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Abstract
In medicine, confounding variables in a generalized linear model are often adjusted; however, these variables have not yet 
been exploited in a non-linear deep learning model. Sex plays important role in bone age estimation, and non-linear deep 
learning model reported their performances comparable to human experts. Therefore, we investigate the properties of using 
confounding variables in a non-linear deep learning model for bone age estimation in pediatric hand X-rays. The RSNA 
Pediatric Bone Age Challenge (2017) dataset is used to train deep learning models. The RSNA test dataset is used for 
internal validation, and 227 pediatric hand X-ray images with bone age, chronological age, and sex information from Asan 
Medical Center (AMC) for external validation. U-Net based autoencoder, U-Net multi-task learning (MTL), and auxiliary-
accelerated MTL (AA-MTL) models are chosen. Bone age estimations adjusted by input, output prediction, and without 
adjusting the confounding variables are compared. Additionally, ablation studies for model size, auxiliary task hierarchy, 
and multiple tasks are conducted. Correlation and Bland–Altman plots between ground truth and model-predicted bone ages 
are evaluated. Averaged saliency maps based on image registration are superimposed on representative images according 
to puberty stage. In the RSNA test dataset, adjusting by input shows the best performances regardless of model size, with 
mean average errors (MAEs) of 5.740, 5.478, and 5.434 months for the U-Net backbone, U-Net MTL, and AA-MTL models, 
respectively. However, in the AMC dataset, the AA-MTL model that adjusts the confounding variable by prediction shows 
the best performance with an MAE of 8.190 months, whereas the other models show the best performances by adjusting 
the confounding variables by input. Ablation studies of task hierarchy reveal no significant differences in the results of the 
RSNA dataset. However, predicting the confounding variable in the second encoder layer and estimating bone age in the 
bottleneck layer shows the best performance in the AMC dataset. Ablations studies of multiple tasks reveal that leveraging 
confounding variables plays an important role regardless of multiple tasks. To estimate bone age in pediatric X-rays, the 
clinical setting and balance between model size, task hierarchy, and confounding adjustment method play important roles in 
performance and generalizability; therefore, proper adjusting methods of confounding variables to train deep learning-based 
models are required for improved models.

Keywords Bone age estimation · Confounding variable · Deep learning · Model enhancement · Multi-task learning, 
Pediatric X-ray

Introduction

With recent advancements in computational resources, deep 
learning has performed well in several areas. Adding addi-
tional non-linearities and layers has improved the perfor-
mances of deep learning models [1]. It has enabled tasks that 

were difficult or impossible for linear models before, such as 
the XOR problem or image analyses. Numerous deep learn-
ing models showed decent performances in the ImageNet 
Large Scale Visual Recognition Challenge [2, 3]. Moreover, 
they can analyze medical images, and recent studies have 
shown that important medical variables, such as biologi-
cal age [4] and sex [5], can be predicted. Moreover, recent 
advances in medical image analysis techniques that employ 
deep learning has reported their performances comparable 
to human experts and their effectiveness in clinical applica-
tions [6, 7].
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In statistical analyses using generalized linear models, 
such as linear regression, logistic regression, and Poisson 
regression [8], adjusting confounding variables is a common 
and critical procedure [9, 10], particularly in medicine [11, 
12]. Particularly, age and sex are major confounding varia-
bles and therefore frequently adjusted [13–16]. However, the 
method of handling these important confounding variables 
in a deep learning model has been insufficiently investigated.

Biological age estimation using skeletal images is impor-
tant in pediatric endocrinology and genetics. For example, 
adult height can be predicted through skeletal age [17, 18], 
and the discrepancy between the chronological age and bone 
age of children can indicate pathological genetic [19], endo-
crine [20, 21], and systemic conditions [22–25]. Recently, 
numerous deep learning-based approaches for automatically 
estimating bone age from pediatric hand X-rays have been 
made [26]. One article noted that sex and age itself can affect 
the generalizability and bias of bone age estimation model 
[27]. The challenge-winning models leveraged sex infor-
mation by using additional encoders for sex or additional 
dense layers [26]. However, most studies only considered 
this important confounding variable as input variable.

