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Abstract
Abdominal ultrasonography has become an integral component of the evaluation of trauma patients. Internal hemorrhage 
can be rapidly diagnosed by finding free fluid with point-of-care ultrasound (POCUS) and expedite decisions to perform 
lifesaving interventions. However, the widespread clinical application of ultrasound is limited by the expertise required for 
image interpretation. This study aimed to develop a deep learning algorithm to identify the presence and location of hemo-
peritoneum on POCUS to assist novice clinicians in accurate interpretation of the Focused Assessment with Sonography in 
Trauma (FAST) exam. We analyzed right upper quadrant (RUQ) FAST exams obtained from 94 adult patients (44 confirmed 
hemoperitoneum) using the YoloV3 object detection algorithm. Exams were partitioned via fivefold stratified sampling for 
training, validation, and hold-out testing. We assessed each exam image-by-image using YoloV3 and determined hemoperi-
toneum presence for the exam using the detection with highest confidence score. We determined the detection threshold as 
the score that maximizes the geometric mean of sensitivity and specificity over the validation set. The algorithm had 95% 
sensitivity, 94% specificity, 95% accuracy, and 97% AUC over the test set, significantly outperforming three recent methods. 
The algorithm also exhibited strength in localization, while the detected box sizes varied with a 56% IOU averaged over 
positive cases. Image processing demonstrated only 57-ms latency, which is adequate for real-time use at the bedside. These 
results suggest that a deep learning algorithm can rapidly and accurately identify the presence and location of free fluid in 
the RUQ of the FAST exam in adult patients with hemoperitoneum.

Keywords Focused Assessment with Sonography in Trauma · Deep learning · Artificial intelligence · Emergency 
ultrasound · Point-of-care ultrasound · Trauma

Introduction

The use of point-of-care ultrasonography (POCUS) has 
gained wide acceptance in diverse practice settings includ-
ing in the emergency department, prehospital, military, and 
austere settings because of the capability of this technol-
ogy to rapidly and accurately and noninvasively rule-in  
serious injury by detecting free intra-abdominal, intra- 
thoracic, and intra-pericardial free fluid [1–10]. The 
Focused Assessment with Sonography in Trauma (FAST) 
exam has become standard of care for the evaluation of 
patients with trauma by decreasing time to operative man-
agement and has been accepted as a part of the American 
Trauma Life Support (ATLS) protocol in the USA [11, 12]. 
The FAST exam interpretation requires training and can 
have differences in interpreter accuracy, with sensitivity  
and specificity of the FAST exam ranging from 87 to 98%  
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and 99 to 100%, respectively in detecting intraperitoneal fluid 
in patients who suffer from blunt trauma [13]. The primary 
limitation to the generalized use of the FAST exam has been 
the lack of trained and experienced operators in all types of 
clinical settings, including those prehospital and in resource-
limited settings. While expert readers can achieve high 
agreement, experience affects the diagnostic performance 
and the interpretation of the FAST exam. The human and  
financial resources needed to adequately train each clinician  
to achieve minimum standards for competency as recom-
mended by the American College of Emergency Physi-
cians and other national societies are substantial and they 
have been reported as a major barrier to more consistent 
use of POCUS in emergency and critical care settings [14, 
15]. Other image factors such as the volume of free fluid  
and recognition of structures such as the stomach and vas-
cular structures that could be misclassified as free fluid  
support the value of an artificial intelligence application 
to aide less experienced providers interpret the exam [16].

Teleultrasound refers to instruction provided virtually by  
a trainer and has been shown to be feasible and non-inferior 
to in-person instruction for image acquisition and interpreta-
tion [17, 18]. However, this still requires a trainer or expert 
to be available in real time to provide this feedback. We 
propose that the development of artificial intelligence to 
assist novice operators in the real-time interpretation of the 
FAST exam may be another way to bridge this gap. Many 
studies have examined the role of deep learning and artifi-
cial intelligence to aide in the interpretation of ultrasound 
applications including cardiac echocardiography, pregnancy 
evaluation, specific organ diagnoses, and many other appli-
cations [19–24]. Three recent studies have examined the 
use of deep learning in pediatric and adult FAST [25–27], 
attaining up to 97% accuracy in hemoperitoneum identifi-
cation over right upper quadrant exams [26]. Despite high 
prediction performance, these approaches did not provide 
location of identified abdominal free fluid. To address this, 
Lin et al. [28] described the use of a deep learning algorithm 
to perform pixel-by-pixel segmentation of free fluid and 
diagnosed ascites for each exam based on the segmentation 
result, achieving sensitivity and specificity of 94% and 68%  
for Ascites-1, respectively.

We believe that our study addresses important gaps and 
limitations in the literature on the use of artificial intel-
ligence to analyze the FAST exam. To begin with, recent 
studies on deep learning-based free fluid detection such 
as Cheng et al. [26] have included non-trauma causes of 
abdominal free fluid in their analysis of the “FAST” exam. 
As there can be differences in the appearance of traumatic 
hemoperitoneum such as complex images with clot and free 
blood, as well as the amount of free fluid and appearance of 
other abdominal organs in non-trauma causes of free fluid 

(such as cirrhosis of the liver with ascites), we believe that 
it is important that a clinical application designed for the 
interpretation of the FAST exam in trauma including ours 
should be tested in the intended population.

