppler echocardiography can also be used to estimate coronary flow velocity 

reserve (CFVR) which is obtained by pulsed-wave Doppler sampling of the proximal 

left anterior descending coronary artery and expressed as the ratio of coronary flow 

velocity during stress versus at rest. Although the method is inexpensive, entails no 

radiation exposure and abnormal CFVR has been associated with CVD, it is also highly 

operator dependent with limited clinical utility, making it challenging for widespread 

utilization.126-128

CT perfusion (CTP) combined with CT angiography is a non-invasive robust imaging 

modality that can evaluate MVD. CTP methods include static and dynamic CTP where 

static CTP provides semiquantitative or qualitative assessment, and dynamic CTP provides 

a quantitative assessment of myocardial perfusion (Figure 4). Images are obtained using 

ECG gating 30 seconds after contrast injection at rest and during vasodilator stress. Static 

CTP requires a single image at peak contrast opacification which is compared with images 

obtained at rest.75,129 In dynamic CTP, sequential images are obtained over time from 

contrast first pass, allowing quantitative perfusion assessment. 130,131CTA derived FFR 

(FFRCT) is calculated by simulating maximal hyperemia at a specified time point in 

a 3D coronary tree using mathematical modeling. FFRCT combined with CTA is more 

sensitive in the assessment of CAD compared to single photon emission CT (SPECT). The 

ratio of coronary luminal volume to mass has been shown to correlate with ischemia in 

non-obstructive CAD as well. Even though CT is the best tool to image atherosclerosis 

non-invasively, the radiation exposure and overestimation of coronary blood flow by 

dynamic CTP remain important limitations to using CTA combined with CTP in clinical 

practice.75,131-133

On the other hand, myocardial blood flow and MPR can also be assessed by cardiac 

MRI using adenosine as the vasodilator during stress. To determine MBF compartmental 

modeling, distributed parameter models can be used. 134-137 The CMR-derived MPR index 
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can be used as a measure of MVD in nonobstructive CAD and is also correlated with native 

T1, suggesting an association with interstitial fibrosis. 138

Finally, cardiac PET remains the most accurate non-invasive modality for the quantification 

of MVD and uses radiotracers with high first-pass uptake.139,140 Post-processing software 

performs segmentation to compute the regional and global myocardial blood flow 

using arterial input function measurements. 141,142Comprehensive quantitative analysis 

of perfusion by PET includes stress flow at maximal vasodilation, CFR and transmural 

perfusion gradients which provide improved diagnostic accuracy for MVD. Limitations 

of PET include reduced temporal resolution, radiation exposure and limited camera 

sensitivity.139,140

IMAGING INCIPIENT HEART FAILURE

Globally, heart failure (HF) is rising in prevalence, increasing healthcare costs and 

expenditures.143 Heart failure with preserved ejection fraction (HFpEF) accounts for one-

half of incident heart failure cases and is co-morbid with prevalent AF, diabetes, stroke 

and dementia.144-148 HFpEF has been associated with clinical phenotypes including aging, 

pulmonary hypertension, obesity and CAD.149 Several cardiac and non-cardiac mechanisms 

are known to be involved in the pathogenesis of HFpEF; left ventricular chamber (LV) 

and myocardial stiffening with accompanying rise in left ventricular diastolic filling 

pressures and subclinical systolic dysfunction characterize the HFpEF clinical syndrome. 
150-153Moreover, excessive myocardial fibrosis, characterized by the accumulation of 

extracellular matrix in the myocardium, jeopardizes mechanical function and structural 

integrity, accompanied frequently by cardiomyocyte hypertrophy. 154-156The elucidation of 

mechanisms involved in the adverse extracellular matrix remodeling is critical not only to 

the epidemiology of HF but also AF.157-159

Cardiac imaging has evolved from volumetric analysis and now can offer granular 

and detailed information on the functional, mechanical, hemodynamic and tissue 

characterization of the cardiac chambers using echocardiography, MRI and nuclear 

imaging.153,160-162 The advent of non-invasive imaging techniques has demonstrated 

the complexities of the different phenotypes associated with HFpEF. Such complexities 

underscore the challenges of diagnosing the early stages of HFpEF. 174,175174,175 In 

