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Abstract
Nowadays, skin cancer is considered a serious disorder in which early identification and treatment of the disease are essential 
to ensure the stability of the patients. Several existing skin cancer detection methods are introduced by employing deep learn-
ing (DL) to perform skin disease classification. Convolutional neural networks (CNNs) can classify melanoma skin cancer 
images. But, it suffers from an overfitting problem. Therefore, to overcome this problem and to classify both benign and 
malignant tumors efficiently, the multi-stage faster RCNN-based iSPLInception (MFRCNN-iSPLI) method is proposed. Then, 
the test dataset is used for evaluating the proposed model performance. The faster RCNN is employed directly to perform 
image classification. This may heavily raise computation time and network complications. So, the iSPLInception model is 
applied in the multi-stage classification. In this, the iSPLInception model is formulated using the Inception-ResNet design. 
For candidate box deletion, the prairie dog optimization algorithm is utilized. We have utilized two skin disease datasets, 
namely, ISIC 2019 Skin lesion image classification and the HAM10000 dataset for conducting experimental results. The 
methods’ accuracy, precision, recall, and F1 score values are calculated, and the results are compared with the existing meth-
ods such as CNN, hybrid DL, Inception v3, and VGG19. With 95.82% accuracy, 96.85% precision, 96.52% recall, and 0.95% 
F1 score values, the output analysis of each measure verified the prediction and classification effectiveness of the method.

Keywords  Skin cancer prediction · Prairie dog optimization · Intelligent signal processing lab inception · Region 
proposal networks

Introduction

The growth of abnormal cells in the body leads to the gen-
eration of skin cancer, further depending upon their features, 
nature, and seriousness may spread to various organs of the 
human body. The visible part obtained in the human body 

is the skin which is easily affected by environmental infec-
tions, and this leads to generating skin cancer. Each year 
46,000 new people were affected by skin cancer in the UK. 
Melanoma and non-melanoma are the types of skin cancer. 
Non-melanoma is divided into two types that are basal cell 
skin cancer (BCC) and squamous cell skin cancer (SCC). 
The melanoma type is lethal [1]. Melanoma-type skin cancer 
is caused by a variety of factors such as the radiation of ultra-
violet (UV) and genetic aspects. Melanoma starts from skin 
melanocytes and which yield dark pigment on the body 
[2]. BCC and SCC perform metastasize infrequently. So,  
they have a low level of risk and it causes a low-level death 
rate. But the occurrence of non-melanoma type is rare. 
In 2017, WHO reports two to three million people were 
affected by non-melanoma [3]. Skin cancer melanoma is 
complex, so early identification of this type is most impor-
tant because of the decreasing death rate and also supports 
saving the patient’s life. The visual image of melanoma and 
non-melanoma is the same. So, identification of which type 
of skin cancer occurs is a challenging work which is why 
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the lesion representation for the successful classification of 
lesions is developed [4].

To detect skin cancer, various methods are there. To 
obtain the skin images on the lesion, the Dermatoscope 
device is used. The technique of classification of dermos-
copy image is used to identify the issues and mainly to 
identify the boundary characteristics, to measure the shape 
of the lesion [5]. Artificial intelligence (AI) and machine 
learning (ML) algorithms are best to detect skin can cancer 
accurately and also better for hospital decisions. However, in 
UK, AI/ML algorithms are currently not used for detecting 
doubtful skin lesions. There is a variety of reasons, but one 
of the most things is the need for powerful evidence. The 
CanTest framework established the new diagnostic tests and 
the clinical training and offered guideline developers and 
rule makers to connect from development to implementation 
[6]. The CNN and the physicians classified the skin lesion 
of dermoscopic images into five categories than the relevant 
skin cancer. This approach independently detects each other. 
Then, the result will be merged with all classifiers. Ninety 
percent of lesions were found in this examination. If any 
errors will be occurring, both systems were related weakly 
[7]. To identify the classification of multi-class skin can-
cer, the CNN classifier was used, which used four groups of 
methods for the best classification on the dataset, namely, 
HAM10000. Transfer learning was performed to learn the 
features of the skin cancers in the particular domain and did 
not consider the lesion parts to generate the work common.