Although non-linearity has allowed deep learning to show 
decent performances, confounding variables and linear mod-
els play an important role in medicine. In pediatric bone 
age estimation, sex information and laboratory results (e.g., 
growth hormone, estrogen, and testosterone) are such impor-
tant variables [28]. Herein, we presented the differences in 
performance and generalizability according to different han-
dling strategies of confounding variables in non-linear deep 
learning models for bone age estimation in pediatric hand 
X-rays. The main contributions of our study are as follows:

• We experimented with and compared different methods 
for handling sex information in deep learning model for 
bone age estimation.

• We proposed the role of hierarchical multi-task learning 
architecture as a confounding variable handling architecture.

• We suggested auxiliary-accelerated multi-task learning 
architecture to better utilize confounding variables to 
improve the performance and robustness of models.

Materials and Methods

This retrospective study was conducted according to the 
principles of the Declaration of Helsinki and according 
to current scientific guidelines. The study protocol was 
approved by the Institutional Review Board (IRB) Com-
mittee. The requirement for informed patient consent was 
waived by the IRB.

Dataset and Preprocessing

A large dataset for skeletal age prediction consisting of hand 
X-ray images with bone age and sex information has been 
released by the Radiological Society of North America 
(RSNA) [26, 29]. The RSNA dataset is composed of 12,611 
training images, 1,425 validation images, and 200 testing 
images. To train the bone age prediction model, only the 
RSNA dataset was used. For this dataset, the Greulich and 
Pyle [30] (GP) method, which interprets bone age by com-
paring hand X-rays with representative images, was used to 
measure the ground truth bone age. For external validation, 
227 hand X-rays of clinically normal participants with sex 
information from the South Korean referral hospital, Asan 
Medical Center (AMC), were used. For the AMC dataset, 
two expert radiologists labeled the bone ages using the GP 
method. The mean of the bone age label and chronological 
age was used for evaluation. The bone ages of the RSNA 
test dataset were similarly distributed to those in the train 
dataset; the study populations were sampled according to the 
uniform distribution of chronological age in the AMC data-
set. These two datasets showed significantly different dis-
tributions according to two-sample Kolmogorov–Smirnov 
test for goodness of fit (P-value < 0.001). The bone ages of 
participants ranged from 11 to 219 months in the RSNA 
dataset, while they ranged from 24 to 228 in the AMC data-
set. The age histograms of the RSNA and AMC datasets are 
depicted in Fig. 1.

When preprocessing the images, they were first adjusted 
from the top 1% pixel value to avoid L/R markers and other 
high intensity artifacts acting as confounding factors [31]. 
To preserve the original image shape, the images were pad-
ded into a square. And they were reshaped into 512 × 512 
pixels, considering the sophisticated nature of medical 
images and resource limitations, such as training time and 
GPU memory. The pixel values were normalized from 0 
to 1 using min–max scaling; Additionally, contrast limited 
adaptive histogram equalization was used to emphasize the 
bony part of hand X-rays.

U-Net [32] was trained for hand-image segmentation 
using a semi-automated data labeling strategy. 200 ran-
domly sampled hand X-ray images were binarized and 
small clusters were removed. The first U-Net segmenta-
tion network was trained using these masks and the inter-
section over union (IoU) for the baseline 200 images was 
0.982. Subsequently, additional masks were generated 
from this network using the training dataset. Next, well-
generated masks were sampled and the U-Net segmenta-
tion network was trained with these masks. The final IoU 
for the entire RSNA dataset was 0.975. Finally, a hand 
mask was generated for all training, validation, and test-
ing datasets. Hand images only were extracted and used 
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for bone age prediction. The hand mask generation and 
hand extraction processes are summarized in Fig. 2.

Network Architectures

U-Net based multi-task learning (MTL) architecture was 
adopted for bone age estimation. The network simultaneously 
conducted bone age estimation and image reconstruction 
tasks; therefore, the model could learn good representations 
when reconstructing the original image from the augmented 
image. An auxiliary regression layer was added to the bot-
tleneck layer of the U-Net architecture to estimate bone age. 
Furthermore, because bone age estimation was the main tar-
get for the entire architecture, additional encoder layers were 
added to accelerate the target auxiliary regression task. The 
schematic figure of U-Net MTL and auxiliary-accelerated 
MTL (AA-MTL) architecture is depicted in Fig. 3.