Our study also advances an application that could poten-
tially identify both the presence and location of free fluid in 
real time. Providing the location of free fluid identified by 
the application allows the clinician to visualize and overread 
the interpretation, similar to the functionality of an auto-
mated electrocardiogram interpretation provided on each 
report. Moreover, as FAST exam is used in emergency care 
settings, high accuracy in hemoperitoneum detection should 
be paired with the capability of rapid inference. Motivated 
by this, the purpose of this study was to test the performance 
of a deep learning algorithm that could be performed on 
a laptop computer (alternatively desktop computer, smart 
phone, or tablet) to rapidly and accurately identify the pres-
ence and location of hemoperitoneum in adult patients. Our 
approach is based on the YoloV3 algorithm [29], which 
exhibits fast and well-established prediction performance 
for object detection in various domains [30]. We assess each 
FAST exam image-by-image using YoloV3 and determine 
hemoperitoneum presence for the exam using the detection 
with highest confidence score. In doing so, free fluid is also 
localized on individual images by drawing a bounding box 
around the detection, rather than pixel-by-pixel segmenta-
tion as proposed by previous works. Our approach attained 
95% sensitivity, 94% specificity, 95% accuracy, and 97% 
in hemoperitoneum detection, significantly outperforming 
three recent methods we implemented. At the same time, 
average time to process each ultrasound image was only 
57 ms, equivalent to 18 ultrasound images processed per 
second, which confirmed our motivation of rapid detection.

Materials and Methods

Study Design and Setting

We performed a retrospective analysis of archived POCUS 
images obtained from 2010 to 2018 in adult patients 18 years 
or older who had FAST examinations performed by emer-
gency physicians in the Emergency Department of an urban 
Level 1 Trauma Center with approximately 140,000 visits 
per year. We identified cases with confirmed hemoperito-
neum as well as an equal number of negative controls. We 
cross referenced the exams to the Trauma Registry to link 
exams to specific patient medical records and reviewed the 
electronic medical record (Epic Systems software, Verona, 
WI) to confirm that hemoperitoneum was identified by addi-
tional imaging such as computerized tomography or opera-
tive report. To have an equal number of male and female 
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positive cases, we also included women who had confirmed 
hemoperitoneum from ruptured ectopic pregnancy or ovar-
ian cyst at surgery. We abstracted demographic data, injury 
mechanism, confirmatory test results, ultrasound device 
manufacturer, and probe that was used for the FAST study 
on a password protected secure computer.

The right upper quadrant (RUQ) view of the abdomen is 
the most sensitive region of the FAST exam for free fluid [31]. 
Therefore, for this proof-of-concept study, we analyzed only 
the RUQ quadrants from clinically obtained FAST exams. We 
obtained negative FAST exams from the ultrasound image 
archives that were coded and confirmed as negative studies. 
Each ultrasound exam was exported as a video clip in.mp4 
format. The study was deemed exempt from review by the 
institutional review board at the study site.

Two expert readers performed all of the image analysis 
and labeled all FAST studies. The first expert is an emer-
gency point-of-care ultrasound fellowship-trained expert 
with over 10 years of experience and oversees the quality 
assurance and image review for the emergency depart-
ment. The second expert reader who analyzed the images 
was among the inception cohort of one of the first emer-
gency point-of-care ultrasound credentialing programs in 
the country; has met initial credentialing standards set by 
the American College of Emergency Physician (ACEP) 
guidelines, including continuous hospital privileging in the 
interpretation of the FAST exam; and has more than 20 years 
of experience and imaging quality assurance review [32].

Studies identified within the emergency ultrasonogra-
phy archive were exported and deidentified. These were 
assigned a unique identifier prior to sharing images with 
the industry collaborator.

Data Annotation

The deidentified video clips (.mp4) were used for analysis 
using a deep learning algorithm. For videos that belong to 
positive cases, clinical experts in collaboration manually 
segmented all regions in each frame that indicate a clearly 
visible area of free fluid using PhotoPad Image Editor for 
Windows (NCH Software). Each image was coded by the 
two reviewers as a collaborative process to reach consen-
sus on all areas on a unique image where free fluid was 
detected. Each image was coded independently of other 
images because free fluid may not be seen in each image 
of a FAST exam due to the operator scanning through the 
entire area of interest in the body. Although the physicians 
who coded the images were aware of the overall categoriza-
tion of the study (positive or negative), each still frame had 
to be coded independently for the presence and location of 

free fluid because this can vary by location of the ultrasound 
probe and the amount of free fluid.

To prepare these ground-truth labels for the free fluid 
detection algorithm, we mapped free fluid regions to bound-
ing boxes by fitting a tight rectangular bounding box to fully 
contain each free fluid region. Each case contained on aver-
age 91 (± 62) ground-truth free fluid boxes, reaching up to 
269 boxes per case. Ground-truths also exhibited a wide 
range of sizes: A free fluid box occupies on average 2.7% 
(± 2.6) of a video frame, with the smallest box occupying 
only 0.6% and the largest box occupying up to 14.8% of their 
corresponding video frames.

