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Abstract
Pathological Anatomy is moving toward computerizing processes mainly due to the extensive digitization of histology slides that 
resulted in the availability of many Whole Slide Images (WSIs). Their use is essential, especially in cancer diagnosis and research, 
and raises the pressing need for increasingly influential information archiving and retrieval systems. Picture Archiving and Com-
munication Systems (PACSs) represent an actual possibility to archive and organize this growing amount of data. The design and 
implementation of a robust and accurate methodology for querying them in the pathology domain using a novel approach are 
mandatory. In particular, the Content-Based Image Retrieval (CBIR) methodology can be involved in the PACSs using a query-by-
example task. In this context, one of many crucial points of CBIR concerns the representation of images as feature vectors, and the 
accuracy of retrieval mainly depends on feature extraction. Thus, our study explored different representations of WSI patches by 
features extracted from pre-trained Convolution Neural Networks (CNNs). In order to perform a helpful comparison, we evaluated 
features extracted from different layers of state-of-the-art CNNs using different dimensionality reduction techniques. Furthermore, 
we provided a qualitative analysis of obtained results. The evaluation showed encouraging results for our proposed framework.
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Introduction

Pathology departments are increasingly using or propos-
ing to use digital pathology technologies for all or some of 
their diagnostic outputs. Some departments have already 

moved to a digital workflow, implementing digital scan-
ning technology in routine diagnostics and even includ-
ing artificial intelligence (AI) technologies for evaluating 
some specimens (such as prostate biopsies) in everyday 
work [1]. Whole slide imaging (WSI), whose technology is 
constantly evolving, may be used to digitally turn a histo-
logical tissue section on a glass slide into a high-resolution 
virtual slide. During the past 20 years, digital scanners, 
image visualization tools, and algorithms generated from 
artificial intelligence have increased tremendously. Fol-
lowing the US FDA’s recent authorization of a WSI system 
for use in primary surgical pathology diagnosis, there are 
now more chances for widespread adoption and practi-
cal application of WSI technology in pathology units [2]. 
The storage, retrieval, and analysis of biomedical images 
are essential tools of Picture Archiving and Communi-
cation Systems (PACSs) [3, 4]. The same ones are also 
useful in related contexts such as computational pathol-
ogy (CPATH) [5], where their diffusion is still limited. 
A weakness of traditional PACSs concerns the capability 
to perform a query only employing metadata. In order to 
allow intelligent multimodality query posing [6], Content-
Based Image Retrieval (CBIR) techniques can be used [7, 
8]. The feature extraction methods and similarity functions 
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are crucial aspects of a CBIR [9]. Over the years, differ-
ent approaches for image retrieval have been proposed, 
also in the computational pathology field using different 
techniques such as deep learning [10]. Such technologies 
based on deep convolutional architecture trained on large 
datasets can learn features with sufficient representational 
power and generalization to perform semantic visual dis-
crimination tasks [11]. Such a feature is called DeCAF or 
Deep Feature. Subsequently, many works used CNN as a 
feature extractor in several applications, including image 
retrieval [12–16]. Many challenges in CPATH have widely 
applied deep learning [17]. In fact, as reported in differ-
ent papers [17–19], the automatic tools that involve deep 
learning techniques are helpful for pathologists. Moreo-
ver, CBIR systems in this domain require different fea-
tures from others. The main difference regards the kind of 
available images. In the computational pathology context, 
we have WSIs, which are gigapixel images composed of 
thousands of pixels that depict the tissue with particu-
lar staining. The most common stainings are as follows: 
histological, histochemical, immunohistochemical, and 
immunofluorescence, used for different purposes [20]. In 
this work, we used virtual slides obtained by digital con-
version of Hematoxylin and Eosin (H &E) stained glass 
slides, a histology stain widely used to analyze the nature 
of tissue sections under the microscope. Hematoxylin and 
Eosin (H&E) is a routine histopathology stain that allows 
highlighting of the nuclei of cells (with Hematoxylin) and 
the cell cytoplasm (with eosin).

One of the crucial issues of WSI employment in com-
puter vision applications is the colossal image size. The 
most common technique to optimize the computational 
task is to tile them into small patches. WSI tiling can 
generate many patches, depending on the size and resolu-
tion of the virtual slide and the size of the patches. Tiling 
can be an automatic or handcrafted task. If automated, 
the patches can be randomly generated or led by a WSI 
analysis to find the most significant portions. Even if deep 
learning approaches perform very well in different com-
putational pathology tasks, there are few comparisons 
among the different feature extraction architectures and 
few discussions about the relationships between machine 
and human vision attention.

In this work, we investigated the retrieval performance 
of features extracted from pre-trained Neural networks in 
PACSs. In particular, we compared different architectures 
chosen by their top-1 accuracy achieved on the validation 
split of ImageNet [21]. Moreover, we evaluated the fea-
tures extracted from the top of the network and the mid-
dle layers to figure out how to work a general pre-trained 
CNN in the Computational Pathology domain. To the best 
of our knowledge, there are no studies in the literature 
about the most efficient way to extract the depth feature 

in the pathological field. For this reason, we deeply ana-
lyzed some CNNs architectures to find the most suitable 
way to represent features in this domain context and dis-
cuss the obtained results. Furthermore, we identified the 
best operations to reduce a three-dimensional feature map 
into a one-dimensional array for an efficient and effective 
CBIR task.