Handling Methods of Confounding Variables

In the typical statistical model (i.e., generalized linear 
models), the relationship between the observation Yi and 

independent variable Xij is formulated as a linear combina-
tion of independent variables and parameters as:

given a random sample (Yi, Xi1, Xi2, …, Xij-1, Xij), where W1, 
W2, …, Wj-1, Wj are the parameters for the variables Xi1, Xi2, 
…, Xij-1, Xij; and βi is the random bias.

However, considering the non-linear properties of deep 
learning, the relationship between the input vector vij and 
output vector uij cannot be defined as in Eq. (1). The rela-
tionship between vectors vij and uij in a non-linear deep 
learning model f (∙) can be formulated as:

Therefore, three different handling methods of the impor-
tant confounding variable (sex) in non-linear deep learn-
ing models were compared. The model that did not use 
sex information was regarded as the baseline. The models 
that used sex information as the input vector and predicted 
sex information as the output vector were trained. When 
sex was set as an input to a deep learning model, sex was 

(1)Yi =
∑j

k=1
WkXik + �i,

(2)
(
ui1, ui2,… , uij−1, uij

)
= f (vi1, vi2,… , vij−1, vij).

Fig. 1  Age histograms of each age label. RSNA, Radiological Society of North America; AMC, Asan Medical Center

Fig. 2  Hand mask generation and hand extraction using U-Net
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concatenated just before the fully connected layer for bone 
age estimation; when sex was set as an output, an auxiliary 
classifier was added to predict it.

Furthermore, the backpropagation from one loss function 
was hypothesized to affect another loss function, and vice 
versa. Therefore, sex classification and bone age estimation 
at the diverse encoder level were investigated when sex was 
set as the prediction output. The hierarchical model struc-
tures of the following were compared. Bone age estimation 
after bottleneck block, followed by sex classification after 
second encoder block (the two-convolutional layer followed 
by the max pooling layer or input image was considered as 
an encoder block, see Fig. 3); sex classification after bot-
tleneck block, followed by bone age estimation after second 
encoder block; and sex classification and bone age estima-
tion simultaneously after bottleneck block.

Average Class Activation Maps

Saliency maps using gradient-weighted class activation map 
(Grad-CAM) [33] were acquired to assess the explainability of 
each model. The Grad-CAM images were stratified by pubertal 
stage because the growth patterns of children change with the 
pubertal stage. Therefore, the hand X-ray images were grouped 
into pre-puberty (0–6 years), puberty (6–14 for boys, 6–12 for 
girls), and post-puberty (14–18 for boys, 12–18 for girls) [34–36].

Next, the image registration technique was applied to 
the pubertal stage-stratified Grad-CAMs to show each 

model focus on. First, the representative image of each 
pubertal stage was selected. The center, width, and height 
from the hand mask of each image was acquired. Subse-
quently, an affine transformation using the center, width, 
and height of the hand mask was applied to the Grad-
CAM and averaged. Finally, the averaged Grad-CAM 
was superimposed on the representative image of each 
pubertal stage.

Statistical Analyses

Parametric and nonparametric statistics were used on the 
RSNA and AMC datasets, respectively, as the RSNA data-
set was similarly distributed to the train dataset, while the 
AMC dataset was not. The mean average error (MAE) and 
Pearson’s correlation coefficient (r) or the Kendall rank cor-
relation coefficient (τ) between the model-estimated bone 
age and ground truth age were evaluated and compared. A 
paired t-test and Wilcoxon signed-rank test were conducted 
on the RSNA and AMC datasets, respectively, to compare 
the statistical differences between each model. Correlation 
plots and Bland–Altman plots [37, 38] were constructed to 
show the correlation between the estimated bone age and 
ground truth age. The statistics software R version 4.2.0 (R 
Foundation for Statistical Computing, Vienna, Austria) was 
used for all statistical analyses. Two-sided P-values were 
used to determine statistical significance, which was set at 
an alpha value of 0.05.