HFpEF, the progressive reduction in LV volumes, stroke volume (SV) and cardiac output 

is accompanied by a parallel reduction in contractile function as indexed by decreased 

myocardial strain, with compensatory increases in LV relative wall thickness, concentric 

remodeling, and torsion.163-169 These alterations are accompanied by improvement of LV 

ejection fraction to offset the LV cavity size and stroke volume reduction. 153,161,162 Hence, 

multi-modality non-invasive imaging is needed for accurate phenotyping in the diagnosis, 

and management of HF and identifying its early stages. 152,159-161 Table 4 describes the 

summary of selected studies that examine the role of imaging in the development of heart 

failure.
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Echocardiography

Echocardiography is the most commonly used, cost-effective and clinically established 

imaging tool for the diagnosis and clinical monitoring of cardiac remodeling. The LV 

end-diastolic volume (LVEDV), LV end-systolic volume (LVESV), LV stroke volume, mass 

and ejection fraction are most often assessed by two-dimensional echocardiography (2D 

echo) according to the guidelines established by the American Society of Echocardiography. 
169-171Moreover, speckle-tracking images for myocardial strain and strain rate are analyzed 

based on 16 segments of LV mid-wall layers using wall motion 2D tracking software. 

Strain is calculated as the change in segment length relative to its end-diastolic length 

from peak systolic values. Longitudinal strain (Ell) and strain rate curves can be assessed 

from 4-chamber views. Circumferential strain (Ecc) and strain rate can be assessed from 

the short-axis view at the mid-ventricular level. Global strain and strain rate values are 

calculated as the average of the peak segmental strain values (Figure 5). 170

In the CARDIA study, LV mass was highly correlated with BMI, subscapular skinfold 

thickness, height and systolic blood pressure among young adults. LV mass was greater in 

men than in women and greater in blacks than in whites independent of anthropometric 

and traditional risk factors. LV hypertrophy was found in 2% of the cohort. Blacks had 

higher LV wall thickness/diameter ratios. 171,172At the CARDIA Year 25 exam, greater 

exposure to cardiovascular risk factors entailed a greater chance of developing adverse LV 

remodeling. Over 25 years, LV end-systolic dimension and mass indexed to height were 

found to be associated with eccentric and concentric hypertrophy, diastolic dysfunction and 

incident clinical HF. 173 Moreover, longitudinal changes in LV mass index over 10 years 

were associated with a 15mmHg increase in systolic blood pressure and 20 pounds of weight 

gain. 174 Also, over 20 years, there was a significant decline in the prevalence of normal 

geometry from 84.2% to 69.7% among young adults in the CARDIA study. Change in 

cardiovascular risk traits in young adults predicted change in LV mass/geometry in middle 

age.174 Among young smokers, LV mass was increased, LV end-systolic stress was higher 

and pulmonary acceleration time was lower. 174,175

The left ventricular global function index (LVGFI) which is a validated measure of LV 

cardiac performance measured by cardiac MRI, can be assessed using echocardiography. 

LVGFI is defined as LV stroke volume/LV global volume where LV global volume is the 

sum of LVEDV + LVESV and myocardial volume (LV mass/density). Among young adults 

without clinically apparent CVD (CARDIA), LVGFI was a predictor of incident HF and 

CVD and showed prognostic value compared to LVEF, with higher LVGFI associated with 

HF (HR=0.70, 95%CI 0.54-0.91), CVD (HR=0.83, 95% CI 0.72-0.96). Moreover, worse 

LVGFI was associated with hypertension, obesity and smoking in young adults. 176

At the CARDIA year 25 examination, compared to women, men had greater LV volume 

and mass,177and black participants had larger LA volumes than whites. Among middle-aged 

adults, greater exposure to traditional risk factors such as diabetes, blood pressure variability 

and obesity in young adulthood was associated with adverse LV remodeling such as higher 

LV mass, lower LVEF, and impaired longitudinal and circumferential strain.172,178-183

Varadarajan et al. Page 10

Circ Res. Author manuscript; available in PMC 2024 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Left atrial function (LA) is characterized by 3 phases: LA reservoir function during LV 

systole, conduit function in early LV diastole and booster pump in late LV diastole. 

Recently, studies have highlighted the importance of LA function throughout human life 

and its alterations can be used as early CVD phenotypes. An increase in LA volume and 

pressure leads to chronic LA dilatation with an initial increase in the contractile function that 

worsens with CVD progression. Such LA remodeling has been associated with an increased 

risk of atrial fibrillation, stroke and heart failure.184-186 Given its thin walls and complex 

morphology, it may be challenging to visualize and evaluate LA structure and function. 