We organized the rest of the article as follows: the 
“Related Work” section introduces different related works 
related to our study; in the “Material and Methods” sec-
tion, we present our proposed approach and methodology; 
the “Evaluation Strategy” section shows our evaluation 
strategy and reports the obtained results, the “Discus-
sion” section is devoted to the discussion on results and, 
eventually, conclusion and future works are in the “Con-
clusion” section.

Related Work

In this section, we analyzed different works on histo-
pathology image retrieval, mainly focusing on feature 
representation. In [22], the authors presented an approach 
to represent histopathology knowledge for CBIR systems. 
It was accomplished by a semantic mapper based on 
SVM classifiers. This mapper allows for a new semantic 
feature space in which a metric measures the similarity 
between images. They used Gray histograms, Color histo-
grams, Tamura texture histograms, and Sobel histograms 
and computed other meta-features on the histograms. 
The authors in [23] presented a framework to build his-
tology image representations that combine visual and 
semantic features using the NMFA and NSA algorithms. 
Their method learns the relationships between both data 
modalities and uses that model to project semantic infor-
mation back to the visual space building the fused rep-
resentation. Ultimately, such representation is used in 
an image search system that matches potential results 
using a similarity measure. In the same way, in [24], 
the authors introduced an image retrieval framework for 
histopathological image analysis. Mainly, they focused 
on hashing-based retrieval methods and investigated a 
kernelized and supervised hashing approach for real-
time image retrieval. Instead, in [25], the authors pro-
posed a CBIR algorithm based on a hierarchical annular 
histogram (HAH) with a refinement schema based on 
dual-similarity relevance feedback. Jimenez et al. [26] 
proposed a multimodal case-based retrieval approach for 
histopathology cases based on visual features obtained 
with deep learning with an automatic description of 
pathology reports. Furthermore, they used a strategy fus-
ing visual features from WSIs and text embeddings of 
pathology reports. The deep features representing WSIs, 
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are generated with a CNN trained to classify cancer grad-
ings. Moreover, authors in [27] proposed a complete size-
scalable CBIR framework for a large-scale database of 
WSIs using the binarization method and hashing tech-
nique to feature identification and similarity measure-
ment for the images represented in multiple binary codes. 
The primary operand of the proposed method is from 
the ranking step, which varies with the number of pro-
posal regions. Also, in [28], authors produced compact 
features for image retrieval, reduced deep features, and 
deep barcodes derived from deep features of a pre-trained 
network. They used VGG16, VGG19, and AlexNet as 
deep feature extractors. In [29], a deep learning-based 
reverse image search tool for histopathology images is 
presented called Similar Medical Images Like Yours 
(SMILY). It allows pathologists to perform queries by 
example. They divided their application into two stages. 
The first one concerned the database creation from WSIs, 
tailing the images into patches, and extracting the depth 
features. The latter concerns the query process, where a 
patch is selected from query WSI, and the nearest neigh-
bor search is performed. Likewise, in [30], authors pro-
posed a digital pathology system with a WSI viewer to 
retrieve visually similar local areas in the same image 
and other images from an extensive database and open-
access literature. The system evolves a DenseNet121 
trained on breast cancer histopathological images and 
deep features extraction from patches. In [31], a retrieval 
and classification system for histological images based 
on local energetic information, local structural informa-
tion, local geometric information, and local patterns of 
the textures using Riesz Transform and Monogenic local 
binary patterns (M-LBP). In [32], the authors use deep 
metric learning for the histopathological image retrieval 
task. They constructed the network with a mixed atten-
tion mechanism involving spatial and channel atten-
tion and trained with the multi-similarity loss under the 
supervision of category information. Yottixel [33] is an 
image search engine for digital pathology. It is based on a 
combination of supervised and unsupervised algorithms. 
In particular, it uses the VGG network, all Inception, 
DenseNet, and in-house trained CNNs. They used deep 
features to characterize patches extracted from WSIs.

In this article, we are interested in analyzing pre-trained 
CNN architectures to find the most suitable way to extract 
features and explain the most robust deep feature representa-
tions. That is a significant novelty compared with existing 
literature focused only on standard layer exclusion consid-
ering the last CNN layer. Moreover, we also highlight the 
importance of the feature maps dimensionality reduction, 
which is necessary to perform an efficient and effective 
retrieval task using vector-based algorithms in a compre-
hensive CBIR approach for PACS.

Material and Methods

In this section, we introduced our methodology and tech-
nological choices to evaluate the performance of our CBIR 
system for the histopathological domain using features 
extracted from pre-trained CNNs. In this work, we focused 
on the patches obtained from WSIs because we would 
show the effectiveness of pre-trained CNNs as feature 
extractors highlighting their strengths and weaknesses.

