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Abstract
Segmentation is a crucial step in extracting the medical image features for clinical diagnosis. Though multiple metrics have 
been proposed to evaluate the segmentation performance, there is no clear study on how or to what extent the segmentation 
errors will affect the diagnostic related features used in clinical practice. Therefore, we proposed a segmentation robust-
ness plot (SRP) to build the link between segmentation errors and clinical acceptance, where relative area under the curve 
(R-AUC) was designed to help clinicians to identify the robust diagnostic related image features. In experiments, we first 
selected representative radiological series from time series (cardiac first-pass perfusion) and spatial series (T2 weighted 
images on brain tumors) of magnetic resonance images, respectively. Then, dice similarity coefficient (DSC) and Hausdorff 
distance (HD), as the widely used evaluation metrics, were used to systematically control the degree of the segmentation 
errors. Finally, the differences between diagnostic related image features extracted from the ground truth and the derived 
segmentation were analyzed, using the statistical method large sample size T-test to calculate the corresponding p values. 
The results are denoted in the SRP, where the x-axis indicates the segmentation performance using the aforementioned 
evaluation metric, and the y-axis shows the severity of the corresponding feature changes, which are expressed in either the 
p values for a single case or the proportion of patients without significant change. The experimental results in SRP show 
that when DSC is above 0.95 and HD is below 3 mm, the segmentation errors will not change the features significantly in 
most cases. However, when segmentation gets worse, additional metrics are required for further analysis. In this way, the 
proposed SRP indicates the impact of the segmentation errors on the severity of the corresponding feature changes. By using 
SRP, one could easily define the acceptable segmentation errors in a challenge. Additionally, the R-AUC calculated from 
SRP provides an objective reference to help the selection of reliable features in image analysis.
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Introduction

Image analysis like radiomics is a rapidly emerging methodol-
ogy for precision medicine in diagnosis, prognosis, treatment 
planning, and personalized therapy [1]. Segmentation is often 
a critical step in extracting the diagnostic related features, e.g., 
bleeding volume calculation from brain CT and myocardial tis-
sue phenotyping for diagnosis using cardiac MRI [2–4]. With  
the advances in deep learning in recent years, numerous auto-
segmentation algorithms have been proposed to decrease the 
segmentation variation and improve the efficiency of clinical 

routine [5]. In most cases, segmentation performance is evalu-
ated with respect to the manual segmentation, called the “gold 
standard,” conducted by expert clinicians [6]. The pixels that 
belong to the objects are called positives, while the pixels in 
the background are called negatives.

To evaluate the performance of the emerging segmen-
tation algorithms, multiple metrics have been designed, 
including geometric overlap, consuming time, and subjec-
tive scoring system [5]. However, those metrics were mainly 
derived from computer vision missions and evaluated the 
segmentation performance based on the geometric position 
information of the targets in images. They did not study how 
those segmentation errors will affect the diagnostic related 
features and assess the clinical presentation of the errors. 
Note that the researchers pushed the segmentation accuracy 
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to an unnecessarily high level, while the conclusions with 
those metrics were not well correlated with clinically mean-
ingful endpoints. The values of the segmentation evaluation 
metrics are not predictive of the e clinical presentation of the 
diagnostic related features, extracted from the segmented 
areas. In recent times, there has been a rapid development 
of novel architectures and huge improvement in accuracy in 
medical imaging domain [7–9] while properties like clini-
cal performance, robustness, et al. are less explored, leaving 
doubts about advances in model reliability. It is still not clear 
to what extent of the segmentation errors will affect the diag-
nostic related features used in the clinical practice [10–12]. 
Therefore, this paper aims at exploring how the segmenta-
tion errors will affect the diagnostic related features and to 
what extent they will cause significant changes that may 
affect clinical decisions.

Related Work

This section reviews recent works on the segmentation eval-
uation metrics and the latest study on the clinical effect of 
segmentation errors.