Fig. 3  U-Net based multi-task learning (MTL) architecture, which 
simultaneously conducts image reconstruction and bone age estima-
tion. Figure on the left depicts U-Net MTL architecture and the right 
depicts the auxiliary-accelerated (AA) MTL architecture. Additional 

encoders are added in the AA-MTL model to accelerate the target 
auxiliary regression task. In this figure, sex information is handled 
as an input vector, which is concatenated before the fully connected 
layer for bone age estimation
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Experiments

Implementation Details

U-Net [32] based encoder-decoder architecture was adopted. 
Because deep learning models can learn good representa-
tions from self-reconstruction of the original image [39], 
the U-Net decoder learnt to reconstruct the original image 
from the augmented image. The models without decoders 
were trained to isolate the effect of this self-reconstruction. 
All models were implemented in Python version 3.6.9 with 
PyTorch version 1.9.0. Adam optimizer was chosen with a 
learning rate of 5e-3, and the ReduceLROnPlateau learn-
ing rate scheduler was used. The models were trained with 
augmentation techniques plausible for medical images, such 
as shifting, zooming, rotation, blur, gaussian noise addition, 
and sharpening. Additionally, strong augmentation, such as 
cutout [40], was used to the extent that it did not compromise 
clinical viability. All networks were trained using a single 
GPU (Titan RTX) and a batch size of eight. For bone age 
estimation, regression loss was calculated as L1 Loss, as was 
image reconstruction loss. L1 loss was calculated as:

where y is ground truth age and ŷ is bone age regression 
output when applied as regression loss. When applied as 
reconstruction loss, y was regarded as the original image and 
ŷ as the model reconstruction output. When sex was set as 
the prediction output, the classification loss was calculated 
using cross entropy loss:

(3)L1 Loss
�
y, ŷ

�
= ‖y − ŷ‖,

where ŷ is the softmax probability of the model classifi-
cation output. As the target task was bone age estimation 
and the other tasks were performed for confounding adjust-
ment, the loss weights for the image reconstruction and sex 
classification were set to 0.1 and the sum of loss weights 
was set to 1 (i.e., bone age estimation weight + image recon-
struction weight, if performed + sex classification weight, if 
performed = 1). The models were trained from the scratch 
without pretrained weights.

Comparison of Handling Methods of Confounding 
Variables

A comparison of the confounding handling methods in 
U-Net backbone, U-Net MTL, and AA-MTL is summarized 
in Table 1. The absolute errors between the model-predicted 
bone age and ground truth age label were compared for 
each confounding adjustment method and the best perform-
ing method for each architecture. The correlation analyses 
between the model-predicted bone age and ground truth age 
labels are depicted in Supplementary Table 1.

In the U-Net backbone architecture, the confound-
ing adjustment by input method showed the best perfor-
mances in the RSNA dataset with an MAE of 5.740 months 
(P-value < 0.001, no adjustment and adjustment by output). 
For the AMC dataset bone age, confounding adjustment by 
input showed statistically better performance than confound-
ing adjustment by output (P-value = 0.023). For the AMC 

(4)
Cross Entropy Loss

(
y, ŷ

)
= −[y ∙ log

(
ŷ
)
+ (1 − y) ∙ log(1 − ŷ)]

Table 1  Comparison of 
confounding adjustment 
methods in RSNA and AMC 
datasets with each architecture

Best evaluation scores are presented in bold
RSNA Radiologic Society of North America, AMC Asan Medical Center, MAE mean absolute error, BA 
bone age, CA chronological age, MTL multi-task learning, AA auxiliary-accelerated
* p < 0.05; **p < 0.01; ***P < 0.001
a Paired t-test is applied to compare the performance between each method and best performance method in 
RSNA dataset
b Wilcoxon signed-rank test is applied to compare the performance between each method and best perfor-
mance method in AMC dataset

Architecture (Parameters) Confounding 
adjustment

RSNA dataset AMC dataset

MAE (BA)a MAE (BA)b MAE (CA)b

U-Net backbone (14.13 M) No 7.966 ± 6.693*** 9.183 ± 7.887 11.850 ± 9.440***

Input 5.740 ± 5.335 8.388 ± 7.433 12.511 ± 10.023**

Output 7.897 ± 7.042*** 9.519 ± 7.423* 10.549 ± 8.797
U-Net MTL (23.38 M) No 7.803 ± 7.488*** 8.756 ± 7.244 11.560 ± 9.572