Firstly, we presented our CBIR system depicted in Fig. 1. 
From a general point of view, we divided the workflow into 
two modules, the first one contains the offline processes, 
and the latter performs the online ones. The offline pro-
cesses involve extraction and storing features from the H 
&E patches repository, and the online ones regard feature 
extraction from the query patch and comparing all stored 
features using a similarity function. To perform similarity, 
we represented each patch as a one-dimensional array and 
stored it with an associated label. The system extracts the 
one-dimensional array from the query patch at the time, 
computes the similarity using a distance measure between 
vectors, and ranks the results. The main issues are related 
to the chosen features and similarity functions. About the 
similarity function, in this work, we choose the cosine simi-
larity, computed as one minus cosine distance due to its good 
performance [34]. Instead, for features, we choose to extract 
them from pre-trained CNNs. The first step is the selection 
of CNNs, and the second is the image preprocessing to 
arrange the CNNs input. In the following, we introduced the  
selected CNNs, the choice of the layers for each one, and the 
preprocessing operation performed on the dataset. Accord-
ing to [35], we choose the CNN for each kind of architecture 
that achieved the better top-5 accuracy on the validation split 
of ImageNet. Moreover, we accurately report the methodol-
ogy used for the feature extraction step.

Used Convolutional Neural Networks

Convolutional Neural Networks (CNNs) or Deep Convo-
lutional Neural Networks (DCNNs) are a class of Arti-
ficial Neural Networks (ANNs) used for the analysis of 
visual contents. CNNs are mainly divided into two blocks. 
The first is responsible for feature learning, while the lat-
ter handles the classification process. Principal concepts 
applied in feature learning are convolution and pool-
ing. The convolution involves some filter or kernel with 
trainable weights with the images to compute a feature 
map. Instead, pooling reduces the dimension of feature 
maps summarizing its patches using the mean of maxi-
mum operations. In the following, we briefly described 
the selected CNNs architectures and showed what layers 
we chose to extract the deep features. In the “Evaluation 
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Strategy” section, we described our evaluation strategy 
to choose the best layer for each CNN, compared them, 
and discussed the precision of the related feature in the 
histopathological image retrieval task.

VGG‑Net

VGG-Net [36] is a CNN architecture proposed by the Visual 
Geometric Group of Oxford University. The network uses 
convolutional layers with filters with very small receptive 
filed (3x3) with ReLU activations and 2x2 pooling max lay-
ers performed after some convolutional layers. The authors 
proposed two versions with sixteen and nineteen layers. In 
our framework, we choose VGG16, consisting of sixteen lay-
ers organized in five blocks, excluding the top. In particular, 
each block is composed of some convolutional layers fol-
lowed by max-pooling layers. Furthermore, we considered 
depth features as the output of each block, applying global 
max/average pooling or flattened operation. Table 1 sum-
marizes the selected layers with output shape and feature 
size after dimensional reduction where block_i_pool is the 
last layer of the i-th block.

Inception V3

The Inception deep convolutional architecture was  
called GoogLeNet [37] and represents the Inception v1. 
Afterward, Inception v2 was introduced in [37], adding 

batch normalization. Later, in [38], Inception v3 was pro-
posed with additional factorization concepts. In brief, the 
basic idea is factorizing convolution to reduce the num-
ber of connections and parameters without decreasing the  
network efficiency. This architecture employs four main 
kinds of modules: the first one (module 1) uses convolu-
tional layers and implements small factorization convolu-
tions; the second and third (modules 2 and 3) implement 
factorization into asymmetric convolutions; and the last 
one implements efficient grid size reduction. The final 
architecture consists of three Inception Module 1, one Grid 
Size Reduction Module, four Inception Module 2, one 
Grid Size Reduction Module, and two Inception Module 
3. We choose as deep features the outputs of each module 
applying global max/average pooling or flattened opera-
tion. Table 2 summarizes the selected layers with output 

Fig. 1  Content Based Image Retrieval (CBIR) architecture

Table 1  Deep feature size VGG16 for each selected layer

Feature size

Layer Output shape Max/Avg flatten

block1_pool 112x112x64 64 802816
block2_pool 56x56x128 128 401408
block3_pool 28x28x256 256 200704
block4_pool 14x14x512 512 100352
block5_pool 7x7x512 512 25088
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shape and feature size after dimensional reduction where 
mixedi is the output of the i-th module.

Residual Network

Residual Networks (ResNet) [39] is an architecture of 
CNN designed to mitigate the vanishing gradient effect 
in deep networks. The main block is the residual block 
in its second version proposed in [40]. It consists of a 
stack of 1x1 - 3x3 - 1x1 convolutions layers where batch 
normalization and activation are applied before convo-
lution. The version of ResNet differs by the number of 
layers. In this study, we choose ResNet152V2 which has 
152 layers. The layers are grouped into four convolutional 
blocks composed of some residual blocks. We considered 
the output of each convolutional block as a deep feature 
applying global max/average pooling or flattened opera-
tion. Table 3 summarizes the selected layers with output 
shape, and feature size after dimensional reduction where 
conv_i_blockj_out is the j-th output of the i-th module.