The DL approach is more effective for large inputs [8–12]. 
It is based on the computerized diagnosis. This approach is 
employed in feature extraction and fusion. The ABCDE 
approach also detects skin cancer through lesion classifi-
cation. The features should be extracted correctly to detect 
skin cancer automatically and also extract the features from 
the correct lesion parts [13]. The ABCDE rule identifies the 
general sign of melanoma such as irregularity, asymmetry, 
multi-color, and dermoscopic structure. The ABCDE rule 
performs three stages. First, detect and remove the hair and 
generate the skin lesion to be clearly visible and then color 
normalization will be performed [14]. For skin cancer target  
detection, the CNN-based target detection technique is 
introduced. Faster RCNN is chosen as the default detection 
network due to its high detection speed and accuracy. The 
traditional model relies on features and pixels. The pixel-
based detection method is used to identify the target by deter-
mining if each pixel’s level of gray exceeds a predetermined  
threshold. The lack of an accurate model, the high rate of 
false alarms, and the difficulty in threshold selection are the 
limitations of the skin cancer detection approach [15].

The growth of skin cancer melanoma is generated deeper 
into the skin, and the delay in diagnosis leads to reaching 
severity level as well as spreading to other parts of the body. 
It is complex to treat skin cancer when spread to other parts. 

The non-invasive technique called dermoscopy is obtained 
for treating skin cancer by oil immersion and incident light 
which makes visualization of the skin surface. The der-
moscopy diagnosis of skin cancer depends on training the 
dermatologist. Hence, the diagnosis of skin cancer in an 
automated way is significant for less-experienced physi-
cians. The automatic detection of skin cancer restricts the 
segmentation process by utilizing texture analysis. Texture 
analysis is highly applicable for the automatic detection of 
skin cancer. The texture measures are determined by gray-
level co-occurrence matrix (GLCM) [16]. In this paper, a 
modified faster RCNN model is proposed for skin cancer 
prediction. The algorithm lays the base for additional skin 
cancer real-time status detection by concurrently increas-
ing computational accuracy and operation speed. The faster 
RCNN and iSPLInception algorithm-based two-stage clas-
sification model is then developed. The main contribution 
of the paper is described below:

•	 The faster RCNN is mainly selected as the base detection 
network due to its higher detection speed and accuracy. 
The faster RCNN is integrated with the iSPLInception 
model to prevent it from overfitting the features.

•	 The skin lesion information is identified using the region 
proposal network (RPN) of the faster RCNN model. In 
this way, the operation speed and computational accuracy 
are improved to support real-time skin cancer prediction.

•	 The faster RCNN and the iSPLInception form a two-stage 
classification model where the skin cancer features such as 
border, color, diameter, and asymmetry are extracted by 
the faster RCNN architecture to differentiate between the 
normal and abnormal classes. The iSPLInception improves 
the classification accuracy of the proposed model.

•	 The accuracy of the proposed approach is proven to be 
superior to traditional methods, and the efficiency is 
determined in analyses of the result.

Related Works

For early prediction of skin cancer, Zhang et al. [2] presented 
optimized CNN. The Whale Optimization algorithm is used 
to optimize the developed CNN. It determines the difference 
obtained between the network and desired output. Performance 
metrics specificity, accuracy, and sensitivity were used to 
evaluate the result but CNN required more training data for 
effective results. Imran et al. [17] introduced the ensemble 
of deep learners for predicting skin cancer. The three deep 
learning models VGG, Caps-Net, and ResNet were utilized to 
develop it. An ISIC dataset was used for getting input images. 
The ensemble had a 106-s categorization training time and a 
93.5% average accuracy. The established method enhanced the 
performance but ResNet required more training time.
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Maniraj and Maran [18] developed a hybrid deep learn-
ing (HDL) in skin cancer detection. Unnecessary information, 
including nose and hair, was eliminated using a simple median 
filter. The developed method was used to conduct multi-class 
classification utilizing the fused subband, but it needed more 
computational time. A CNN stacked ensemble framework was 
presented by Shorfuzzaman [19] for the early detection of mel-
anoma skin cancer. The transfer learning concept was obtained 
to classify the skin cancer types (i.e., malignant or benign). 
However, this model was unable to make use of the segmented 
melanoma images created by segmentation networks.