Input 5.478 ± 4.589 8.172 ± 7.710 12.130 ± 9.791
Output 8.060 ± 7.562*** 9.336 ± 7.810* 11.983 ± 10.026

AA-MTL (36.59 M) No 8.078 ± 7.466*** 9.385 ± 7.833** 11.775 ± 9.144**

Input 5.434 ± 4.402 8.347 ± 7.889 12.171 ± 10.284
Output 7.613 ± 7.098*** 8.190 ± 6.854 10.635 ± 8.256
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dataset chronological age, confounding adjustment by output 
outperformed no adjustment (P-value < 0.001) and adjust-
ment by input (P-value = 0.002).

The confounding adjustment by input method showed the 
best performances in bone age estimation of the RSNA data-
set when compared with the other methods (P-value < 0.001 
in both methods) in the U-Net MTL architecture. For 
the AMC dataset bone age, a significant difference 
between the confounding adjustment by input and output 
(P-value = 0.027) was observed, whereas no statistical dif-
ference between input and no adjustment (P-value = 0.205) 
was observed. For the chronological age, there were no sig-
nificant differences between the best performing method, no 
adjustment, and adjustment by input (P-value = 0.542) and 
output (P-value = 0.329).

Finally, in the proposed AA-MTL architecture, con-
founding adjustment by input outperformed other meth-
ods in the RSNA dataset with an MAE of 5.434 months 
(P-value < 0.001, no adjustment and adjustment by output). 
For the AMC dataset bone age, adjustment by output sig-
nificantly outperformed no adjustment (P-value = 0.009). 
However, no significant difference between output and 
input was observed (P-value = 0.814). For the AMC dataset 
chronological age, adjustment by output outperformed no 
adjustment (P-value = 0.006), but not adjustment by input 
(P-value = 0.051).

Comparison of Conducting Multi‑task at Diverse 
Encoder Level

The performance of each MTL network depended on the 
other tasks and model size [1, 41]. Considering the multi-
task nature of this study, confounding adjustments and target 
task were conducted at the diverse encoder levels. Three dif-
ferent multi-task combinations of confounding adjustments 
and task were performed: sequential (sex classification at 
second encoder level, bone age estimation at bottleneck 
level), simultaneous (sex classification and bone age esti-
mation at bottleneck level), and inverse-sequential (bone age 
estimation at second encoder level, sex classification at bot-
tleneck level). The U-Net backbone architecture performed 
only sex classification and bone age estimation. The U-Net 
MTL and AA-MTL architectures performed sex classifica-
tion, bone age estimation, and source image reconstruction 
from augmented images.

For the RSNA dataset bone age, the simultane-
ous model outperformed the inverse-sequential model 
(P-value = 0.007); however, it did not outperform the 
sequential model (P-value = 0.328) with double-task 
U-Net backbone architecture. In the AMC dataset, the 
simultaneous model outperformed the inverse-sequential 
model (P-value = 0.008) but not the sequential model 
(P-value = 0.075) with bone age labels; whereas the 

sequential model outperformed the inverse-sequential 
(P-value < 0.001) and simultaneous (P-value = 0.021) mod-
els with chronological age labels.

In the U-Net MTL architecture, the simultaneous model  
showed the best performance with an MAE of 7.601 months 
for the RSNA dataset bone age; however, no statisti-
cal difference was observed compared to the sequential 
(P-value = 0.080) or inverse-sequential (P-value = 0.281)  
models. In the AMC dataset, the simultaneous model out-
performed both the inverse-sequential (P-value < 0.001) and 
sequential (P-value = 0.006) models with bone age labels, and 
the inverse-sequential model (P-value = 0.003) but not the  
sequential model (P-value = 0.148) with chronological age labels.