Inception Residual Network

Inception-ResNet [41] was inspired by ResNet and Incep-
tion. There are two versions of this network architecture, 

namely v1 and v2. The architecture mainly employs six 
modules: Stem, Inception-resnet-A, Reduction-A, Inception-
resnet-B, Reduction-B, and Inception-resnet-C. Inception-
ResNet modules are similar to inception modules adding the 
residual connection. Reduction modules are like inception 
modules, and the Stem module performs convolutions and 
spatial pooling. The final network configuration in Incep-
tionResNetV2 consists of one Stem Module, one Inception-
A block, ten Inception-ResNet-A blocks, one Reduction-A 
block, twenty Inception-ResNet-B blocks, one Reduction-B 
block, ten Inception-ResNet-C blocks, and a final convolu-
tion block. We choose the output of the Inception-A block, 
Reduction-A block, Reduction-B block, and final convolu-
tion applying on each one global max/average pooling or 
flattened operation as deep features. Table 4 summarizes 
the selected layers with output shape and feature size after 
dimensional reduction where mixed_5b corresponds to 1, 
mixed_6a to 2, mixed_7a to 3, and conv_7b to 4.

Xception

Xception (Extreme Inception) [42] was inspired by Inception 
V3 and ResNet. It mainly consists of three main flow entries, 
middle and exits repeated respectively one, eight, and one 
time. Each flow uses convolution with a receptive field of 
3x3, spatial pooling, and separable convolution introduced 
in this architecture in inception-like. Furthermore, it has all 
residual connections. We selected as deep features the out-
put of entry flow, the eight outputs of middle flow, and the 
output of exit flow, applying global max/average pooling or 
flattened operation to each considered layer. Table 5 sum-
marizes the selected layers with output shape and feature  
size after dimensional reduction where add_2 corresponds 
to the output of entry flow, add_10 to the output of the last 

Table 2  Deep feature size Inception V3 for each selected layer

Feature size

Layer Output shape Max/Avg flatten

mixed0 35x35x256 256 313600
mixed1 35x35x288 288 352800
mixed2 35x35x288 288 352800
mixed3 17x17x768 768 221952
mixed4 17x17x768 768 221952
mixed5 17x17x768 768 221952
mixed6 17x17x768 768 221952
mixed7 17x17x768 768 221952
mixed8 8x8x1280 1280 81920
mixed9 8x8x2048 2048 131072
mixed10 8x8x2048 2048 131072

Table 3  Deep feature size ResNet152V2 for each selected layer

Feature size

Layer Output shape Max/Avg flatten

conv2_block3_out 28x28x256 256 200704
conv3_block8_out 14x14x512 512 100352
conv4_block36_out 7x7x1024 1024 50176
conv5_block3_out 7x7x2048 2048 100352

Table 4  Deep feature size Inception-ResNetV2 for each selected layer

Feature size

Layer Output shape Max/Avg flatten

mixed_5b 35x35x320 320 392000
mixed_6a 17x17x1088 1088 314432
mixed_7a 8x8x2080 2080 133120
conv_7b 8x8x1536 1536 98304

Table 5  Deep feature size Xception for each selected layer

Feature size

Layer Output shape Max/Avg flatten

add_2 19x19x728 728 262808
add_10 19x19x728 728 262808
block14_sepconv2 10x10x2048 2048 204800
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middle flow, and block_14_sepconv2 to the output of the 
exit flow. 

Dense Convolutional Network

Dense Convolutional Network (DenseNet) [43] introduced a 
direct connection between any two layers with the same fea-
ture fmap size. DenseNet mainly employs two components: 
dense block and transition layers. The architecture switch 
between them to build a deep network. In a dense block, 
each layer receives collective knowledge from preceding 
layers. Practically, each layer receives additional input from 
all preceding layers and gives its feature maps to all follow-
ing layers. A transition layer controls the complexity of the 
model, reducing the number of channels by using 1x1 convo-
lutional layers and halving the height and width of the aver-
age pooling layer. In our study, we choose DenseNet201, that 
have two hundred-one layers, considering the output of each 
transition layer and the last dense block after global average/
max pooling or flatten operation as deep features. Table 6 
summarizes the selected layers with output shape and feature 
size after dimensional reduction where pool_i corresponds 
to output i-th transaction layer, and con5_block32_concat is 
the output of the last dense block.

NASNet

The authors in [44] proposed an architectural block of CNN 
using a deep reinforcement learning method. They speci-
fied the general architecture arranged as some normal cells 
followed by a reduction cell. They used a Recurrent Neural 
Network (RNN) to predict some characteristics of the net-
work as the number of normal cells and the architecture of 
cells. A normal cell is a convolutional block that gives back 
a feature map of the same dimension, while a reduction cell 
is a convolutional block that gives back a feature map where 
the feature map height and width are reduced by a factor of 
two. They trained the first version of CNN on the CAFIR 
dataset and adapted it on ImageNet. We chose NasNetLarge, 
a version trained on ImageNet, and we considered the out-
put of each block of normal cells and reduction cells as a 
deep feature after applying global max/average pooling or 
flatten operation. Table 7 summarizes the selected layers 

with output shape and feature size after dimensional reduc-
tion, where layers normal_concat_5, normal_concat_12 and 
normal_concat_12 are the last layers of a series of normal 
cells, while normal_concat_reduce_6 and normal_concat_
reduce_12 are the last layers of reduction cells.