Narunsky-Hazzia et al. [20] utilized cancer-type-specific 
fungal ecologies bacteriome interaction for pan-cancer anal-
yses. The illustrated model analyzed the characteristics of 
cancer mycobiome within 17,401 patient tissue, blood, and 
plasma samples. The established model developed prognostic 
and diagnostic capacities of tissue and plasma microbiomes, 
in stage 1. On the other hand, the analyzed model only focuses 
on the fungal kingdom and does not focus on any real-world 
data which supports increasing the accuracy of the classifica-
tion. Kausar et al. [21] utilized to categorize multi-class skin 
cancer using a deep learning–based ensemble model. The per-
formance was validated by CNN and attained 98% and 98.6% 
accuracy when evaluating deep learning–based ensembles. 
Meanwhile, the majority of the skin cancer classification was 
not included in this approach.

Sripada and Mohammed [22] utilized a deep CNN model 
to predict and classify multi-class skin cancer. This model 
has differences in the skin lesion between squamous cell 
carcinoma, basal cell carcinoma, and malignant melanoma. 
This model offers an accuracy value of 97.156% when evalu-
ating dermoscopic images. However, this model does not 
improve the medical image in the image processing system. 
Ali et al. [23] utilized a multi-class skin cancer classifica-
tion by efficient Nets for preventing skin illustrated model. 
Analyze the influence of transfer learning on pre-trained 
weights of Image Net variants on an imbalanced multi-class 
classification problem. This model offers accuracy, precision, 
recall, accuracy, and F1 score when evaluated at HAM10000. 
The experimentation results reviewed that the established 
method attained a superior performance when compared with 
the existing method. On the other hand, the method did not 
include any real-world data which supports increasing the 
accuracy of classification.

Proposed Model

Faster RCNN

An excellent work in the field of target detection is the 
faster RCNN algorithm [24]. The convolution network is 
the RPN which the input images are prognosticated based 

on the position of every candidate box. The RPN network is 
a determined alternative to the conventional selective search 
approach; it essentially eliminates the time overhead associ-
ated with candidate region selection.

Loss Function

The mathematical expression for the loss function is:

where j represents an anchor’s index in this mini-batch. qj is 
the target’s anchor’s prediction probability.

The classification loss function is given as:

The offset detected by this anchor is represented by the 
vector vj = {va, vb, vd, vg} . The actual offset of the ground-
truth box is represented by v∗∗

j
 , which is a vector of the same 

dimension as vj . The box regression loss function can be 
stated as:

smoothLj the function is represented by the term W:

The adversarial network is denoted as B (M), and the 
original target detection network is shown as A (M). Where 
M stands for the candidate region for B, assume that C is 
B’s actual category. The adversarial network’s loss function 
can be written as:

Region Proposal Networks (RPNs)

Instead of conducting a select search, the sliding window 
mechanism is utilized to create the region for the RPN can-
didate [25]. An eigenvector in 256 dimensions is provided 
to the layer of the convolution feature in which the median 
portion is determined as an anchor. At each position, the 
anchor boxes l are obtained. The scores are then utilized 

(1)

L(qj, vj) =
1

Nc

∑

j

Lcls(qj, v
∗)

j

+ �

1

Nr

∑

j

q∗
j
Lreg(vj, v

∗
j
)

(2)q∗
j
=

{

0 negative label

1 positive label

(3)Lc(qj, q
∗
j
) = −log[q∗

j
pj + (1 − q∗

j
)(1 − qj)]

(4)Lr(vj, v
∗
j
) = W(vj − v∗

j
)

(5)
smoothLj(a) =

{

0.5a2 × 1∕𝜋2 if |a| < 1∕𝜋2

|a| − 0.5 otherwise

𝜋 = 3, a = vj − v∗
j

(6)LB = −Lsoftmax (AE(B(M)), E)
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to determine whether the candidate region contains detec-
tion targets, and throughout 2 full connections, 2 l scores 
are obtained by one connection and 4 l scores by the other 
connection. The potential region’s coordinates, includ-
ing its width and length. The coordinates of the central 
position(y, x) . The network’s output performance can be 
impacted by the configuration of the size, width, and length.