Echocardiography is the most frequently used imaging modality to assess LA phasic 

performance. Parasternal long-axis 2D views with or without M-mode echocardiography 

can be used for assessment of the left atrium (LA) measured at the point of maximum atrial 

volume (Figure 7). In 2D echocardiography, LA size and function are commonly evaluated 

using orthogonal 4 and 2 chamber views. Volumetric LA phasic function can be assessed by 

3 DE where volumes are measured as maximum and minimum and also immediately before 

atrial contraction. Spectral Doppler can be used to assess the transmitral pulmonary venous 

flow. Myocardial strain and strain rate can be extracted using 2D speckly tracking.178 

Among young adults, left atrial size indexed to body surface area was shown to be an 

independent predictor of clinical outcomes with an AUC of 0.77 for LA diameter and 0.78 

for LA area. LA size indexed to BSA is a predictor of CVDs in the general population.187

Cardiac Magnetic Resonance Imaging

Since MRI is highly reproducible and has better spatial resolution and is less operator 

dependent than echocardiography, it has been considered the clinical gold standard for 

assessing cardiac structure and function. Images of the whole LV are used for the assessment 

and quantification of LV mass and volume. Short-axis images are segmented for endocardial 

and epicardial borders for quantification of LV volumes which is calculated using Simpson’s 

rule using two-chamber and four-chamber views in end-diastole and end-systole (Figure 6). 

However, MRI is expensive and its use as a screening tool for incipient structural alterations 

is currently limited. 188-192

Myocardial fibrosis can occur as either a replacement or interstitial fibrosis, and even 

though various imaging modalities can be used for the detection and visualization of 

myocardial fibrosis, contrast-enhanced MRI remains the gold standard for quantification 

with late-gadolinium enhancement (LGE) being used for accurate quantification of focal 

replacement fibrosis, while T1 mapping as the technique of choice for quantification 

of diffuse extracellular interstitial fibrosis. Replacement myocardial fibrosis expressed as 

myocardial scars is commonly secondary to coronary occlusion due to CAD or myocardial 

damage caused by other etiologies. Myocardial scars secondary to clinically overt or silent 

myocardial infarction are commonly quantified and used for late-gadolinium enhancement. 

In the non-ischemic state, myocardial collagenous scars are commonly secondary to toxic 

insults leading to localized necrosis or cellular apoptosis due to inflammation.155,193,194 

This is seen most often in hypertensive heart disease, hypertrophic cardiomyopathy, 

amyloidosis and infiltrative interstitial disease that can also be diffused. In hypertension, 

pressure and volume overload, DM and obesity, the imbalance between myocyte growth and 
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death governs the process of progressive interstitial myocardial fibrosis. This process is also 

commonly seen in association with aging. 154,193

Contrast-enhanced cardiac MRI provides an accurate method of detecting and quantifying 

interstitial and replacement myocardial fibrosis in a variety of pathologies. For example, 

late-gadolinium enhancement imaging can be used to identify the presence, pattern, and size 

of replacement fibrosis in ischemic cardiomyopathies. In such conditions, LGE is associated 

with LV adverse remodeling characterized by decreased ejection fraction, increased chamber 

volume and decreased mass. LGE quantified myocardial scar has been established as a 

predictor of cardiac mortality, HF hospitalization and malignant arrhythmias. Myocardial 

scars in non-ischemic cardiomyopathies are also associated with adverse LV remodeling of 

diverse types and magnitudes. On the other hand, T1 mapping allows for the quantitation 

of interstitial fibrosis due to ischemic and non-ischemic cardiac disease. In amyloidosis 

and sarcoidosis, increases in interstitial space can result in increased extracellular volume 

which can be quantified by T1 mapping.195,196 However, in patients with hypertension or 

significant obesity, T1 mapping may result in disparate extracellular volume determinations 

due to technical limitations associated with myocyte hypertrophy and/or reduced blood 

volume relative to body weight 197.

LA morphology and function are most accurately measured using Simpson’s rule quantified 

in multiple cross-sectional planes. However, as a simpler approach, LA can be quantified 

using orthogonal views as demonstrated by several groups of investigators.188,198 Using 

epicardial and endocardial contours in 2 and 4 chamber cine images, and using biplane 

are-length methods, LA volume curves can be generated during one cardiac cycle. Using 

the volume/time curve measurements for maximum LA volume, volume before atrial 

contraction and minimum volume can be obtained, allowing for LA passive and active 

emptying quantification. LA deformation parameters can also be assessed using feature 

tracking MRI. Global longitudinal strain curves can be created by averaging the strain 

measurements from all segments (Figure 8).158,159,185,186,189,198 Similar to LV myocardial 

scars, LA replacement fibrosis in association with LA dysfunction can be detected and 

assessed by contrast-enhanced cardiac MRI.157-159,186,198,199

More recently, Pezel T et al. have proposed the utilization of atrial-ventricular coupling 

expressed as the ratio of minimal LA volume to LV end-diastolic volume (LACI) as a 

measure of cardiac remodeling in patients with preserved or compromised LV ejection 

fraction.200,201 LACI has emerged as a powerful predictor of incident atrial fibrillation 

and heart failure in the multi-ethnic study of atherosclerosis, as well as in patients with 

myocardial infarction and other pathologies 200,202,204-207. LACI is a promising phenotype 

of the complex coupling of left atrial and ventricular function and may significantly enhance 

our armamentarium in characterizing early and established CVD.. Table 3 describes the 

summary of selected studies that examine the role of imaging in the development of cardiac 

remodeling and HF .
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FUTURE PERSPECTIVES:

The ultimate goals of identifying early markers of atherosclerosis and heart failure include 

1 - defining risk groups, and optimizing therapeutic and preventative interventions. 2 

- reducing morbidity, and mortality due to CVD. 3 – reduce healthcare expenditures 

associated with the enormous CVD burden worldwide. 4- facilitate a deeper understanding 

of the pathogenetic mechanisms underlying the processes that lead to CVDs.

The advent of machine learning and artificial intelligence (AI)techniques applied to the 

analysis of massive longitudinal datasets have enabled the creation of neural networks 

and complex models which provide a much more nuanced and multifaceted phenotyping 

of early subclinical CVD. Machine learning methods, particularly random survival forest 

have been used in prediction of CVD risk which opens the possibility of discovering 

new relationships that are not hypothesis driven and without any prior assumptions.208-210 

The ability to recognize the best predictors lead to biomarker discovery and antecedent 

imaging markers identification, especially in subclinical disease process.210-212 In the field 

of image acquisition and reconstruction, neural-network based solutions help focus on a 

faster image processing by improving overall image quality in CMR and drastically reduce 

radiation and contrast in CTA imaging. 78,213Artificial Intelligence based CAC scoring 

has shown to have reproducibility and agreement in a fraction of time. 214In future, these 

AI powered imaging will likely incorporate identification of plaque features from CTA 

tissue characterization and AI based segmentations in CMR leading to workflow efficiency, 

automated cardiac chamber quantification and better reproducibility.215,216 In a patient-

centric clinical practice, imaging services can help refine risk stratification, facilitate the 

initiation of early preventative strategies and guide daily management decisions. Future, AI 

based integration of multimodality imaging data with medical records can be incorporated 

into an individual-specific cardiac risk model that provides personalized digital data for 

the individuals. Combined with AI based “omics” and biomarkers, imaging can provide a 

sophisticated diagnosis and management algorithm for enhanced precision in preventive CV 

medicine in clinical practice. Moreover, these early imaging markers can be used to design 

large-scale clinical trials to identify subclinical disease processes and show the impact of 

early life intervention on CV disease prevention. These clinical trials can enable a much 

greater refinement of personalized approaches in CV medicine.

CONCLUSIONS:

The appearance of atherosclerosis early in life reflecting exposure to hyperlipidemia, 

hypertension, obesity and smoking are strong markers of CVD in middle age. Even though 

frequently detected non-invasively as CT-defined CAC in the third and more frequently 

fourth decade of life (10 to 15 years later when compared to cardiac remodeling in 

populations), coronary atherosclerosis is a stronger predictor of mid-life cardiovascular 

events. Identifying young adults at risk using CAC aids in employing preventative measures 

to alter their atherosclerotic disease trajectories and risk factor exposures. Clinically, 

subclinical atherosclerosis and cardiac remodeling can be detected also as alterations of 

carotid and aortic wall thickness and calcification, myocardial perfusion abnormalities 

reflecting microvascular disease, and other early phenotypes particularly if more complex 
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technologies based on MRI or PET are used. However, such technologies are not as 

accessible making ultrasound and CT the preferred tools for population screening and early 

identification of risks related to chronic exposure to hypertension, hyperlipidemia, obesity, 

cigarette smoking and diabetes. Newer preventive strategies as well as the discovery of novel 

pathways for preventing CVDs are sorely needed given the magnitude and burden of CVDs 

worldwide.

Lifelong low LDL-C is associated with low levels of atherosclerosis and CVD.217 

Moreover, several clinical trials have shown that statin reduces CVD events and regresses 

coronary atherosclerosis. Genetic studies show that loss of function mutations in proprotein 

convertase subtilisin/kexin type 9(PSCSK −9) reduce LDL-C with significant reductions of 

CHD events over 15 years.218 However, Duke registry data and YOUNG-MI studies have 

documented a significant gap between young adults requiring statin therapy vs those who 

are actually on statin therapy. This has been attributed to hesitancy to initiate treatment 

due to a perceived lack of compelling evidence justifying therapy in young individuals. 
219,220On the other hand, a modeling study based on NHANES predicted that the use of 

high-intensity statin for 30 years would be associated with a 51-71% reduction of premature 

CVD outcomes among 30-39-year-old adults. 221 Statin therapy alone is unlikely to reduce 