Data Preprocessing

The resulting dataset of 94 cases was partitioned into train-
ing, validation, and test cases via fivefold cross validation 
in a stratified manner, keeping a uniform ratio of positive 
and negative cases in each set. For each fold, 72% of the 
cases are used for training our algorithm, 8% of the cases 
were used for validation, and the remaining 20% of the cases 
were held out for testing. Data partitioning was based on 
cases rather than video frames, ensuring that a subject that 
is included in training is not included in validation or testing. 
We note that using 5 folds in cross validation are typical in 
machine learning and deep learning literature and has been 
shown to attain high prediction performance [33–36]. While 
it is possible to further increase the number of folds, each 
training fold requires training a new deep learning model, 
introducing a computational overhead.

As described in the “Study Design and Setting” section, 
each ultrasound exam was exported as a video clip in.mp4 
format for analysis, deidentified, from a secure imaging 
archival system used by the hospital. We prepared each 
image from each video clip using the same data preprocess-
ing steps. Images preprocessed from training, validation, and 
test cases are then used for training, validation, and testing, 
respectively. Each video frame contains data acquisition 
information (such as frequency) in the margins, in addition 
to the relevant image data. Thus, each video frame was first 
cropped by 5% from left and right sides to zoom into the 
region of interest, while ensuring that image data and free 
fluid regions are not discarded. The resulting frames were 
resized to obtain a uniform size of 256 × 256 pixels for each 
video frame. Finally, to aid neural network training, pixel 
values were normalized between 0 and 1 [37]. To do so, the 
maximum pixel value in each video was computed and each 
pixel value within the video was divided by this value. This 
process is common in object detection literature and further 
aims to mitigate the common lighting and contrast variations 
across different ultrasound videos in our application [29].
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Automated Free Fluid Detection Methodology

We employed and extended the YoloV3 algorithm to auto-
matically detect free fluid in ultrasound videos, relying on 
its fast and well-established prediction performance for 
object detection in various domains [29, 30] that range from 
detecting people, vehicles, and common objects to clinical 
conditions from medical images [38]. Yolo is considered 
one of the most common choices in real-life deployment 
for object detection due to its simple architectural design, 
low complexity, and easy implementation [38]. The initial 
version of the Yolo algorithm exhibited localization errors, 
particularly in detecting the smaller sized objects. The third 
version of Yolo (YoloV3) that we use was designed to over-
come the aforementioned drawbacks and improved compu-
tational efficiency.

YoloV3 identifies specific objects in images using latent 
features learned by a deep convolutional neural network to 
detect an object; the architecture of this network is sum-
marized in Fig. 1. Unlike classifier-based object detection 
approaches that perform inference on multiple candidate 
locations and scales to find high confidence detections, 
YoloV3 algorithm employs the same convolutional network 
on image region partitions, and predicts bounding boxes 
and probabilities for each region, significantly accelerating 
inference compared to former methods. These bounding 
boxes are weighted by the predicted probabilities to form 
the final detections.

In our application, we analyze each FAST exam frame-
by-frame using YoloV3 and determine hemoperitoneum 
presence for the exam via a cumulative decision based 
on detections from all frames. For each 2D video frame 
input, YoloV3 makes two sets of predictions: (i) rectangu-
lar bounding boxes that circumscribe potential free fluid 
regions, and (ii) a confidence score in the range [0,1] that 
is associated with each free fluid detection. Free fluid con-
fidence score governs the likelihood of free fluid existence 
and is thresholded in post-processing stages to determine 

hemoperitoneum presence for each exam. In particular, we 
determine hemoperitoneum presence for each exam using 
the detection with the highest confidence score across all 
images. The primary reason of the choice of initially ana-
lyzing still images prior to a cumulative diagnosis per video 
clip is employing YoloV3, as it requires a 2-dimensional 
input. YoloV3 is selected due to its rapid and accurate object 
detection performance in various domains, as also discussed 
above. Crucially, using the highest confidence score across 
all images for final diagnosis considers the fact that all 
images in the video are correlated. In doing so, we reduce 
the effect of detected boxes that may be false negatives or 
positives for specific still images, as they typically attain 
lower confidence scores.

To aid learning from our small dataset of 94 cases, we 
employed transfer learning [39] by initializing the weights of 
the neural network with weights pre-trained on a benchmark 
object detection dataset named Common Objects in Context 
(COCO) [40]. Following initialization, we trained YoloV3 
on the pairs of video frames and corresponding ground-truth 
free fluid boxes that belong to positive training cases only. 
Free fluid detection was optimized by minimizing the binary 
cross-entropy loss between confidence score predictions and 
ground-truth (positive or negative) labels, while free fluid 
localization was optimized by minimizing the mean-squared 
error between center coordinates, widths, and heights of pre-
dicted and ground-truth boxes. Training lasted for a maxi-
mum of 100 epochs and was stopped when the loss function 
evaluated over the validation set stopped changing signifi-
cantly. Neural network weights were optimized via Adam 
optimization with a learning rate of  10−3 [41]. To better 
generalize the performance over unseen cases, input frames 
in training were perturbed via Gaussian distributed additive 
noise with standard deviation of 0.2 [42] and neural network 
weights were regularized via weight decay with regulariza-
tion level of 0.02 [43].