For the RSNA dataset bone age, the simultaneous model 
showed the best performance but did not have statisti-
cally significant results compared to the inverse-sequential 
(P-value = 0.115) or sequential (P-value = 0.249) models 
with AA-MTL architecture. For the AMC dataset with bone 
age labels, the sequential model of AA-MTL architecture 
showed the best performance with an MAE of 8.190 m. 
The AA-MTL sequential model significantly outperformed 
the inverse-sequential model (P-value = 0.001), but no sta-
tistical difference between it and the simultaneous model 
(P-value = 0.990) was observed. The sequential model of 
AA-MTL architecture showed the best performance for the 
AMC dataset with chronological age labels: it outperformed 
the inverse-sequential (P-value = 0.002) and simultaneous 
(P-value = 0.001) models. Table 2 summarizes the compari-
son results of conducting multi-task at diverse encoder level.

Comparison of Multiple Tasks in Performance 
and Generalizability

A comparison of the single-task model, which only per-
formed bone age estimation; double-task model, which 
performed bone age estimation and source image recon-
struction; and triple-task model, which performed bone age 
estimation, source image reconstruction, and sex classifica-
tion is summarized in Table 3. In the U-Net MTL architec-
ture, the double-task model with sex information showed the 
best performance in both datasets. In the AA-MTL architec-
ture, the double-task model with sex information showed 
the best performance in the RSNA dataset. However, in the 
AMC dataset, the triple-task model showed the best per-
formance with both bone age and chronological age labels.

Correlation plot and Bland–Altman plot of each multi-
task model in the AA-MTL architecture are depicted in 
Fig. 4. All three models showed decent performances in 
estimating bone ages, with  R2 values of 0.969, 0.975, and 
0.946 in the single-, double-, and triple-task models in the 
RSNA dataset, respectively. The Bland–Altman plot of all 
three models showed good agreement between the ground 
truth and model-predicted bone ages.
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In the AMC dataset, all models showed decent perfor-
mances in estimating bone ages, with  R2 values of 0.963, 
0.962, and 0.969 in the single-, double-, and triple-task 
models, respectively. The Bland–Altman plots of all three 
models showed good agreements between the ground truth 
and model-predicted bone ages, with mean differences of 
1.382 (95% confidence interval [CI], –13.543–16.306), 

1.827 (95% CI, –11.423–15.077), and 2.622 (95% CI, 
–17.146–22.391) for the single-, double-, and triple-task 
models in the RSNA dataset, respectively; additionally, 
they showed good agreements with mean differences 
of –0.198 (95% CI, –22.480–22.085), –0.759 (95% CI, 
–23.247–21.729), and 0.625 (95% CI, –20.298–21.548) in 
the AMC dataset, respectively.

Table 2  Comparison of 
conducting multi-task at diverse 
encoder level

Best evaluation scores are presented in bold
RSNA Radiologic Society of North America, AMC Asan Medical Center, MAE mean absolute error, BA 
bone age, CA chronological age, MTL multi-task learning, AA auxiliary-accelerated
* p < 0.05; **p < 0.01; ***p < 0.001
a Paired t-test is applied to compare the performance between each method and best performance method in 
RSNA dataset
b Wilcoxon signed-rank test is applied to compare the performance between each method and best perfor-
mance method in AMC dataset

Sex classification Bone age estimation RSNA dataset AMC dataset

MAE (BA)a MAE (BA)b MAE (CA)b

U-Net backbone architecture
Bottleneck 2nd encoder 8.883 ± 7.376** 10.008 ± 7.570** 12.202 ± 9.774***

Bottleneck 7.523 ± 7.174 8.690 ± 7.080 11.326 ± 8.507*

2nd encoder Bottleneck 7.897 ± 7.042 9.519 ± 7.423 10.549 ± 8.797
U-Net MTL architecture
Bottleneck 2nd encoder 8.509 ± 7.232 10.112 ± 7.870*** 12.456 ± 9.643**

Bottleneck 7.601 ± 7.427 8.477 ± 7.557 11.157 ± 9.816
2nd encoder Bottleneck 8.060 ± 7.562 9.336 ± 7.810** 11.983 ± 10.026
AA-MTL architecture
Bottleneck 2nd encoder 7.861 ± 5.866 9.500 ± 7.725** 11.866 ± 9.441**