MobileNet

MobileNet [45] is a CNN architecture inspired by Inception-
Net to work on mobile devices, with the primary goal of 
reducing the number of parameters and computations and 
preserving the performance as much as possible. The authors 
introduced a filter architecture called Depthwise Separable 
Convolution that split the computation into two steps: (i) it 
applies a single convolutional filter for each input channel, 
and (ii) it uses pointwise convolution to create a linear com-
bination of the output. In our study, we chose MobileNetV2 
[46], an improvement of MobileNet in which the authors 

Table 6  Deep feature size DenseNet201 for each selected layer

Feature size

Layer Output shape Max/Avg flatten

pool2_pool 28x28x128 128 100352
pool3_pool 14x14x256 256 50176
pool4_pool 7x7x896 896 43904
conv5_block32_concat 7x7x1920 1920 94080

Table 7  Deep feature size NASNetLarge for each selected layer

Feature size

Layer Output shape Max/Avg flatten

normal_concat_5 42x42x1008 1008 1778112
reduction_concat_reduce_6 21x21x1344 1344 592704
normal_concat_12 21x21x2016 2016 889056
reduction_concat_reduce_12 11x11x2688 2688 325248
normal_concat_18 11x11x4032 4032 487872

Table 8  Deep feature size MobileNetV2 for each selected layer

Feature size

Layer Output shape Max/Avg flatten

block_1_project_BN 56x56x24 24 75264
block_2_add 56x56x24 24 75264
block_3_project_BN 28x28x32 32 25088
block_4_add 28x28x32 32 25088
block_5_add 28x28x32 32 25088
block_6_project_BN 14x14x64 64 12544
block_7_add 14x14x64 64 12544
block_8_add 14x14x64 64 12544
block_9_add 14x14x64 64 12544
block_10_project_BN 14x14x96 96 18816
block_11_add 14x14x96 96 18816
block_12_add 14x14x96 96 18816
block_13_project_BN 7x7x160 160 7840
block_14_add 7x7x160 160 7840
block_15_add 7x7x160 160 7840
block_16_project_BN 7x7x320 320 15680
out_relu 7x7x1280 1280 62720
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added an inverted residual connection and highlighted the 
importance of linear bottlenecks. This version has two main 
blocks, one with and one without residual connection. The 
final architecture consists of sixteen blocks. We considered 
the output of each block and the last one excluding dense 
layers as a deep feature after applying global max/average 
pooling or flatten operation. Table 8 summarizes selected 
layers with output shape and feature size after dimensional 
reduction, where block_i_project_BN is the last layer of a 
i-th block without residual connection, block_i_add is the 
last layer of i-th block with residual connection, and out_relu 
is the last layer for feature extraction.

EfficientNet

EfficientNet [47] is a family of models that are optimized 
to have few parameters and be faster. This model is scal-
able in depth, width, and resolution. The authors developed 
a baseline network using a multi-objective NAS [48]. The 
main layers are Mobile inverted Bottleneck Convolution 
(MBConv) and Squeeze Excite (SE). EfficientNetV2 [49] 
has been improved using progressive learning and replacing 

some MBConv layers with Fused-MB Conv [50]. It uses 
NAS to search for the best combination of fused and regular 
MB Conv Layers. In our work, we used EfficentNetV2L, 
where L stands for large. This architecture is scaled up 
in depth, width, and resolution. It consists of seven wider 
blocks for feature learning, followed by batch normaliza-
tion, activation, and top layers. We chose the output of each 
block and the last one excluding dense layers as an in-depth 
feature after applying global max/average pooling or flat-
ten operation. Table 9 summarizes the selected layers with 
output shape and feature size after dimensional reduction, 
where blockij_add is the output of i-th block, j stands for the 
last sub-blocks that envelope it in width, and top_rule is the 
last layers excluding top classification layers.

Preprocessing

The images given in input to Convolution Neural Networks, 
especially for a pre-trained one, must be processed to have 
the correct representation according to the training format. In 
particular, the input must be equal to the one used in the train-
ing step, and each pixel value must be normalized according 
to the used architecture. In particular, each input has three 
channels because images are RGB, and it must be 224x224 
for VGG16, ResNet152V2, MobileNetV2, and DenseNet201, 
229x299 for InceptionV3, InceptionResNetV2 and Xception, 
331x331 for NASNetLarge, and 480x480 for EfficientNetV2. 
Table 10 summarizes the input shape and the operation com-
puted by the preprocessing pipeline.

Dataset

In this work, we use a standard dataset called BACH, pro-
vided by ICIAR 2018 Grand Challenge on Breast Cancer 
Histology [51]. This dataset contains Hematoxylin and Eosin 
(H &E) staining breast histology microscopy whole-slide 

Table 9  Deep feature size EfficientNetV2L for each selected layer

Feature size

Layer Output shape Max/Avg flatten

block1d_add 240x240x32 32 1843200
block2g_add 120x120x64 64 921600
block3g_add 60x60x96 96 345600
block4j_add 30x30x192 192 172800
block5s_add 30x30x224 224 201600
block6y_add 15x15x384 384 86400
block7g_add 15x15x640 640 144000
top_activation 15x15x1280 1280 288000

Table 10  Input size and preprocessing input function for each CNN

CNN Input Shape Preprocess Input Function

VGG16 [36] 224x224 It converts RGB to BGR, The images are converted from RGB to BGR, then each color channel is zero-
centered with respect to the ImageNet dataset, without scaling.