To assess each FAST exam in the test set, we first applied 
the trained model on each video frame to detect free fluid 

Fig. 1  Summary of the convolutional network architecture within YoloV3. 
This network extracts latent features via repeated convolutional and resid-
ual layers, and aggregates learned features via a fully connected block to 
make two sets of predictions: (1) rectangular bounding boxes that circum-

scribe potential free fluid regions, and (2) the confidence score in the range 
[0,1] that is associated with each free fluid detection. Each FAST exam 
is analyzed image-by-image and free fluid presence in the exam is deter-
mined from the most confident detection
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boxes and corresponding confidence scores. If there are  
multiple detections in one frame, we kept the detection with 
the highest confidence. To combat false positive detections, 
we also only kept the free fluid detections that occur in at 
least two consecutive video frames. Having recorded the 
resulting detections and confidence scores for each exam, 
we represented each exam with the highest confidence score 
across all frames; we used this score to classify the case as 
positive or negative.

Statistical Analysis

We determined the threshold for positive or negative clas-
sification of each case based on the validation set perfor-
mance. To do so, we first applied our algorithm on each  
exam in the validation set to obtain the highest confidence 
score. We determined the detection threshold as the score 
that maximizes the geometric mean of sensitivity and spec-
ificity over the validation set [44]. Then, we applied our 
algorithm on each exam in the test set to obtain the highest 
confidence score and thresholded each score at the best vali-
dation threshold to classify the exam as positive or negative.

We used descriptive statistics to analyze the study popu-
lation and to evaluate the free fluid detection performance 
of our algorithm via several metrics, using the highest 
confidence score for each test case and the best valida-
tion threshold described above. Prior to thresholding of 
confidence scores, we evaluated area under the receiver 
operating characteristic curve (AUC) and average preci-
sion (AP). After binary classification of each case based on 
thresholding, we computed sensitivity, specificity, likeli-
hood ratios, and predictive values for positive and negative 
classes, and accuracy.

We reported the average of each metric, along with its 
95% confidence interval (CI), over 5 test folds. Detections  
on positive cases in each test fold were made by the cor-
responding trained model that has not seen these cases in 
training. As negative cases were not used in training, we 
applied the trained model that leads to the least false positive 
detections on the negative validation and test cases, since 
this model has the best potential to be deployed.

For positive cases, we also assessed the localization per-
formance of our approach using the Intersection over Union 
(IOU) metric [45], computed as the ratio of the overlap 
between a ground-truth free fluid box (GT) and the corre-
sponding predicted box (PR) to the area of the union of the 
two. Denoting the number of frames as N for a true positive 
case, we computed the IOU on the video frame in which the 
free fluid box was localized the best:

IOU = max
i ∈ [1, N]

GT
i
∩ PR

i

GT
i
∪ PR

i

.

We also captured the amount of time it takes for each 
video frame to be analyzed automatically. In doing so, we 
computed the inference time for each frame in milliseconds 
(ms) as averaged over all cases and also reported the infer-
ence speed as the number of processed frames per second 
(fps). Statistical analysis was performed using the Scikit-
Learn library of the Python 3.7 programming language to 
compute all quantitative performance metrics [46]. We also 
used Statistical Software for analysis REDCap hosted at 
clinical investigation site by an internal grant and SAS 9.4 
(SAS Institute, Cary, NC) [47].

Qualitative Analysis

In addition to the quantitative analysis, we visually analyzed 
the free fluid localization performance of our approach. To 
do so, we plotted the ground-truth vs. predicted free fluid 
boxes on several video frames from different cases, and 
visually compared the locations and sizes of the boxes cor-
responding to the same video frames side to side. All visual 
results were reviewed in collaboration by the same experts 
as data annotation.

Results

We analyzed 44 ultrasound videos collected from patients’ 
hemoperitoneum who had free fluid in the RUQ of the 
FAST exam and 50 negative controls. There were 23 free 
fluid positive female cases, 21 positive male cases, 25 neg-
ative female cases, and 25 negative male cases. Table 1 
summarizes the demographics of our dataset. All cases 
were acquired by either a Philips Sparq Ultrasound Sys-
tem or Zonare zone ultra and with either a curvilinear or 
phased array probe. Table 2 summarizes the number of 
cases acquired by each probe type. All male positive cases 
had an injury mechanism of trauma while female cases 
are reported in Table 2 as a percentage of trauma due to a 
portion of cases of hemoperitoneum having a gynecologic 
etiology of ruptured ectopic pregnancy or rupture hemor-
rhagic ovarian cyst.