From the above equation, the loss equation is denoted as 
K generated by regression and classification of bounding 
boxes Kregression and Kclassification.

In the above equation, the loss function is denoted by SK1 
where S is smooth and derived using the below equation.

Both Kregression and Kclassification are normalized weight 
parameters that represent how many anchor positions are 
obtained in total and then determine the input in the low 
image. The sample label is denoted by q∗

j
 , the probability that 

the jth anchor box contains the target is represented by qj . The 
mathematical equation for t∗

j
 and tj , the real and predicted 

bounding box coordinates is shown in the below equation.

where (y, x), 
(

yg, xg
)

 , and (y∗, x∗) are the predicted candidate, 
and real target bounding box coordinate.

Prairie Dog Optimization

The prairie dog spends most of its days feeding, watching out 
for predators, digging new burrows, or maintaining those that 
already exist [26]. The behavior of animals based on AI is 
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focused on disease monitoring, processing, and growth esti-
mation. In AI the cost and the accuracy are enhanced. The 
behavior of each individual is operated by the function of the 
brain and the animal behavior is validated by AI for providing 
an appropriate response to disease.

Initialization

Each prairie dog (PD) in a coterie is a member of one of the m 
coteries. The position of a jth prairie dog inside a specific cote-
rie can be determined by a vector because PD exists and work 
as a coterie or unit. The entire coteries (C) location present in 
the colony is described in the below equation.

Here, C
j,i
 depicted the colony’s jth coterie's ith dimension. 

The entire prairie dog position in the coterie is described in the 
below equation:

From the above equation, where DPj,i is the ith prairie dog 
in a coterie’s jth dimension, and m ≤ n . Utilizing the below 
uniform distribution equation, the position of the prairie dog 
and each coterie is assigned:

The ith dimensions upper and lower bound in the optimiza-
tion issue is represented as Uboundi

 and Lboundj , the uniform 
distribution in the range (0,1), and its random number is 
depicted as uboundi =

Uboundi

n
 and lboundi =

Lboundi

n
 , and V(0, 1)

Evaluation of Fitness Function

The solution vector is fed into the specified fitness function to 
determine the value of the fitness function for each position 
of the prairie dog. The below array present in Eq. 16 saved 
the outcomes.

(12)C =

⎡

⎢

⎢

⎢

⎣

C1,1 C1,2 ....... C1,e−1 C1,e

C2,1 C2,2 ....... C2,e−1 C2,e

∶ ∶ Cj,i ∶ ∶

C
n,1

Cn,2 ....... Cn,e−1 Cn,e

⎤

⎥

⎥

⎥

⎦

(13)DP =

⎡

⎢

⎢

⎢

⎣

DP1,1 DP1,2 ....... DP1,e−1 DP1,e

DP2,1 DP2,2 ....... DP2,e−1 DP2,e

∶ ∶ DPj,i ∶ ∶

DP
m,1

DPm,2 ....... DPm,e−1 DPm,e

⎤

⎥

⎥

⎥

⎦

(14)Cj,i = V(0, 1) × (Uboundi
− Lboundj) + Lboundi

(15)DPj,i = V(0, 1) × (uboundi − lboundj ) + lboundi

(16)

fit(DP) =

⎡

⎢

⎢

⎢

⎣

fit1 ([DP1,1 DP1,2 ....... DP1,e−1 DP1,e])

fit2 ([DP2,1 DP2,2 ....... DP2,e−1 DP2,e

∶ ∶ ∶ ∶ ∶

fitm ([DP
m,1

DPm,2 ....... DPm,e−1 DPm,e)]

⎤

⎥

⎥

⎥

⎦
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The food quality available at a certain source, the capacity 
to dig new burrows, and the ability to react appropriately to 
anti-predation alarms are all described by the fitness func-
tion values for each prairie dog. The fitness function values 
are stored in an array that is sorted, and the minimal fitness 
value that is received is deemed the best answer thus far to 
the specified minimization problem. The following three are 
taken into account along with the best value when creating 
burrows to aid in predator avoidance.