InceptionV3 [38] 299x299 The inputs pixel values are scaled between -1 and 1, sample-wise.
ResNet152V2 [40] 224x224 The inputs pixel values are scaled between -1 and 1, sample-wise.
InceptionResNetV2 [41] 299x299 The inputs pixel values are scaled between -1 and 1, sample-wise.
MobileNetV2 [46] 224x224 The inputs pixel values are scaled between -1 and 1, sample-wise.
DenseNet201 [43] 224x224 The input pixels values are scaled between 0 and 1 and each channel is normalized with respect to the 

ImageNet dataset.
Xception [42] 299x299 The inputs pixel values are scaled between -1 and 1, sample-wise.
NasNetLarge [44] 331x331 The inputs pixel values are scaled between -1 and 1, sample-wise.
EfficientNetV2L [49] 480x480 Nothing
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images. Furthermore, it also has the patches extracted from 
WSI, and due to our intent to identify the best deep feature 
for a CBIR system, we used it. The dataset contains 400 
images divided into four classes: (i) invasive, (ii) in situ, (iii) 
benign, and (iv) normal. Figure 2 shows an example for each 
class applying stain color normalization.

Evaluation Strategy

This section presents and discusses our experimental results 
and their evaluation. We conducted several experiments to 
identify the best CNN, particularly its best-performing layer 
with related dimensionality reduction techniques. The com-
putational system architecture used to run experiments is:

• CPU: Intel(R) Core(TM) i7-4790K CPU @ 4.00GHz
• RAM: 32GB DDR3
• GPU: NVIDIA GeForce RTX 3090 24 GB
• Operation System (OS): Ubuntu Server 20.04.4 LTS

We are not interested in the task execution speed time at this 
research stage.

On the other hand, we pay attention to the measure of sys-
tem accuracy in the retrieval task. Different metrics such as 
precision, precision at k, recall, f-measure, precision-recall 
curve, and Mean Average Precision, mean Average Precision 
at K are presented in literature [34] and, we used precision 
at k (P@k) because we are interested in the first k relevant 
results. In detail, as reported in Eq. 1, P@k calculates how 
many retrieved items on K top-ranked ones are relevant for 
a given query. We computed the P@k on four values of K: 
5, 10, 50, and 100.

Moreover, we also consider the average of P@K 
(MAP@k) to evaluate the results from all queries. Further-
more, we used a confusion matrix to analyze the results 

(1)P@k = Ir∕K

and understand how the CBIR task works for each category 
available in the used dataset. In particular, rows of the con-
fusion matrix contain the query category, and the columns 
are the category of retrieved images. Each value concerns 
precision at k of j-th category retrieved for the i-th category 
queried, i is the index of the row, and j of the column. We 
used each dataset image as a query by example, obtaining for 
each experiment 400 queries. The image used as the query 
is left out from the results set. In order to perform a robust 
evaluation, we focused on analyzing three crucial aspects to 
justify the choice made by quantifying the loss/gain of the 
dimensionality reduction method, the layer selection for each 
CNN, and, ultimately, the CNNs architecture.

Results

As previously stated, we conducted three analyses to under-
stand our results better. Firstly, we analyzed all results iden-
tified by each CNN and considered layer and reduction oper-
ations to find the best way to reduce the feature map from a 
3-D to a 1-D array. On the other hand, we set the reduction 
operation and analyzed the result to recognize the best layer 
for each CNN to extract the deep features. Eventually, we 
compared all CNNs to find the best result. We quantified the 
loss/gain in terms of P@k in each analysis.

Dimensionality Reduction Methods

We computed P@5, P@10, P@50, and P@100 for each 
CNN layer and reduction operation to identify the best 
dimensionality reduction method. Our experiments show 
that the global average pooling obtains, on average, the 
best results on each layer at each precision. To quantify the 
improvement of global average pooling rather than global 
max pooling or flattening, we defined the loss/gain precision 
at k (GLP@k) for each precision level and reduction method 
as reported in Eq. 2. It computes the difference between 
P@k for global average pooling and P@k for flattening, 

Fig. 2  Example patches from ICIAR 2018 Grand Challenge on Breast Cancer Histology (BACH). From right to left, the first image depicts a 
benign tumor example, the second an in situ tumor, the third an invasive tumor, and the last one does not contain a tumor
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where m is the reduction method for which we want to meas-
ure the gain or loss of precision of k concerning the global 
average pooling.

Table 11 summarizes the GLP@k for each CNN, where 
we calculated each value as the average of GLP@k on each 
layer. A positive value means that global average pooling has 
a gain. Otherwise, it has a loss. Results show that the global 
average pooling is the most suitable for k equal to 5 and 10,  
while for k equal to 50 and 100, we have a slight loss for 
ResNet152V2, there is a slight loss. Therefore, from a global 
point of view and our interest in having a high precision 

(2)GLPm@k = Pavg@k − Pm@k

in the first k results, the global average pooling is the best 
choice to maximize the precision at each level.

Layer Selection for Each CNN

To find the best layers for each CNN, we computed the P@k 
for each layer, and if the best one was the same for each level 
of precision, we chose it. Otherwise, we estimated the loss 
gain P@k to find the best layer, which minimizes the loss.