Our automated free fluid detection algorithm had a 95% 
sensitivity, 94% specificity, 95% accuracy, and 97% AUC 
in distinguishing positive and negative cases (see Table 3) 
and missed only 2 cases from male subjects out of all 44 
positive cases, demonstrating the discrimination capability 
of the confidence scores of detected boxes. We found no dif-
ferences in the performance of the algorithm based upon sex.

Along with classification of each case as positive or nega-
tive, free fluid was localized on the video frames of positive 
cases due to employing the YoloV3 algorithm. The IOU met-
ric computed over the positive cases is affected by both local-
ization performances, as well as the sizes and aspect ratios of  
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the detected boxes. As demonstrated visually (Figs. 2 and 3),  
our algorithm exhibited strength in good localization in find-
ing the free fluid region of interest, while the detected box 
sizes and aspect ratios varied. This phenomenon resulted in 
56% IOU averaged over all positive cases. Most importantly, 
our algorithm exhibited only 57-ms latency in image process-
ing on a MacBook Pro laptop, equivalent to processing 18 
ultrasound images per second in fps.

Competing Methods

Inspired by the recent deep learning literature on automated 
free fluid detection from ultrasound, we implemented the 
2D U-Net [28] and MaskRCNN [48] for free fluid detec-
tion and localization, as well as ResNet [26] for classifying 
each exam as positive or negative for free fluid presence. In 
particular, MaskRCNN is an object detection method similar 
to YoloV3, with the extension of adding a small fully con-
nected branch for predicting a segmentation mask within 
each detected bounding box. Following Lin et al. [28], the 
U-Net architecture involved 4 encoder-decoder blocks with 
64, 128, 256, and 512 channels and 4 residual units, respec-
tively. For head-to-head comparison with YoloV3, we ini-
tialized the MaskRCNN [48] with weights pre-trained over 
the COCO dataset and used detected bounding box scores to 
classify each case for free fluid presence. Following Cheng 
et al. [26], we used the ResNet-50 version with weights 

Table 1  Demographics. Due to 
missing values in age, mean and 
SD values are based on sample 
size of 92

Negative FAST (n = 50) Positive FAST (n = 44)

Age, median (IQR) 40 (29–53) 30 (25–39)
Age, mean (SD) 42.59 (17.73) 34.3 (13.21)
Gender, n (%)
  Male 25 (50) 21 (47.73)
  Female 25 (50) 23 (52.27)
  N/A 0 (0) 0 (0)

Race, n (%)
  White 20 (40) 16 (36.36)
  Black or African American 19 (38) 18 (40.91)
  Asian 1 (2) 2 (4.55)
  Other 0 (0) 0 (0)
  Unknown 10 (20) 8 (18.18)

Ethnicity, n (%)
  Hispanic or Latino 7 (14) 7 (15.91)
  Not Hispanic or Latino 42 (84) 36 (81.82)
  N/A 1 (2) 1 (2.27)

Trauma, n (%)
  Yes 30 (60) 25 (56.82)
  No 19 (38) 18 (40.91)
  N/A 1 (2) 1 (2.27)

Device, n (%)
  C5-2 0 (0) 5 (13.64)
  C6-2 49 (98) 36 (81.82)
  S4-2 1 (2) 1 (2.27)
  SP5-1 0 (0) 0 (0)
  N/A 0 (0) 1 (2.27)

Probe type, n (%)
  Mindray 0 (0) 0 (0)
  Philips 50 (100) 42 (95.45)
  Zonare 0 (0) 1 (2.27)
  N/A 0 (0) 1 (2.27)

Table 2  Acquisition device specifications

Manufacturer Device probe type Number 
of cases

Philips C5-2 6
Philips C6-2 85
Philips S4-2 2
Zonare C6-2 1
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pre-trained over the ImageNet dataset and fine-tuned the  
last two convolutional blocks and final fully connected block 
during training. For each competing method, we followed 
the same data preprocessing and statistical analysis steps 
as YoloV3, using the highest free fluid probability over all 
frames and thresholding this value to classify each case, with 
the threshold tuned over the validation set. To assess YoloV3 
performance against each competing method for statistical 
significance, we computed the p-value under the two-sided 
t-test between the pair of detection metrics estimated over 
94 cases along with 95% confidence intervals.

Table 4 compares the performances of YoloV3 against 
U-Net, MaskRCNN, and ResNet. YoloV3 consistently and 
significantly outperforms all competing methods in free 

fluid detection with p-value < 0.0001. Meanwhile, the free 
fluid localization performance assessed by IOU over the true 
positive detections is lower than U-Net and MaskRCNN. 
While MaskRCNN IOU is higher, its predicted confidence 
scores are not discriminative for free fluid detection, leading 
to significantly lower detection performance than YoloV3. 
As we also discuss qualitatively below, our method performs 
localization by drawing a box around the free fluid region to 
be reviewed by clinicians, rather than pixel-by-pixel exact 
segmentation. As a result, while the general location and 
region of interest of detected boxes are correct compared 
to the ground-truths, detected box sizes and aspect ratios 
vary and lower the average IOU. Our approach via YoloV3 
is designed by acknowledging this trade-off, as efficient 