Segmentation Evaluation Metrics

With respect to the goal of segmentation, the evaluation met-
rics can be classified into several types: pair counting-based 
metrics, information theoretic-based metrics, and spatial infor-
mation-based metrics [13]. For pair counting-based metrics, 
the rand index (RI) [14] measures the similarity between two 
sets of points, which is not based on labels. For information 
theoretic-based metrics, the mutual information (MI) between 
two areas measures the amount of information that one pixel 
has about the other. However, those evaluation metrics treat 
the segmentation problem as a classification problem, which 
misses the geometrical information. Spatial information-based 
metrics measure the segmentation location difference with 
respect to the ground truth [15], where the overall accuracy 
is important [16]. Dice similarity coefficient (DSC) [17] and 
intersection over union (IOU), as statistical metrics, are often 
used to measure the reproducibility of annotated regions of 
interest. Hausdorff Distance (HD) is also widely used to assign 
a scalar score to the similarity between two contours. There 
is no concrete conclusion about which metric is better, and in 
most cases, researchers report their results jointly using the 
aforementioned metrics. Recently, D Müller et al. [18] con-
structed a library of medical image segmentation evaluation 
metrics to facilitate researchers to test the designed segmen-
tation algorithms. Note that DSC and HD were often jointly 
used, e.g., Kaggle BraTS2021 [8], UW-Madison2022 [7], as 
DSC is more sensitive to the internal padding of the mask, and 
HD is more sensitive to the segmented boundary. However, 

since those metrics are mainly derived from the computer 
vision domain, it lacks an understanding of how the segmen-
tation errors will affect the diagnostic related features extracted 
from the segmented areas, which would inevitably affect diag-
nosis accuracy in clinical practice.

The Clinical Effect of Segmentation Errors

In recent years, researchers gradually noticed that superior seg-
mentation performance did not closely correlate with diagno-
sis accuracy. The reproducibility and robustness of diagnostic 
related features might be severely affected by the segmentation  
process [19], while the features utilized in clinical routine needs 
to be stable. Even though segmentation algorithms have made 
significant progress due to deep learning, the clinical benefit  
remains limited [9]. Hsu et al. [20] quantified myocardial blood 
flow using the extracted MRI image features from the segmen-
tation automatically. Biglands et al. [21] studied relationships 
between segmentation errors and myocardial blood flow errors 
but only with a few healthy volunteers. Jathanna et al. [22] 
assessed the feasibility of applying different automatic meth-
odologies for left ventricular scar identification, but the model 
evaluation remains heterogeneous. Note that the progression 
in segmentation for the clinical application requires detailed, 
transparent, and systematic evaluation. Dominik M et al. [18] 
suggested combining the optimal segmentation metrics in a 
standardized evaluation workflow according to the different  
clinical task requirements. Their approach facilitated the quality 
of evaluation by including the advantages of various metrics, but 
still did not consider the link with clinical performance. Salty-
baeva et al. [23] emphasized the importance of the diagnostic 
related features’ robustness and evaluated them in a multi-center 
study with a view of image normalization methods. However, the 
aforementioned works still did not gain an intuitive understand-
ing of how or to what extent the segmentation errors will affect 
clinical decisions. Inspired by the previous works, this paper con-
ducted a systematic analysis of the segmentation evaluation in 
the medical domain from a clinical perspective. Since the clini-
cal values of diagnostic related features are widely demonstrated 
in both diagnosis and prognosis process, we explored the effect 
of segmentation errors on them, which could be regarded as a 
bridge between the segmentation errors and clinical presentation.

Material and Methods

Material

In clinical diagnosis, various sequences are often jointly 
used, which can be generally divided into time series and 
spatial series. Time series are used to continuously and 
dynamically observe the intensity changes in the region 
of interest. The diagnostically related features are often 
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extracted from the whole series. For spatial series, signal dif-
ferences in each image slice indicate the different anatomical 
structures. It is quite often to obtain the diagnostic related 
features from each slice. Therefore, we choose representative 
radiological series, i.e., first-pass perfusion cardiac magnetic 
resonance images (time series) and T2 weighted images on 
brain tumors (spatial series), respectively. The images used 
in this work are shown in Fig. 1.

First‑pass Perfusion CMR  This retrospective study was 
approved by the Ethics Committee of Southwest Hospi-
tal (Chongqing, China). The study cohort consisted of 50 
patients with hypertrophic cardiomyopathy. For each patient, 
the first-pass perfusion series of mid-cavity consisted of 50 
frames, while the segmentation ground truth was annotated 
by two experienced radiologists using the off-shelf segmen-
tation software 3D slicer.