As summarized in Table 12, for DenseNet, Efficient-
NetV2, InceptionResNetV2, InceptionV3, ResNet152V2 
and Xception, the best layers are respectively conv5_
block32_concat, block6y_add, mixed_7a, mixed6, 

Table 11  Average Gain/Loss 
P@k quantification by global 
average pooling for each CNN

In bold the best results

CNN Reduction Avg-GLP@5 Avg-GLP@10 Avg-GLP@50 Avg-GLP@100

DenseNet201 flatten 0.1555 0.1281 0.0597 0.0428
max 0.0526 0.0431 0.0091 0.0066

EfficientNetV2L flatten 0.1905 0.1381 0.0560 0.0338
max 0.1978 0.1571 0.0852 0.0568

InceptionResNetV2 flatten 0.1395 0.1018 0.0438 0.0311
max 0.0675 0.0419 0.0142 0.0091

InceptionV3 flatten 0.2195 0.1810 0.0936 0.0639
max 0.0790 0.0617 0.0273 0.0195

MobileNetV2 flatten 0.1566 0.1195 0.0509 0.0333
max 0.1172 0.0873 0.0345 0.0210

NASNetLarge flatten 0.1960 0.1639 0.0904 0.0608
max 0.0902 0.0716 0.0367 0.0233

ResNet152V2 flatten 0.1816 0.1464 0.0685 0.0435
max 0.0359 0.0248 -0.0052 -0.0081

VGG16 flatten 0.1886 0.1487 0.0671 0.0425
max 0.0661 0.0452 0.0107 0.0046

Xception flatten 0.1718 0.1393 0.0734 0.0530
max 0.0462 0.0307 0.0105 0.0068

Table 12  The best CNNs layer for each precision level

CNN Best Layer (P@5) Best Layer (P@10) Best Layer (P@50) Best Layer (P@100)

DenseNet201 conv5_block32_concat 
(0.67)

conv5_block32_concat 
(0.626)

conv5_block32_concat 
(0.4839)

conv5_block32_concat 
(0.4123)

EfficientNetV2L block6y_add (0.7365) block6y_add (0.671) block6y_add (0.4998) block6y_add (0.4192)
InceptionResNetV2 mixed_7a (0.68) mixed_7a (0.6325) mixed_7a (0.495) mixed_7a (0.4177)
InceptionV3 mixed6 (0.693) mixed6 (0.6298) mixed6 (0.4864) mixed6 (0.411)
MobileNetV2 block_13_project_BN 

(0.6655)
block_13_project_BN 

(0.604)
block_14_add (0.471) out_relu (0.4025)

NASNetLarge Normalizational_concat_12 
(0.695)

Normalizational_concat_12 
(0.6295)

Normalizational_concat_12 
(0.4988)

reduction_concat_reduce_12 
(0.4197)

ResNet152V2 conv4_block36_out (0.6475) conv4_block36_out (0.5923) conv4_block36_out (0.4586) conv4_block36_out (0.3902)
VGG16 block4_pool (0.6125) block5_pool (0.562) block5_pool (0.4532) block5_pool (0.3871)
Xception add_10 (0.671) add_10 (0.6185) add_10 (0.4771) add_10 (0.4051)
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Table 13  Gain/Loss Precision at 
k for CNN where the best layer 
is not equal for each k

In bold the best results

CNN Layer Layer1 P@5 P@10 P@50 P@100

MobileNetV2 block_14_add block_13_project_BN -0.0050 -0.00400 0.01255 0.007475
out_relu 0.0270 0.00850 0.00140 -0.003925

NASNetLarge Normalizational_
concat_12

reduction_concat_reduce_12 0.0295 0.00900 0.00535 -0.000275

VGG16 block5_pool block4_pool -0.0130 0.01575 0.03430 0.024600

Fig. 3  Precision comparison at 5, 10, 50 and 100 obtained from retrieval using CNN layers set according to results reported in the “Results” sec-
tion and global average pooling to reduce dimensionality
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conv4_block36_out and add_10 at each level of precision; 
for MobileNetV2, the best layer is block_13_project_ 
BN for precision equal to 5 and 10, block14_add for  
precision equal to 50, and out_relu at precision equal to 
100; for NasNetLarge, the best layer is normal_concat_12 
for precision equal to 5, 10 and 50, and reduction_concat_ 
reduce_12 for precision equal to 100; for VGG16, the best 
layer is block4_pool for precision equal to 5 and block5_
pool for precision equal to 10, 50 and 100. Table 13 shows 
the gain/loss precision at k for MobileNet, NasNetLarge, 
and VGG16.

According to the results, we chose block_14_add for 
MobileNetV2 because it outperforms out_relu and has a 
slight gain on block_13_project_BN. We chose normal_
concat_12 for NASNetLarge and block5_pool for VGG16 
because they have better results than the other layers.

Best Convolutional Neural Network Recognition

To find the best CNN to use as a feature extractor, we 
computed the P@k for each one fixing the reduction 
method with global average pooling and the best layer 
according to the ones above recognized. Table 14 shows 
the results for each configuration, highlighting that the 
best CNN is EfficientNetV2. It is best for k equal to 5 
and 10, but for k equal to 50 and 100, the gap with other 
CNN is slight, as displayed in Fig. 3. We remark that 
we are interested in high precision on top k results. To 
accomplish a more precise analysis, we analyzed in depth 
all the best CNN configurations using a confusion matrix. 
We intend to understand which dataset category is not 
correctly retrieved. According to Fig. 4, it is clear that the 
queries using benign examples are not correctly retrieved. 
They are often misunderstood with in situ images and 
normal ones. Furthermore, normal and invasive queries 
are usually recognized with good precision value. In par-
ticular, all networks have good performance for k equal 
to 5 and 10 but the performance degrading for k equal 
to 50 and 100, especially for benign queries. In the next 

section, we will give a qualitative explanation analyzing 
the worst and better results.