Table 3  Classification and localization performance of free fluid detection via YoloV3

AUC  area under the curve, AP average precision, IOU Intersection over Union

Predicted Actual

Present Absent

Positve 42 3
Negative 2 47

Statistic Value 95% CI

Sensitivity 95.45% 84.53 to 99.44%
Specificity 94.00% 83.45 to 98.75%
Positive likelihood ratio 15.91 5.30 to 47.75
Negative likelihood ratio 0.05 0.01 to 0.19
Disease prevalence 46.81% 36.44 to 57.39%
Positive predictive value 93.33% 82.35 to 97.68%
Negative predictive value 95.92% 85.83 to 98.92%
Accuracy 94.68% 88.02 to 98.25%
AUC 97% 88.1 to 99.8%
AP 97% 88 to 99%
IOU 56%

Fig. 2  Example ground-truth vs. 
detected free fluid boxes for cor-
rect classification. Ground-truth 
image displays a box around 
the expert-confirmed free fluid 
region, while the predicted 
image displays a box around 
the predicted free fluid region 
by YoloV3. Next to each box, 
a score that indicates the algo-
rithm confidence is displayed
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and accurate free fluid detection is the priority in point-of-
care applications, rather than the exact shape and size of 
free fluid. Efficiency against exact segmentation is further 
confirmed by the time required to process each ultrasound 
frame: MaskRCNN processes each frame on average in 
195 ms (5 fps), running 3 times slower than its object detec-
tion counterpart YoloV3 requiring only 57 ms (18 fps).

Qualitative Results

Figures 2, 3, 4, 5, 6, 7, 8, and 9 provide examples of the 
image analysis used to classify each case from all corre-
sponding images. Each ground-truth image displays a box 
around the coded free fluid region confirmed by experts.  
The predicted image corresponding to each ground-truth 
image displays a box provided by the automated algorithm 
that indicates the predicted free fluid region. Next to each 
box, a score that varies between 0 and 1 is shown, which 
indicates the confidence on the coded free fluid region. As 
expected, for expert-confirmed ground-truth boxes, confi-
dence score is the highest value of 1. Quantitative examples 
validate that our algorithm exhibits strength in good locali-
zation, while the detected box sizes and aspect ratios vary 
within reason, as in Figs. 6, 7, 8, and 9. Naturally, confident 
detections correspond to the free fluid boxes around which 

there is high visual contrast, as in Fig. 6. Figures 3, 4, and 5 
demonstrate the cases in which there are multiple ground-
truth free fluid boxes, while our algorithm focuses on its 
most confident detection.

We reviewed the 2 discordant cases that were falsely 
labeled as negative by the algorithm (Figs. 10 and 11). Both 
videos had large areas of imaging artifacts from rib or other 
shadowing, which is often a pitfall for human operators and 
interpreters also. Particularly, for the case represented in 
Fig. 10, the larger area of free fluid was overlapped with 
shadows, while the higher contrast free fluid occupied a 
much smaller (less than 1% of the video frame) and was in 
a location that is harder to detect. For the case represented 
in Fig. 11, despite the larger size of the free fluid, it can 
be noted that the contrast was lower than typical examples 
shown in Figs. 2, 3, 4, 5, 6, 7, 8, and 9.

Figures  12 and 13 compare the localization perfor-
mances of YoloV3 against U-Net and MaskRCNN on 
example frames from 4 different cases in each row and 
their corresponding ground-truth free fluid boxes. The 
case in Fig. 12 row 1 exhibits high contrast and is accord-
ingly localized the best by YoloV3 in terms of size and 
shape, with 80% confidence. While the average IOU of 
MaskRCNN is higher than YoloV3, Fig. 12 row 2 and 
Fig. 13 row 1 exhibit the cases for which both YoloV3 and 

Fig. 3  Example ground-truth 
vs. detected free fluid boxes for 
correct classification

Table 4  Classification and localization performances of the proposed approach via YoloV3 vs. U-Net, MaskRCNN, and ResNet. For each detec-
tion metric of U-Net, MaskRCNN, and ResNet, we present the p-value of the statistical difference against YoloV3 performance

Specificity (p-value) Sensitivity (p-value) Accuracy (p-value) AUC (p-value) AP (p-value) IOU

YoloV3 94% 95% 95% 97% 97% 56%
U-Net 70% (6 ×  10−37) 64% (7 ×  10−66) 70% (2 ×  10−66) 74% (2 ×  10−47) 75% (3 ×  10−48) 60%
MaskRCNN 64% (3 ×  10−50) 45% (2 ×  10−95) 55% (2 ×  10−105) 44% (3 ×  10−100) 51%  (10−90) 89%
ResNet 100% (2 ×  10−7) 59% (8 ×  10−69) 81% (5 ×  10−19) 69% (2 ×  10−43) 77%  (10−25) N/A
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MaskRCNN cannot capture the exact shape and size of the 
ground-truth free fluid. In particular, MaskRCNN under-
estimates the free fluid size for Fig. 12 row 2 and includes 
part of the shadowing in addition to free fluid for Fig. 13 
row 1. U-Net includes background regions in free fluid seg-
mentation for most cases, including Fig. 12 and Fig. 13 row 
1. Figure 13 row 2 exhibits a case where YoloV3 considera-
bly underestimates free fluid size compared to MaskRCNN 
and U-Net, while the general location and region of inter-
est are correct compared to the ground-truth, similar to  
Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12. As also assessed 
quantitatively above, YoloV3 performs rapid detection and 
localization by drawing a box around the free fluid, rather 
than the less efficient pixel-by-pixel segmentation. This 
design choice demonstrates significantly higher accuracy 
in free fluid detection than all competing methods, with a 
trade-off in estimating the exact shape and size of free fluid 
around the correctly localized region of interest.