LDL-C, however, when added to PCSK-9, it is a 50-60% further reduction of LDL-C 

levels without prohibitive augmentation of serious adverse effects. 222Since atherosclerosis 

progresses over time, it may be beneficial to start lipid-lowering drugs in the fourth decade 

of life with revisiting every 5-10 years to limit the progression of atherosclerosis, reevaluate 

the risks of drug-related adverse effects and reduce health-related expenditures. 223However, 

before the implementation of such powerful preventive strategies, we need clinical trials that 

help us investigate the potential harms and benefits of early intervention, the ideal timing 

of treatment initiation and the expenditures associated with the large-scale implementation 

of such audacious strategies of personalized preventive CV medicine. We reviewed in this 

document the available data on the value of imaging markers that support early phenotyping 

of sub-clinical cardiovascular diseases.
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NON-STANDARD ABBREVIATIONS AND ACRONYMS

CVD Cardiovascular disease

CAD coronary artery disease

HF heart failure
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AF atrial fibrillation

CHD Coronary heart disease

CV cardiovascular

CT computed tomography

MRI magnetic resonance imaging

PET positron emission tomography

LV left ventricle

LDL low density lipoprotein

HDL high density lipoprotein

AAC abdominal aorta calcification

CAC coronary artery calcification

MESA Multi-Ethnic Study of Atherosclerosis

CARDIA Coronary Artery Risk Development in Young Adults

PDAY Pathobiological Determinants of Atherosclerosis in Youth

CTA coronary CT angiography

ICA invasive coronary angiography

ACC American College of Cardiology

AHA American Heart Association

IMT intima-media thickness

MI myocardial infarction

BMI body mass index

PESA The Progression of Early Subclinical Atherosclerosis

MVD microvascular disease

MACE Major cardiovascular events

CFR coronary flow reserve

MPR myocardial perfusion reserve

CFVR coronary flow velocity reserve

CTP CT perfusion

ECG electrocardiogram

Varadarajan et al. Page 15

Circ Res. Author manuscript; available in PMC 2024 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FFR fractional flow reserve

SPECT single photon emission CT

HFpEF Heart failure with preserved ejection fraction

SV Stroke Volume

LVEDV LV end-diastolic volume

LVESV LV end-systolic volume

Ell Longitudinal Strain

Ecc Circumferential Strain

LVGFI LV global function index

LA left atrium

LGE Late gadolinium enhancement

LACI left atrial coupling index

AI artificial intelligence
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Figure 1: 
Natural History of CVD development
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Figure 2: 
A) curved multiplanar CT image of atherosclerotic plaque in the left anterior descending 

artery (LAD). B) cross-sectional image of coronary calcium of the same artery at the level 

of the blue line in the panel A. C) A curved multiplanar reformatted CT image of LAD of a 

different patient. D) Cross-sectional image of the same artery at the level of the blue line in 

the panel C.
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Figure 3: 
CT image of descending aorta showing calcification and significant atherosclerosis. A) 

Orthogonal view of descending aorta. B) cross-sectional view of the descending aorta.
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Figure 4: 
The upper panel shows the presence of atherosclerotic plaque in the left anterior descending 

artery (LAD) which was not denoted as having significant CAD by CTA visual assessment 

but was denoted as significant CAD by CTA and semi-quantitative CTP metrics. Lower 

Panel shows the presence of atherosclerotic plaque in the lateral circumflex artery of a 

patient that was not denoted as significant CAD by CTA visual assessment, however, was 

denoted as having significant CAD by combined CTA and quantitative CTP metrics.
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Figure 5: 
Two longitudinal orthogonal plane display of left ventricular with strain analysis in four 

chamber (A) and two chamber views (B).
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Figure 6: 
Left panel shows the MRI image of the left ventricle. Left upper panel shows the LV in 2 

chamber and 4 chamber view. Left lower panel shows the LV in short axis where the scar in 

the myocardium can be appreciated. Right Panel shows the T1 mapping of LV myocardium.
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Figure 7: 
Multiplane display of LA 3d full volume showing three cross-sectional slices (C3, C5, and 

C7) and two longitudinal orthogonal planes (four chamber(A) and two-chamber (B) views).
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Figure 8: 
MRI image of LA showing contours drawn using Multimodality tissue tracking software at 

end- diastole and end systole.
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Table 1:

Selected Studies that described the role of coronary artery imaging in ASCVD.

First Author Main Findings

Tota-Maharaj et al., 2012 53 Diffuse CAC was associated with a higher mortality rate in the CAC >100. Left main CAC was associated with 
increased mortality risk. Increasing number of coronaries with CAC was associated with increased mortality 
risk.

Carr et al., 2017 54 With 12.5 year follow-up , presence of CAC was associated with increased risk of fatal and nonfatal CHD.