Bottleneck 7.206 ± 6.647 8.351 ± 7.099 11.884 ± 9.046**

2nd encoder Bottleneck 7.613 ± 7.098 8.190 ± 6.854 10.635 ± 8.256

Table 3  Comparison of 
multiple tasks in performance 
and generalizability

Best evaluation scores are presented in bold
RSNA Radiologic Society of North America, AMC Asan Medical Center, MAE mean absolute error, BA 
bone age, CA chronological age, MTL multi-task learning, AA auxiliary-accelerated
* p < 0.05; **p < 0.01; ***p < 0.001
a Paired t-test is applied to compare the performance between each method and best performance method in 
RSNA dataset
b Wilcoxon signed-rank test is applied to compare the performance between each method and best perfor-
mance method in AMC dataset

Architecture Multiple task RSNA dataset AMC dataset

MAE (BA)a MAE (BA)b MAE (CA)b

U-Net MTL Single task (no sex) 7.966 ± 6.693*** 9.183 ± 7.887* 11.850 ± 9.440
Single task (sex) 5.740 ± 5.335 8.388 ± 7.433 12.511 ± 10.023
Double task (no sex) 7.803 ± 7.488*** 8.756 ± 7.244 11.560 ± 9.572
Double task (sex) 5.478 ± 4.589 8.172 ± 7.710 12.130 ± 9.791
Triple task 8.060 ± 7.562*** 9.336 ± 7.810* 11.982 ± 10.026

AA-MTL Single task (no sex) 7.858 ± 8.351*** 9.130 ± 7.865* 11.762 ± 8.495**

Single task (sex) 5.562 ± 5.368 8.323 ± 7.727 12.200 ± 9.937*

Double task (no sex) 8.078 ± 7.466*** 9.385 ± 7.833** 11.775 ± 9.144**

Double task (sex) 5.434 ± 4.402 8.347 ± 7.889 12.171 ± 10.284
Triple task 7.613 ± 7.098*** 8.190 ± 6.854 10.635 ± 8.256
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Fig. 4  Correlation plot and Bland–Altman plot between ground truth 
bone age label of datasets and multi-task model-predicted bone age. 
The upper panel of the figure shows the results of the RSNA dataset, 

and the lower panel shows the results of the AMC dataset. Single task 
model with sex information, double task model with sex information, 
and triple task models are shown from the left to right
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Average Class Activation Map

The qualitative results were evaluated using the average 
Grad-CAMs. Grad-CAMs acquired from each image were 
coordinated according to the representative image of each 

puberty group. Subsequently, the coordinated Grad-CAM 
images were averaged and superimposed on the representa-
tive images. The average Grad-CAM images acquired from 
the single-, double-, and triple-task models based on the 
AA-MTL architecture are depicted in Fig. 5.

Discussions

We proposed and thoroughly investigated a novel method 
to exploit confounding variables in a non-linear deep learn-
ing model for bone age estimation in pediatric hand X-rays. 
All models used in this study estimated the bone age with a 
suitable  R2 value. Additionally, all models highlighted the 
regions of interest, such as carpal bones, metatarsophalangeal 
joints, and distal epiphyses of radius and ulna, in averaged 
Grad-CAM. The results revealed that adjusting confound-
ing variables by including additional input enhances internal 
performance, whereas adjusting confounding variables by 
prediction enhances generalizability of the external perfor-
mance of a deep learning model. Additionally, the effect of 
the relationship between the encoder size and task hierarchy 
on adjustment performance was investigated through ablation 
studies. The results revealed that the proper encoder size and 
task hierarchy can improve model performance.

When training deep learning model, the balance between 
the model size, size of dataset, and difficulty of the target 

Fig. 5  Average Grad-CAM shown in each puberty group. All three models are based on AA-MTL architecture. Pre-puberty is defined as 
0–6 years, puberty as 6–14 years for boys and 6–12 years for girls, and post-puberty as 14–18 years for boys and 12–18 years for girls

Fig. 6  Example anomaly case with superimposed Grad-CAM. The 
ground truth chronological age is 138 months and the model predicted 
227.97  months. Luno-triquetral coalition, a type of carpal coalition, 
exists in this case, which can be associated with genetic syndromes
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task is critical in the model performance. This explains the 
better performance of the AA-MTL model compared to the 
U-Net MTL model. In MTL, the combination of tasks affects 
the performances of the others [41] because the encoder 
shares the feature for each task. The extent of encoder shar-
ing is critical in each task, particularly when main and aux-
iliary tasks exist [42]. Therefore, we interpreted that the 
hierarchical structure of MTL benefits the performance and 
generalizability of the main task using the latent representa-
tions extracted from the early shared encoder for auxiliary 
tasks, and additional representations extracted from the later 
independent encoder for the main task.