Discussion

In this section, we provide a qualitative analysis of the 
worst results to understand why the retrieved images are 
not correct for some queries. The morphological patterns 
associated with breast disease at histopathology examina-
tion can be highly heterogeneous. Therefore, the diagnostic 
assessment considers all the morphological patterns rec-
ognized by the pathologist, at the microscope, during the 
histopathology evaluation. The pathologist reports all the 
characteristics observed at the histopathological examina-
tion, noting them in the report. Due to the heterogeneity 
mentioned above, the annotation produced to create the 
ground truth of a breast dataset could be oversimplified. 
In other words, the unsupervised and random production 
of patches from a WSI might occasionally provide pictures  
that only represent a small region and can partially repre-
sent morphological patterns other than the ground truth. 
This is the case, for instance, of the “benig” query in Fig. 5, 
which the model may misclassify since it can be partially 
superimposed on an in situ framework in the image rep-
resented by the retrieved patches. In the mentioned case, 
although the patch comes from a “Benign” classified case, 
the image refers to a borderline morphological pattern that, 
in our opinion, could pose a differential diagnosis issue 
usually ruled out by immunohistochemistry, looking for 
p63 expression. The same might be stated for “normal” 
images retrieved in response to the “in situ” query Fig. 6. 
Although belonging to WSI annotated as “in situ”, the 
patch seems to refer more to a normal pattern. The remain-
ing misclassifications could also potentially be explained 
by the bias of the patch’s field. In the case of the “invasive” 
query, there could be a bias related to the type of sample, 
which does not seem to be a whole section but a more 
undersized biopsy showing a not-so-clear morphology pat-
tern (see Fig. 5).

Table 14  Average P@k for each 
chosen layer

In bold the best results

model Layer P@5 P@10 P@50 P@100

VGG16 block5_pool 0.5995 0.56200 0.45320 0.387075
ResNet152V2 conv4_block36_out 0.6475 0.59225 0.45855 0.390225
DenseNet201 conv5_block32_concat 0.6700 0.62600 0.48390 0.412325
InceptionV3 mixed6 0.6930 0.62975 0.48635 0.411025
Xception add_10 0.6710 0.61850 0.47710 0.405100
InceptionResNetV2 mixed_7a 0.6800 0.63250 0.49500 0.417700
MobileNetV2 block_14_add 0.6605 0.60000 0.47100 0.398575
NASNetLarge Normalizational_concat_12 0.6950 0.62950 0.49885 0.419425
EfficientNetV2L block6y_add 0.7365 0.67100 0.49980 0.419150
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Fig. 4  Comparison of confu-
sion matrices obtained from 
retrieval using CNN layers set 
according to results reported in 
the “Results” section and global 
average pooling to reduce 
dimensionality
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Fig. 5  Examples of the wrong 
retrieval, in all cases, P@5 is 
equal to 0

Fig. 6  Examples of the correct 
retrieval, in all case, P@5 is 
equal to 1
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Conclusion

This work explored the feature representation of Hematox-
ylin and Eosin patches for CBIR tasks in digital pathology 
PACSs. Our results showed that not all analyzed CNNs 
had the best results at the last layers. For example, Effi-
cinetNetV2 reached the best precision on block6y_add, 
which is not the last layer. Moreover, we empirically dem-
onstrated that the global average pooling is the best way 
to reduce the dimension of a three-dimensional array into 
a one-dimensional one. Furthermore, we did a qualitative 
analysis of obtained results to understand why the preci-
sion is low in some cases. The qualitative analysis showed 
that the morphology overlapped in many incorrectly cate-
gorized instances, mainly due to the tiny patches’ low rep-
resentativeness of the full WSI. Given the complexity of 
mammary gland histopathology, we will use other datasets 
to better analyze the performance of our approach together 
with WSI to test our framework in a real scenario. Moreo-
ver, we will set up a more precisely annotated dataset to 
reduce the misclassification rate due to an un-precisely 
patched annotation. Image retrieval algorithms are highly 
topical in the field of digital pathology. The number of 
images a pathology service can generate daily is around 
hundreds of units for a medium-sized service. Digital 
content, as in every other field, accumulates increasingly. 
Therefore, the need to find effective data recovery systems 
is growing to make the most of digital resources for clini-
cal, scientific, and educational purposes. In future work, 
we will explore the effect of stain color normalization, 
which is often used to improve precision in a query-by-
example approach. Furthermore, we will explore other 
levels of CNN to understand if others and not only the 
main layers can improve the results. Again, we will apply 
this approach to other datasets with characteristics like 
BACH to verify that results can be reproducible on other 
images. Further, we will investigate the use of these tech-
niques on data that contains other tissue and tumor kind 
to understand if it is possible to achieve the same results 
independently from the slides’ origin.
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