Javaid et al., 2022 55 Males had higher mean CAC scores and higher prevalence of nonzero CAC compared to females

Allen et al., 2014 58 CAC of 100 HU was associated with 2.7%, 5%, 63% and 12.9% increase for moderate-stable, moderate-
increasing, elevated stable and elevated increasing blood pressure trajectories.

Loria et al., 2007 57 Adjusted odds-ratio of having CAC by 33-45 years were 1.5 per 10 cigarattes, 1.5 per 30mg/dl LDL, 1.3 per 
10mmHG systolic blood pressure and 1.2 per 15mg/dl glucose at baseline. Young adults with above optimal risk 
factor levels were 2-3 times more likely to have CAC.

Green et al., 2009 59 The age-, race-, and gender-adjusted prevalence of CAC with increasing quartiles of fibrinogen were 14.4%, 
15.2%, 20.0%, and 29.1%

Iribarren et al., 2005 60 The odds ratio (OR) of CAC per 1 standard deviation (SD) increment was 1.40 (95% CI, 1.17 to 1.67) and 1.39 
(95% CI, 1.14 to 1.70) for Lp-PLA 2 mass and activity, respectively.

Lee et al., 2007 61 The odds ratios (ORs) for CAC in the highest versus lowest tertiles of waist girth and WHR were 1.9 (95% CI: 
1.36, 2.65) and 1.7 (1.23, 2.41), respectively

Majka et al., 2013 62 Anti- b2-GPI IgM, IgG, IgA, and IgG positivity were associated with CAC [0 at year 15 after adjustment for 
traditional cardiovascular risk factors; [odds

Kroenke et al., 2012 63 In multivariate-adjusted analysis, higher quartiles of telomerase were cross-sectionally associated with greater 
odds of prevalent CAC at year 15 (quartile 2: OR = 1.32, 95% CI: 0.54-3.23; quartile 3: OR = 1.40, 95% 
CI: 0.60-3.30; quartile 4: OR = 3.27, 95% CI: 1.39-7.71 compared with quartile 1, p-continuous = 0.012) and 
progressive CAC at year 20

Yared et al., 2019 64 Higher CAC was related to higher LV mass (β=1.218; adjusted P=0.007), higher LV end-diastolic volume 
(β=0.811; adjusted P=0.007), higher LV end-systolic volume (β=0.350; adjusted P=0.048), higher left atrial 
volume (β=0.214; adjusted P=0.009), and higher E/e' ratio (β=0.059; adjusted P=0.014)

Gidding et al., 2016 65 For each 1 point higher PDAY score, the odds of CAC were 1.29; 95% confidence interval [CI], 1.25-1.33

CT Angiography

Arbab-Zadeh et al., 2015 68 Sensitivity to identify patients with CAD was greater for CTA than SPECT-MPI (0.92 versus 0.62, respectively; 
P<0.001), resulting in greater overall accuracy (area under the receiver operating characteristic curve, 0.91 [95% 
confidence interval, 0.88-0.94] versus 0.69 [0.64-0.74]; P<0.001)

SCOT-HEART Trail 72 Invasive coronary angiography was performed in 491 patients in the CTA group and in 502 patients in the 
standard-care group (hazard ratio, 1.00; 95% CI, 0.88 to 1.13), and coronary revascularization was performed in 
279 patients in the CTA group and in 267 in the standard-care group (hazard ratio, 1.07; 95% CI, 0.91 to 1.27)

Gottlieb et al., 2010 75 From a total of 383 vessels without any coronary calcification, 47 (12%) presented with ≥50% stenosis; and 
from a total of 64 totally occluded vessels, 13 (20%) had no calcium.

Mortensen et al., 2022 77 The presence of obstructive vs nonobstructive CAD among those with a CAC score of 0was associated with a 
multivariable adjusted hazard ratio of 1.51 (95% CI, 0.98-2.33) for myocardial infarction and all-cause death; 
however, this hazard ratio varied from 1.80 (95% CI, 1.02-3.19) in those who were younger than 60 years to 
1.24 (95% CI, 0.64-2.39) in those who were 60 years or older.

Abbreviations: CAC-coronary artery calcium; HU-Hounsfield unit;CAD- coronary artery disease; CTA- computed tomography angiography; 
SPECT-MPI-single photon emission CT- myocardial perfusion imaging; Ig- Immunoglobulin, Gp- glycoprotein.
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Table 2:

Selected Studies that described the role of carotid and aortic artery imaging in ASCVD

First Author Main Findings

Bots et al., 1997 88 Odds ratio of 0.163mm increase in IMT with stroke was 1.41 (95% CI, 1.25 to 1.82), myocardial infarction was 
1.43 (95% CI, 1.16 to 1.78) When subjects with a previous myocardial infarction or stroke were excluded, odds 
ratios were 1.57 (95% CI, 1.27 to 1.94) for stroke and 1.51 (95% CI, 1.18 to 1.92) for myocardial infarction.