Our study has several advantages. First, we trained the 
model with an open dataset [26]; therefore, our internal 
results can be easily reproduced and compared with existing 
methods. Furthermore, we externally validated our method 
using the AMC dataset, which was collected from the Asian 
referral hospital. Therefore, our method shows robustness 
over multiple centers and multiple races, compared to 
human experts, who show mean age differences from 2.88 
to 4.92 months [43]. Second, our model showed comparable 
performances without leveraging additional dense labeling 
[44, 45] or ensemble multiple models [46, 47]. Furthermore, 
the model that leveraged confounding variables as the output 
showed comparable results to the model that used them as 
input. Therefore, this study suggests that models trained to 
predict confounding variables can achieve additional perfor-
mance even in the clinical situations where the confounding 
variables are absent or difficult to acquire. Third, we thor-
oughly investigated the effect of adjusting the confounding 
variable (sex) in a non-linear deep learning model through 
multiple ablation studies. We disclosed the properties of 
encoder size, task hierarchy, and multiple task combination 
acting on the performance and generalizability. Fourth, the 
age discrepancy between the model-estimated bone age and 
ground truth chronological age was compared. In the clinical 
context, the bone age estimation is used for adult height pre-
diction, and anomaly detection in pediatric endocrinology 
[20, 24, 34] and genetics [19], which can be critical in real-
world practice. When bone age estimation is properly trained 
with only normal pediatric hand X-rays, a large discrepancy 
between model-estimated bone age and chronological age 
may indicate a pathologic condition. Figure 6 depicts an 
example anomaly case superimposed with Grad-CAM. The 
ground truth chronological age for this case was 138 months; 
however, the model predicted 227.97 months. Carpal coali-
tion, which can be associated with genetic syndromes, such 
as fetal alcohol syndrome or Turner syndrome [48, 49], was 
identified. Further studies with anomaly detection tasks are 
required to confirm this result. Finally, we addressed our 
qualitative results with averaged Grad-CAMs superimposed 
on representative images according to puberty stage. With 

this method, the overall explainability of each model was 
easily shown and “cherry picking” was reduced.

However, our study had some limitations. First, consider-
ing the sensitive nature of medical data, access to our private 
external data is limited, which can reduce the reproducibility. 
Second, because a limited number of confounding variables 
was provided in the training dataset, only sex information 
was adjusted. Further studies adjusting more confounding 
variables, such as hormonal value and genetic and nutritional 
condition, are required to confirm our results. Furthermore, 
this study used only one external validation dataset and one 
internal validation dataset. Due to the sensitive nature of 
medical data, additional external validation datasets are dif-
ficult to acquire. Additional validation datasets with multi-
ple prospective studies are required to confirm our results. 
Third, because adjusting the confounding variable in gener-
alized linear models focuses on isolating the effect of inde-
pendent variables, exploiting the confounding variable in 
a non-linear deep learning model could be different in this 
context. Finally, further ablation studies, such as multiple 
model architecture, confounding input level, decoder level, 
and multi-task weight ablations, were not performed owing 
to time limitations, GPU resources, and word limits. 

Conclusion and Future Works

To estimate bone age in pediatric X-rays, the clinical set-
ting and balance between model size, task hierarchy, and 
confounding adjustment method play important roles in per-
formance and generalizability; therefore, a proper adjusting 
method of confounding variables to train deep learning-
based models may be required for improved models. Further 
studies with additional ablation studies are required to find 
suitable combinations to improve performance and general-
izability. In addition, further studies could be conducted to 
investigate the effects of multiple medical tasks on a variety 
of confounding variables.
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