T2 Weighted Images on Brain Tumor  For the spatial 
sequences, we used the publicly available dataset BraTS2017 
in our experiments [24, 25]. Each patient was scanned with 
4 series, namely T1, T1CE, T2, and FLAIR, and all the 
images were skull-striped and re-sampled to an isotropic 
1 mm3 resolution and co-registered. The ground truth of 
the tumor was obtained by manual segmentation given by 
experts. Since all the sequences were co-registered, we uti-
lized the T2 weighted images in our experiment as it high-
lights the region of the tumor. In our experiment, images 
from 50 patients were included, and slices with brain tumors 
were selected from each patient.

Methods

The workflow of this paper is shown in Fig. 2. Firstly, two 
experts manually segmented the regions of interest, namely 

myocardium and brain tumor. The junior one annotated the 
regions of interest (ROIs) in the first round, while the sen-
ior expert validated the annotations. Those validated seg-
mentation masks were regarded as ground truth in the fol-
lowing experiments. Then, the degree of the segmentation  
errors were controlled in a systematic way, according to  
the widely used metrics DSC and HD. In other words, we 
perturbed the contours to ensure the DSC or HD between the 
ground truth and new ROIs meet the pre-defined values. In 
terms of the clinical requirement, we extracted those diag-
nostic related features from the ground truth and the derived 
segmentation, p and calculated the corresponding p values, 
which were used in the proposed segmentation robustness 
plot (SRP). The x-axis of SRP indicated the segmentation 
performance using the aforementioned evaluation metric, 
and the y-axis showed the severity of the corresponding 
feature changes, which indicated the correlation between 
segmentation errors and clinical acceptance.

Segmentation Metrics

To evaluate the segmentation algorithms, the results were 
often reported using both DSC and HD in the experiment. 
This is because DSC is more sensitive to the internal pad-
ding of the mask, while HD is more sensitive to the seg-
mented boundary. Jointly using those two metrics could be a 
good complement to each other in evaluation. Therefore, we 
also use DSC and HD, but in a separate way, to help control 
the degree of the segmentation errors.

Dice Similarity Coefficient (DSC)  it is a statistical tool that 
measures the similarity between two sets of data.

(1)D(A, Â) = 2 ∗ |A ∩ ⋅Â|∕(|A| + |Â|).

Fig. 1   The sequences used in the experiments (first row: first-pass perfusion cardiac magnetic resonance images; second row: T2 weighted 
images on brain tumor)
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where A is the ground truth of ROI, and Â is the predicted 
area of ROI. Hausdorff Distance (HD): it is the maximum 
distance of a set A to the nearest point in the other set Â:

where p is the pixel belonging to the ground truth A, and p̂ 
belongs to the predicted ROI Â.

Diagnostic Related Features

Note that the segmentation variation will inevitably 
cause changes in the extracted features, which might 
have a significant impact on clinical decisions. There-
fore, it is important to explore how those clinically useful 
features will be affected by the segmentation errors. In 
this work, we extracted commonly used image features 
from ROIs in diagnosis and analyzed the corresponding 
changes with the segmentation variation. Representa-
tive types of radiological series, i.e., first-pass perfusion 
cardiac magnetic resonance images (time series) and T2 
weighted images on brain tumors (spatial series), were 
utilized, respectively.

(2)h(A, Â) = max
p∈A

�
min
p̂∈Â

‖p − p̂‖
�
.

(3)h(Â,A) = max
p̂∈Â

�
min
p∈A

‖p̂ − p‖
�
.

(4)H(A, Â) = max(h(A, Â), h(Â,A)).

First‑pass Perfusion CMR  In MRI perfusion imaging, time-
signal intensity curve (TIC) is often used to describe the 
change of signal intensity over time, which could reflect 
the hemodynamic information  [26] and quantifying myo-
cardial blood flow [21]. Therefore, five diagnostic related 
features [27, 28] derived from TIC were used in this experi-
ment, namely maximal signal intensity, 50% maximal sig-
nal intensity, time to maximal signal intensity, time to 50% 
maximum signal intensity, and upslope (shown in Fig. 3).