Discussion

In this proof-of-concept exploratory study, we have dem-
onstrated that a deep learning algorithm can rapidly and 
accurately identify the presence and location of free fluid in 
the RUQ of the FAST exam in adult patients with hemoperi-
toneum using, e.g., a personal laptop computer. Our model 
does support the hypothesis that such an application could 
potentially be used in real time as an aide to health care pro-
viders in diverse practice settings to identify patients who 
have a positive FAST from hemoperitoneum. Although there 
are cases in which there are multiple ground-truth free fluid 
boxes, our algorithm focuses on its most confident detec-
tion. As our end goal is to correctly classify each case as 
a binary result of positive vs. negative, this design choice 
provides sufficient information for free fluid detection with 
high prediction performance. Moreover, our algorithm can 
detect free fluid boxes with various sizes and aspect ratios. 

Fig. 4  Example ground-truth 
vs. detected free fluid boxes for 
correct classification

Fig. 5  Example ground-truth 
vs. detected free fluid boxes for 
correct classification
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We expect the same results for all quadrants of the FAST 
exam and plan to expand our work to include those.

A relevant pilot study using image segmentation and 
shape analysis in 20 subjects with MATLAB reported com-
puterized analysis to detect free fluid in the right upper quad-
rant that had a sensitivity (95% confidence interval), 100% 
(69.2–100%), and specificity (95% confidence interval), 
90.0% (55.5–99.8%), as compared to expert review [49]. Our 
study instead uses deep learning and artificial intelligence 
to produce good test characteristics for interpretation of the 
RUQ FAST exams. Our approach and results can be com-
pared to three published deep learning FAST studies [24–26] 
that have used deep learning for the FAST exam via ResNet 
and VGG networks as classification methods. In particular, 
ResNet-50 was used to detect free fluid from FAST exams, 
albeit including both trauma and non-trauma cases [25]. This 
deep learning algorithm receives a video frame and predicts 
which category the frame belongs to, e.g., the FAST exam 
view. Instead, our approach involving YoloV3 receives a 

video frame and makes a pair of predictions: location of a 
detected object, i.e., free fluid, as well as a confidence score 
for this detection. We then use the cumulative scores in each 
video to classify the video. In contrast, classification meth-
ods such ResNet cannot unravel the location of free fluid 
after classification. Moreover, we demonstrate that YoloV3 
consistently outperforms ResNet-50 against all free fluid 
detection metrics (Table 4).

Regarding computational differences, the base neural 
network within Yolo has been shown to attain similar per-
formance to ResNet, while making computations two times 
faster [29]. Both approaches have been so far tested on per-
sonal desktop or laptop workstations. There is also potential 
for point-of-care applications to transfer and run inference 
algorithms to compatible computers that are connected 
remotely to ultrasound scanners and provide this real-time 
feedback result. Meanwhile, our approach has the unique 
capability of classifying FAST exam cases with respect to 
free fluid existence, as well as visualizing the location of 

Fig. 6  Example ground-truth 
vs. detected free fluid boxes for 
correct classification

Fig. 7  Example ground-truth 
vs. detected free fluid boxes for 
correct classification
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free fluid for positive cases, providing a further step towards 
informative point-of-care applications. These deep learn-
ing FAST studies also differ from our study because they 
included cases where the free fluid was not caused by hemo-
peritoneum. It is important for any interpretive algorithm to 
be tested in the population of intended use as the amount and 
characteristics of blood in the abdomen and other aspects of 
imaging could differ from other causes of free fluid such as 
ascites, dialysis fluid, and congestive heart failure. In our 
study, the algorithm was trained, validated, and tested by 
using only cases of hemoperitoneum.

Recently, Lin et al. described the use of a deep learning 
algorithm to detect ascites [28]. They used U-Net for pixel-
by-pixel segmentation of free fluid. Based on the segmen-
tation result, they diagnosed each FAST exam for ascites. 
The reported performance of this algorithm was lower than  
we observed. They achieved a sensitivity and specific-
ity of 94.38% and 68.13% for Ascites-1 (images contain-
ing the liver or spleen). Similarly, Wu et al. [48] employed 

the MaskRCNN deep learning architecture for detection 
and segmentation of free fluid, albeit on echocardiogra-
phy images rather than FAST exams. Classification using a  
pixel-by-pixel approach is a more costly approach than local-
izing the free fluid by drawing a box, as we demonstrated in 
our results that MaskRCNN inference is 3 times slower than 
YoloV3. Crucially, our approach via YoloV3 consistently 
outperforms both U-Net and MaskRCNN against all free 
fluid detection metrics (Table 4), with a trade-off in finding 
the exact shape of localized free fluid.