Exploration

The PDO exploratory process is explained in this sec-
tion. Based on four criteria, the PDO might choose 
between exploration and exploitation. The maximum itera-
tion number is separated into four equal sections, with 
the exploration taking up the first two and the exploita-
tion taking up the final two. For exploitation, we uti-
lized two tactics based on MaxIter

2
≤ iteration < 3

MaxIter

4
 

and 3MaxIter

4
≤ iteration ≤ MaxIter  .  For exploration, 

we utilized two tactics based on iteration <
MaxIter

4
 and 

MaxIter

4
≤ iteration <

MaxIter

2
.

They produce characteristic noises to alert other individu-
als of the discovery of food sources. In accordance with the 
food source quality, the best is accessed, chosen for foraging, 
and new burrows are constructed. In the stage of exploration, 
the position upgraded for foraging is expressed in Eq. 17. 
The second tactic is to examine the strength of the digging 
and the quality of the available food sources. Depending on 
the concept that digging strength will decrease as the itera-
tion number rises, new burrows are constructed. This cir-
cumstance aids in limiting the potential number of burrows. 
For the building burrow, the position is upgraded in Eq. 18

The global best-obtained solution is represented as 
GBestj,i . The effect of the most recent best solution, as 
given in Eq.  19, is evaluated by aCBestj,i , The experi-
ment’s specialized food source alarm, � , is set to 0.1 kHz.  
The random solution position is depicted as randDP .  
Equation  20 defines CEj,i as the randomized cumula-
tive effect of entire prairie dog present in the colony. The 
strength of the coterie’s digging, denoted by DS , is deter-
mined by the characteristic of the food source and has a 
random value determined by Eq. 21.

(17)
DPj+ 1,i+ 1 = GBestj,i − aCBestj,i × 𝜂

− CEj,i × Levy(m)∀iter <
MaxIter

4

(18)
DPj+1,i+1 = GBestj,i × randDP × Ds

× Levy(m)∀
MaxIter

4
≤

MaxIter

2

Here, the stochastic property is introduced rand to assure 
exploration. Although the PDO implementation was based 
on the assumption that all prairie dogs were the same, Ψ 
represents a tiny number that accommodates variations in 
the prairie dogs.

Exploitation

The PDO exploitation behavior is explained in this sec-
tion. These two distinct behaviors cause the prairie dogs 
to congregate at a particular position or determine an extra 
exploitation phase to evaluate the optimal solution. In the  
case of PDO implementation, a prospective position, where 
additional search (exploitation) is conducted to identify opti-
mal solutions nearly. The purpose of the PDO’s exploitation  
mechanisms is to thoroughly seek the promising areas 
discovered throughout the phase of exploration. As men-
tioned in the previous section, the PDO travels between 
two tactics, namely  MaxIter

2
≤ iteration < 3

MaxIter

4
 and 

3
MaxIter

4
≤ iteration ≤ MaxIter , to balance its exploration and 

exploitation behaviors.. The two approaches Eqs. 22 and 23 
are models that have been adopted for this phase.

The global best-obtained solution is represented as 
GBestj,i . The effect of the most recent best solution, as given 
in Eq. 19, is evaluated by aCBestj,i , the source of food qual-
ity described � . The entire prairie dog cumulative effect 
in the colony is expressed as CEj,i . The predator effect is 
represented as PreE the number lying in the interval [0, 1]. 
Figure 1 depicts the flowchart for PDO algorithm.