Maximal Signal Intensity ( SImax) 

where SIstart represents the mean signal intensity before con-
trast injection. SIpeak represents the peak intensity of time-
signal intensity curve.

 50% Maximal signal intensity ( SI
50%max)   SI50%max repre-

sents half of the maximum signal intensity.

Time to Maximal Signal Intensity ( TSImax)  TSImax repre-
sents the time to maximum signal intensity.

Time to 50% Maximum Signal Intensity ( TSI50%max) TSI50%max 
represents the time to 50% maximum signal intensity during the 
first pass of contrast.

Upslope  the upslope of the myocardial or LV SI time 
curve, which was determined using the maximum of a lin-
ear fit of 5 consecutive images in myocardial curves (3 in 
the LV curves).

(5)SI max = SI peak − SI start

Fig. 2   The overall framework of the work (manual segmentation: 
the junior doctors performed a preliminary ground truth determina-
tion and the senior doctors corrected it if necessary using the off-shelf 
segmentation software 3D slicer; segmentation control: we systemati-

cally control the contours of ROI to generate the segmentation errors, 
in terms of the evaluation metrics DSC and HD; statistical analysis: 
large sample size T-test was utilized to verify the impact of segmenta-
tion errors on diagnostic related features)
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T2 Weighted Images on Brain Tumor  For brain tumor diagnosis, 
T2 weighted images were often used to extract the features for 
prognosis analysis [29]. Compared to T1ce and other modali-
ties in the dataset, the signal intensity contrast of T2-weighted 
images between the tumor and edema is much lower. Therefore, 
we used this modality in the experiment to simulate the seg-
mentation errors. Note that physicians usually judged the type 
of brain tumor by observing the signal distribution in the tumor 
area [30]. Therefore, we extracted five important features from 
the region of the tumor, excluding the edema, to describe the 
signal distribution of ROI, namely, average intensity, the stand-
ard deviation of intensity, median intensity, intensity skewness, 
and intensity Kurtis (shown in Fig. 4).

Average Intensity (AI) 

where Ik is the intensity of the pixel k, and N is the number 
of the pixels in segmented area.

Standard Deviation of Intensity (SI) 

Median Intensity (MI) 

(6)AI = � =

∑N

k=1
Ik

N
.

(7)SI = � =

�∑N

k=1

�
Ik − �

�2

N
.

(8)MI =

{(
IN∕2 + I(N+2)∕2

)
∕2, if N is even number

I(N+1)∕2, if N is odd number

Intensity Skewness (IS) 

where E(.) is expectantion.

Intensity Kurtis (IK) 

Segmentation Control

To explore how the segmentation errors will affect the diag-
nostic related features, this work systematically enlarged or 
shrank ROI by controlling the contours, morphologically. 
This was achieved by using dilatation and corrosion algo-
rithms in OpenCV with a 3*3 kernel. When the enlarged 
mask exceeds the body boundary in the image, the area from 
the background will be removed by using the contour detec-
tion method. The degree of the segmentation errors was pro-
duced according to the segmentation metrics, DSC or HD. 
For DSC between ground truth and derived segmentation, 
it was preset with 0.7-−0.9 (with intervals of 0.1) in each 
slice to guide the segmentation control. For HD, it was set 
to 3–15 mm with intervals of 3 mm. Note that enlarging 
or shrinking ROI might get the same DSC or HD, but they 
might have different consequences on the diagnosis.

(9)IS = E

[(
I − �

�

)3
]
.

(10)IK = E

[(
I − �

�

)4
]
.

Fig. 3   The diagnostic related 
features of TIC from first-pass 
perfusion CMR



2093Journal of Digital Imaging (2023) 36:2088–2099	

1 3

Segmentation Robustness Plot

The differences of the features extracted from the ground 
truth and the derived segmentation were analyzed, using the 
statistical method large sample size T-test to calculate the 
corresponding p value for each patient. Segmentation robust-
ness plot (SRP) was proposed to build the link between eval-
uation metrics and clinical acceptance, where x-axis was the 
aforementioned segmentation metric, and y-axis showed the 
severity of the corresponding feature changes.