Urbina et al., 2002 91 Race differences (blacks more than whites) were noted for the common carotid (p <0.001) and carotid bulb 
(bifurcation) IMT (women only, p <0.001). Men had a greater IMT in the common carotid (p <0.05), internal 
carotid (p <0.05), and carotid bulb (whites only, p <0.001).

Berry et al., 2009 89 In young adults with a low 10 year risk, the IMT of common carotid (0.83mm) and internal carotid (0.85mm) was 
higher in high lifetime risk compared to low lifetime risk groups

Polak et al., 2010 94 Carotid IMT was associated with LDL cholesterol, smoking and hypertension in all segments while CCA was 
associated strongly with fasting glucose and diastolic blood pressure and hypertension, diabetes and current 
smoking with bulb IMT, and LDL with ICA IMT

Nwabuo et al., 2020 99 Carotid IMT has also been shown to be associated with variability of blood pressure due to the shear stress on the 
arterial scaffold resulting endothelial dysfunction, inflammation and oxidative stress leading arterial remodeling

Wilkins et al., 2014 Family history of CVD was associated with carotid IMT >90% with an OR 1.93, 95% CI 1.10-3.4.

Raynor et al., 2013 Lipid levels at young age have been shown to predict carotid IMT abnormalities in middle age. More than carotid 
stenosis, plaque area and volume showed greater association with traditional risk factors.

McMahan et al., 2005 
22

Odds ratios for a 1-unit increase in the risk scores were 1.18 (95% confidence interval, 1.14-1.22) for the CAC and 
1.29 (95% confidence interval, 1.23-1.35) for the abdominal aorta.

Jurgens et al., 2021 114 AAC scores tended to be much higher than CAC scores. AAC scores were higher in Black women than in White 
women. AAC predicted CVD with HR 1.77 (1.52– 2.06). AAC predicted incident CVD when CAC was 0.

Szulc, 2016 116 People with any or more advanced AAC had higher risk of cardiovascular events (RR, 1.83; 95% CI, 1.40-2.39), 
fatal cardiovascular events (RR, 1.85; 95% CI, 1.44-2.39), and all-cause mortality (RR, 1.98; 95% CI, 1.55-2.53)

Abbreviations: CI- confidence interval; IMT- intima-media thickness; CCA- common carotid artery; ICA-internal carotid artery;LDL-low-density 
lipoprotein; CBF-cerebral blood flow; AAC-abdominal aorta calcification; CAC-coronary artery calcification; CVD- cardiovascular disease; HR- 
hazard ratio;RR-relative risk;
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Table 3:

Imaging cardiac remodeling and heart failure

First Author Main Findings

Echocardiography

Gardin et al., 1995a 172 After adjustment for subscapular skinfold thickness, height, systolic and diastolic blood pressures, alcohol 
consumption, pulmonary function, smoking history, physical activity, total serum cholesterol, and family 
history of hypertension, LV mass remained higher in men than in women (P<.0001), in black men (167±43 
g) than in white men (156±50 g, P<.0001), and in black women (142±49 g) than in white women (137±43 
g, P<.002).

Perak et al., 2021 173 Over 25 years, LV end systolic dimension and mass indexed to height was found to be associated with 
eccentric and concentric hypertrophy, diastolic dysfunction and incident clinical HF

Gidding et al., 2013 174 Longitudinal changes of LV mass index over 10 year were associated with 15mmHg increase in systolic 
blood pressure and 20 pounds gain in weight

Gidding et al., 1995 175 Among young smokers, LV mass was increased, LV end systolic stress was higher and pulmonary 
acceleration time was lower

Nwabuo et al., 2019 176 LVGFI was a predictor of incident HF and CVD and showed prognostic value compared to LVEF, with 
higher LVGFI associated with HF (HR=0.70, 95%CI 0.54-0.91), CVD (HR=0.83, 95% CI 0.72-0.96).

Moreira et al., 2017 177 At the CARDIA year 25 examination, compared to women, men had greater LV volume and mass

Kishi et al., 2014, 178 High LV mass index was an independent predictor of systolic dysfunction (LVEF <50%) 20 years later 
(odds ratio 1.46, p = 0.0018)

Lin et al., 2021 179 A 1-SD increment of intense glycemic exposure was significantly associated with worse target organs 
function after multivariable adjustment: left ventricular mass (β [SE], 5.468 [1.175]); global longitudinal 
strain (β [SE], 0.161 [0.071]); E/e’ ratio (β[SE], 0.192 [0.071]); CAC score (β [SE], 27.948 [6.116]

S. Liu et al., 2022 180 Per 1-SD increase in cumulative systolic BP was associated with a higher risk of diastolic dysfunction, 
while an increase in cumulative diastolic BP was associated with a higher risk of systolic dysfunction and 
diastolic dysfunction.