There are several factors that can affect the performance 
of an algorithm intended to detect free fluid on ultrasound 
imaging. The amount of free fluid present and imaging arti-
fact including shadowing and poor image quality can lead 
to errors in free fluid detection. YoloV3 is known to not 
detect small objects as accurately as larger objects due to its 
default field of view, while there are recent improvements 
in other object detection applications to potentially allevi-
ate this effect [50, 51]. Moreover, image quality has been 

Fig. 8  Example ground-truth 
vs. detected free fluid boxes for 
correct classification

Fig. 9  Example ground-truth 
vs. detected free fluid boxes for 
correct classification
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shown to affect the performance of deep learning approaches 
to image analysis in several clinical applications by intro-
ducing artifacts that can confuse automated algorithms in 
distinguishing objects of interest, which can be potentially 
dealt with additions of automated denoising methods prior to 
classification and detection [52–55]. However, our algorithm 

performs well with a high specificity, which is a desirable 
feature for the FAST exam. Like a human operator, mini-
mizing false positives is important when this interpretation 
could lead to an emergent surgery or other clinical inter-
vention. A false negative interpretation is clinically more 
acceptable because further diagnostic testing (CT scan or 
other radiologist performed imaging) would be appropriate 
if there is a high suspicion for injury.

The proposed technology represents a significant 
improvement over the state-of-the-art approaches to 
increasing access to POCUS, which include a broader 
application of POCUS training and/or telemedicine. Ultra-
sound image transfer for off-site interpretation has been 
shown to be feasible [56–59]. However, this requires not 
only a reliable data connection but also an on-site techni-
cian who is trained to acquire images correctly. Robotic 
tele-manipulation of an ultrasound probe by an off-site 
expert sonographer has also been explored [60], but 
robotic tele-manipulation inherently increases equipment 
cost, decreases portability, and may be difficult to use in 
the setting of trauma. An alternate approach is to broaden 
FAST training to include paramedics and non-physician 
personnel in rural emergency departments and urgent care 
settings (such as nurse practitioners and physician assis-
tants) [61]. The cost and time burdens of such training 
cannot easily be estimated, but the lack of uptake to date 
suggests that there are many logistical hurdles. Even with 
a broader application of POCUS training, an automated 
system could provide a valuable secondary assessment. To 
our knowledge, our study is the first to describe an auto-
mated algorithm that is able to rapidly indicate the location 
of accurate positive findings to aid both untrained opera-
tors and trained clinicians in their interpretation. Further 
studies will be needed to understand the impact of this 
intervention on clinician use and accurate interpretation 
of the FAST exam and patient outcomes.

Our study has several limitations. The confidence inter-
vals of our study reflect the small sample size available for 
analysis. Even in a large busy urban trauma center, the num-
ber of available positive FAST exams for hemoperitoneum 
is limited. As others have noted, many FAST exams may 
not be recorded, billed, or available for analysis because of 
the priority of quickly completing the study in a critically 
injured patient [62]. While we could include non-trauma 
causes of free fluid in the RUQ to increase the sample size 
of cases with a positive FAST from other causes of free fluid 
in the abdomen, we believe that it is important to confirm 
the diagnostic performance of any deep learning approach 
in the intended population of use (e.g. having hemoperi-
toneum). It will also be necessary to demonstrate that our 
approach could perform in a real-world setting including 
with an unstable patient to confirm that the analysis could 
be provided in a clinically useful time to result.

Fig. 10  Ground-truth boxes visualized on positive male case that was 
not detected by the algorithm

Fig. 11  Ground-truth boxes visualized on positive male case that was 
not detected by the algorithm



2047Journal of Digital Imaging (2023) 36:2035–2050 

1 3

Conclusion

The accurate use of the FAST exam for the evaluation of 
trauma patients in a wide variety of practice environments 
can expedite clinical decisions that save lives. We have 
demonstrated that the use of a deep learning algorithm can 
identify the presence and location of blood in the abdomen 
with POCUS FAST exams in adult patients with rapid pro-
cessing time to result via, e.g., a standard personal laptop. 
We analyzed 94 cases, which were partitioned into training, 
validation, and test cases, and found that the algorithm had 
a 95.4% sensitivity (84.5%, 99.4%), 94% specificity (83.4%, 
98.7%), 94.7% accuracy (88.02%, 98.25%), and 97% AUC 

(89%, 99%) in free fluid detection. The algorithm also 
exhibited strength in localization and exhibited only 57-ms 
latency on average in image processing. Our results support 
the hypothesis that it is feasible to develop a deep learning 
algorithm that is accurate and provides rapid results using 
readily available technology that would be relevant to the 
diverse clinical settings where the FAST is used and can 
assist providers who have limited expertise.
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