For the time series, each patient had only one group of 
the aforementioned features from the TIC. Therefore, to 
use the statistical method large sample size T-test, we need 
to include all the patients, and only one p value could be 
obtained from the same type of features. For such a situation, 
the y-axis of SRP showed the p values of the correspond-
ing features calculated from ground truth and the derived 
segmentation. When the p value is above 0.05, the feature 
is regarded as robust.

For spatial series, the diagnostic related features could 
be extracted from each slice, and p values of the corre-
sponding features could be calculated from each patient. 
Therefore, with all patients included in this experi-
ment, the y-axis of SRP was the proportion of patients 
their extracted features did not have significant changes 
(p>0.05) in terms of corresponding segmentation errors. 
Relative area under curve(R-AUC) was proposed in SRR 
for spatial series to intuitively discriminate the robustness 
of the features:

where AUC is the area under the curve,SXOY represents the 
area of the rectangular area enclosed by the coordinate axes. 
The bigger R − AUC value indicated the better robustness.

Experimental Results

The experiment was conducted with the representative 
types of radiological series, i.e., time series (first-pass 
perfusion cardiac magnetic resonance images) and spatial 
series (T2 weighted images on brain tumor), respectively.

Time Series: First‑pass Perfusion CMR

For CMR segmentation, we control the contours of the 
epicardium and endocardium in each slice according to the 
evaluation metrics DSC and HD, respectively.

Control the Contour of the Epicardium

We first dilated the epicardial contours and could find 
that all diagnostically relevant features were stable when 
HD was smaller than 3 mm, and DSC was bigger than 0.7 
(Fig. 5). However, when HD is bigger than 6 mm, features 
like SImax , SI50%max and upslope significantly changed. When 

(11)R − AUC = AUC∕SXOY

Fig. 4   The diagnostic related 
features of T2 weighted images 
on brain tumor
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shrinking epicardium, all features were relatively robust. 
From Fig. 5, it is highly recommended to use the features 
Tsimax and Tsi50%max in clinical practice or ensure the segmen-
tation performance could reach 0.7 in DSC or 3 mm in HD.

Moreover, the reliability of these features (expressed 
as p-values) is very sensitive to segmentation metrics like 
DSC and HD, which means that they will no longer be 
reliable after a slight decrease in DSC or a slight increase 
in HD (e.g., HD increases from 3 mm to 6 mm) (Fig. 5a). 
When the epicardial profile is reduced, the reliability of 
these features remains within a very safe range regardless 
of the change in DSC or HD (Fig. 5b).

Furthermore, we also showed the relative errors Err 
caused by segmentation variations in Fig. 6:

where Fgt is the feature value obtained from the ground 
truth, while Fseg is the corresponding value extracted from 
the segmentation.

In Fig. 6, the x-axis denoted the segmentation evaluation met-
ric (DSC or HD), and the y-axis denoted the relative errors. Note 

(12)Err = |Fgt − Fseg|∕Fgt

that even with the same DSC or HD, the impact of segmentation 
errors on the diagnosis might be significantly different. Obvi-
ously, shrinking the epicardium had less impact on the features 
compared to enlarging the epicardium. This was because the 
enlarged epicardium introduced more background information 
(more false positives), which would inevitably affect the shape 
of the TIC as a statistical result of the ROI intensity.

Control the Contour of the Endocardium

We also controlled the location of endocardium contour, 
which is the boundary between the myocardium and left 
ventricle cavity.

When enlarging the endocardium, the features of the left 
ventricle cavity changed dramatically when the DSC is smaller 
than 0.95 or the HD is bigger than 3 mm (Fig. 7a). Different 
from the features in the left ventricle cavity, the features of the 
myocardium were relatively robust (Fig. 7b). When shrink-
ing the endocardium, the features of the left ventricle cavity 
are quite robust (Fig. 7c), but a few features of the myocar-
dium changed significantly. This is because the errors of false 

Fig. 5   Control the contour of epicardium: SRP of time series (values below 0.05 indicate the significant difference of the corresponding fea-
tures extracted from the ground truth and the derived segmentation)
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positives brought more errors than false negatives (Fig. 7d). In 
Fig. 8a, enlarging the endocardium brought more false posi-
tives into the left ventricle cavity so that the relative errors 
were bigger than shrinking the endocardium. In contrast, 
shrinking endocardium brought more false positives into the 
myocardium so the relative errors were bigger.