Armstrong et al., 2014 187 Among young adults, left atrial size indexed to body size area were shown to be independent predictors of 
clinical outcomes with an AUC of 0.77 for LA diameter and 0.78 for LA area. LA size indexed to BSA are 
predictors of CVDs in general population

Magnetic Resonance Imaging

Habibi et al., 2014, 2015; 184,185 Individuals with incident HF had greater maximal and minimal LA volume indexes (LAVImin) than 
control subjects (40 ± 13 mm3/m 2 vs. 33 ± 10 mm3/m2 [p <0.001] for maximal LA index and 25 ± 11 
mm3/m2 vs. 17 ± 7 mm3/m2 [p <0.001] for LAVImin).
In multivariable analysis, increased LGE was associated with lower LA passive emptying fraction, peak 
global longitudinal LA strain, systolic strain rate, early diastolic strain rate, and late diastolic strain rate

Markman et al., 2017; Raisi-
Estabragh et al., 2022; 158,186

In the fully adjusted model, there was a significant association of minimum LAVI, LA total EF, LA passive 
EF and LA active EF with incident CVD (HR 1.12 per mm 3 /m 2 , P < 0.001; HR 0.95 per %, P < 0.001; 
HR 0.97 per %, P = 0.021; HR 0.98 per %, P < 0.027, respectively)

Zareian et al., 2015a, 2015b 198 LA parameters with good-excellent (ICC; 0.88- 0.98, p < 0.001) intra-and inter reader reproducibility and 
fair-good (ICC; 0.44-0.82, p < 0.05-0.001) inter study reproducibility.

Imai et al., 2014 157 Reduced LA regional and global function are related to both replacement

Petersen, et al., 2017 188 BMI was the modifiable risk factor most consistently associated with subclinical changes to CMR 
parameters, particularly in relation to higher LV mass (+8.3% per SD [4.3 kg/m2], 95% CI: 7.6 to 8.9%), 
LV (EDV: +4.8% per SD, 95% CI: 4.2 to 5.4%); ESV: +4.4% per SD, 95% CI: 3.5 to 5.3%), RV (EDV: 
+5.3% per SD, 95% CI: 4.7 to 5.9%; ESV: +5.4% per SD, 95% CI: 4.5 to 6.4%) and LA maximal (+8.6% 
per SD, 95% CI: 7.4 to 9.7%) volumes.

Varadarajan et al., 2021 199 Adverse LA remodeling over 10 years of follow-up strongly correlates with prolonged elevated levels of 
intracardiac stress, as assessed by NT-proBNP

Pezel, Venkatesh, et al., 2021 201

Pezel, Ambale-Venkatesh, et al., 
2022 200

Greater LACI and ΔLACI were independently associated with HF (adjusted HR 1.44, 95% CI [1.25-1.66] 
and adjusted HR 1.55, 95% CI [1.30-1.85], respectively.
Greater LACI and ΔLACI were independently associated with AF (hazard ratio, 1.69 [95% CI: 1.46, 1.96] 
and 1.71 [95% CI: 1.50, 1.94], respectively; both P , .001).

Germans et al., 2007 205 changes in LA volume and function were age dependent and related to changes in LV mass-volume ratio.
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First Author Main Findings

Meucci et al., 2022 206 Independent association between new-onset AF and LACI (hazard ratio [HR], 1.021; 95% CI, 1.017–
1.026), LA maximum volume indexed (HR, 1.028; 95% CI, 1.017–1.039), LA minimum volume indexed 
(HR, 1.047; 95% CI, 1.037–1.060) and LA emptying fraction (HR, 0.967; 95% CI, 0.959–0.977, all p 
< 0.001). The inclusion of LACI in the multivariate model provided a larger improvement in the risk 
stratification for new-onset AF, as compared to conventional LA parameters.

Abbreviations:LV-left ventricle; LVGFI- LV global function index;EDV-end-diastolic volume; ESV-end-systolic volume; RV-right ventricle; LA-
left atrium; LACI-left atrial coupling index; AF- atrial fibrillation;HF- heart failure; CI- confidence interval; HR- hazard ratio;ICC-interclass 
correlation;AUC- area under the curve; BSA- body surface area; SE- standard error; SD- standard deviation; BP- blood pressure;CAC- coronary 
artery calcium; CARDIA- Coronary Artery Risk Development in Young Adults; LVEF- LV ejection fraction.
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