(19)

aCBestj,i = GBestj,i × Ψ

+
DPj,i × mean(DPm,n)

GBestj,i × (Uboundi − Lowerboundi ) + Ψ

(20)CEj,i =
GBestj,i − randDPj,i

GBestj,i + Ψ

(21)Ds = 1.5 × rand ×
(

1 −
iteration

MaxIter

)

(

2
iteration

MaxIter

)

(22)
DPj+ 1,i+ 1 = GBestj,i − aCBestj,i × 𝜂

− CEj,i × rand ∀iter <
MaxIter

4

(23)

DPj+ 1,i+ 1 = GBestj,i × PreE

× rand ∀3
MaxIter

4
≤ iteration < MaxIter

(24)PreE = 1.5 ×
(

1 −
iteration

MaxIter

)

(

2
iteration

MaxIter

)
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RPN Optimization

The ratio of skin disease lesions to images does not change 
when lesion positioning is done utilizing skin cancer detec-
tion images. As opposed to conventional target identification 
issues, there is no need to create many anchor boxes at each 
anchor point that is of various sizes, and when RPN is used to 
select candidate regions, ratios are at each anchor point. The 
skin disease lesion distribution information and location in 
the image can be utilized to optimize the anchor boxes’ ratios, 
overlaps, and sizes. Here, relative coordinates rather than abso-
lute ones are used to optimize the anchor box scale because the 
image’s size and skin disease lesions vary with scaling ratios 
and acquisition parameters.

Assume that the training data set contains m skin disease 
features that have been labeled, and that the jth skin lesion’s 
candidate region has coordinates for its width 

(

widthj
)

 , center 
(

yj, xj
)

 , and length 
(

lenj
)

 . width0 and len0 are the image’s over-
all width and length. The ratio (g) of length to width and rela-
tive scale (h) is defined as follows because they are consistent 
for both images and lesions.

(25)h = round

(

1

m

∑

j

lenjwidthj

len0width0

)

(26)g =
1

m

∑

j

lenj

widthj

Overlaps could occur when creating candidate boxes. 
Here, for candidate box deletion, the prairie dog optimiza-
tion algorithm is utilized. Here, 0 is chosen as the threshold 
value because for practical lesions there is no overlap, and 
the computation process is given below.

Phase 1: The candidate box employing the best rating 
should be selected.
Phase 2: The intersection of the union’s (IOUs) value 
between the one selected in phase (1) and each of the 
remaining boxes should be evaluated. The related can-
didate box is eliminated and considered invalid if the 
threshold value is higher than the predetermined.
Phase 3: Phases (1) and (2) given above are repeated until 
there are no more candidate boxes to remove, and among 
the boxes that have not been deleted yet, pick the one with 
the best score is continued.

To speed up model optimization in the experiment, the 
adaptive vectors are utilized to validate the updating rate and 
best performance. 0.001 is chosen as the starting point. The 
current model’s precision and loss are assessed in the valida-
tion set after each training epoch. Every other epoch shows 
the changes in loss value when they are less than 0.0001. 
The following equation is used to modify the learning rate.

The adjustment coefficient is denoted by gamma (�) and 
the gamma value is 0.1.

(27)learning rate∗ = learning rate∗�

Fig. 1   PDO algorithm flowchart
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A Model of Intelligent Signal Processing Lab 
Inception (iSPLInception)

The performance of skin cancer detection (SCD) systems 
is enhanced by the earlier DL methods, but the overfitting 
problem is not solved properly [27]. To focus on the pro-
cess of SCD, based on the Inception-ResNet design, the 
iSPLInception model is designed. Particularly, the incep-
tion block and residual link of the Inception-ResNet design 
are considered. When constructing extremely wide and deep 
models, the inception blocks were mostly helpful. The con-
volutions containing different sizes of a kernel are operated 
parallel within every inception block, and then those parallel 
processes provided outputs are combined. Here, the input 
is returned by the instant preceding layer of this inception 
module. It is linked with the 1 × 3 max pooling function 
(MaxPool1D) and the 1 × 1 Conv1D (1D convolution layer). 
For the input characteristics, the dimensionality reduction 
layer is operated by the 1 × 1 Conv1D which is an inexpen-
sive process. Input channels are decreased to one by the 1 × 1 
Conv1D, and for the three convolution layers ( 1 × 3 , 1 × 5 , 
1 × 1 Conv1D), it serves as the input. The hyperparameter 
of max_kernel size establishes 1 × 5 and 1 × 3 Conv1D lay-
ers’ kernel size. With the 1 × 1 Conv1D layer, the layer of 
Maxpool1D is linked, which is then linked with the concat-
enation layer or residual node.