From both Figs. 5 and 7, one could find that using current 
evaluation metrics, DSC or HD, segmentation performance 
did not closely correlated with diagnostic accuracy, espe-
cially when segmentation got worse (DSC was below 0.95 
or HD was larger than 3 mm). Additional information, like 
error type (false positives or false negatives), was important 
for a better understanding of how the clinical practice would 
be affected.

Spatial Series: T2 Weighted Images on Brain Tumor

For each patient, diagnostic related features were extracted 
from those slices with tumors. With all patients included in 
this experiment, y-axis of SRP was the proportion of patients 
that the extracted features did not have significant changes 
(p>0.05) according to the segmentation errors. From the pro-
posed SRP (Fig. 9), the most robust feature was the one with 
highest R-AUC, where one could find that feature IK was the 
most robust feature under all kinds of circumstances. In contrast, 
feature AI was quite sensitive to segmentation errors, which was 
highly discouraged to use in clinical practice. In addition, the 
threshold of acceptable segmentation error can be determined 
by the pre-set proportion of patients without significant changes.

Fig. 6   Control the contour of epicardium: the relative errors of different diagnostic related features between the ground truth and the derived segmentation

Fig. 7   Control the contour of endocardium: SRP of time series (values below 0.05 indicate the significant difference of the corresponding fea-
tures extracted from the ground truth and the derived segmentation)
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Fig. 8   Control the contour of endocardium: the relative errors of different diagnostic related features between the ground truth and the derived segmentation

Fig. 9   Segmentation robustness plot of spatial series: the proportion of patients without significant changes v.s. evaluation metrics (DSC and HD)
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Discussion and Conclusion

With the advancement of deep learning, numerous automatic 
segmentation algorithms have delivered a good performance 
in terms of some evaluation metrics [31], such as DSC, IOU, 
HD, and ASSD et al. Rather than just focusing on the accuracy 
of the algorithms, some researchers start looking at some other 
metrics like robustness and uncertainty in the computer vision 
domain [32]. However, in the medical imaging domain, the 
association between segmentation performance and clinical 
acceptance is very important but rarely investigated [33]. There-
fore, this paper examined the impact of segmentation errors 
on diagnosis systematically, where both representative types of 
radiological images from time and spatial series were utilized.

Note that most of the segmentation metrics were designed 
mainly for the morphological analysis without considering 
the impact on the diagnostic related features. However, an 
ideal segmentation metric should have a good correlation 
between diagnostic accuracy and the metric values. Seg-
mentation robustness plot (SRP) was proposed to build the 
link between segmentation errors and clinical acceptance, 
where relative area under the curve (R-AUC) was designed 
to help clinicians to identify the robust diagnostic related 
features for diagnosis. The experimental results show that 
when DSC was above 0.95 and HD was below 3 mm, seg-
mentation errors would not bring a significant change in 
most cases. However, when the segmentation got worse, it 
was important to identify the error type for further analysis. 
In addition, preliminary results show that first-order features 
such as average intensity are more affected by segmentation 
errors than texture and other second-order features such as 
skewness and Kurtis. This work reveals that graphical repre-
sentation could visualize the correlation between image fea-
ture robustness in clinical practice and segmentation errors, 
which could inspire the proposal of more clinically relevant 
metrics for the segmentation tasks in the medical imaging 
domain. Using SRP, one could easily choose the metric 
threshold in a challenge to decide whether the segmenta-
tion performance is acceptable, objectively. Clinicians could 
avoid using the diagnostic related features that are severely 
affected by segmentation errors with the help of SRP.

In the age of deep learning, SRP can help evaluate the per-
formance of a trained model on some specified features, but it 
cannot supervise the training direction of the model. In other 
words, SRP does not make the models perform better but 
only selects the models that perform well. Additionally, SRP 
is designed to analyze the task of the single lesion segmenta-
tion primarily. When dealing with multi-lesion segmenta-
tion tasks, the changes in features come from the influence 
of multiple variables, where the segmentation of different 
lesions will cause non-linear changes. Therefore, it is hard 
for the currently designed SRP to deal with such situations. 

For future research, one could study how segmentation errors 
with multiple lesions affect the clinical decision.
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