The architecture of iSPLInception is depicted in Fig. 2. A 
set of images of even length, i.e., the size of the window, is the 
input for the SCD issue. (Size of window, number of images, 
batch size) is the input sequence format. R defines the number 
of samples in the input array which is expressed below:

The spatial frequency is represented as Sfrequency is 
expressed in cycles per meter, and every window size is s_w . 
Here, based on the utilized dataset, the size of the window 
changes. The BatchNorm layer (Batch normalization) gets 
these input images, and it performs like the preceding layer 
of the 1st inception module. Then, before rectified linear unit 
(ReLU), the inception block produced output is taken by the 
next BatchNorm layer. The depth hyperparameter decides the 
number of ReLU layers, BatchNorm, and inception block. 
Without raising the size of the model concerning parameters, 
this iSPLInception model can be made deeper and wider by 
adding several inception modules. The BatchNorm layer is 
connected to the activation layer output using the add layer 
by establishing one residual link to all three modules.

The ReLU activation layer activates the residual func-
tion’s output. The model’s depth hyperparameter determines 
the residual link’s existence. Whether or not the residual link 
is present in the inception block is verified by the 2nd ReLU 
activation to activate. A shortcut is formed by using the 

(28)R = s_w × Sfrequency

residual link, and the new data can be given to subsequent 
layers via the skip link. A large amount of data can also be 
learned by the subsequent layers like the previous layers 
from similar input data. The GAP1D (1-D Global Average 
Pooling) module is placed after the last ReLU activation 
layer. Here, the ReLU provided output passes via GAP1D.

Classification Layer

For the HAM10000 dataset, a categorical cross-entropy (CE)-
based Softmax classifier is utilized, and for ISIC 2019 dataset, 
a binary CE-based sigmoid classifier is utilized. Normally, the 
expression for cross-entropy loss 

(

�normal

)

 is given by:

For class j within S classes, the predicted values (model 
scores) and actual values are represented as rj and kj . Prior 
to evaluating the CE loss, the activation functions such 
as Sigmoid or Softmax are used for rj scores. Hence, the 
activations can be denoted using g

(

rj
)

 . The binary classi-
fication difficulty arises when working on ISIC 2019 data-
set. So, an activation function of the sigmoid is employed, 
which divides the input vector within (0, 1) intervals, and 
it was used separately toward each component of scores rj
,r . The below equation describes the activation function 
of the sigmoid as:

For input y , the sigmoid function is denoted as �(y), and 
Euler’s number is represented as u . Binary CE loss for a 
sigmoid function is acquired by integrating Eqs. (29) and 
(30). It is expressed as:

In addition, an activation function of Softmax is 
employed, which divides the input vector within (0, 1)the 
interval. Then, every resultant component is added together 
to form one. Since the Softmax function relies on every vec-
tor element, it does not be calculated separately for every 
input value. Softmax function converts the input values such 
as negative, positive, > 1, or zero into values from 0 to 1. 
They can therefore be taken like probabilities. For every 
input vector, the model is trained to produce the probability 
within classes S . For the input vector j , the Softmax function 
𝜒(r⃗)j is expressed as:

(29)�normal = −

S
∑

j

kj log rj

(30)�(y) =
1

1 + u−y

(31)�
�
= −

S
�
= 2
∑

j= 1

kj log
{

g
(

rj
)}

(32)�
�
= −k1 log

{

g
(

r1
)}

−
(

1 − r1
)

log
{

1 − g
(

r1
)}
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For an output and input vector, a standard exponential 
operation is referred to as expri and exprj , and an input 
vector is indicated as r⃗ . The normalization expression is 
defined by 

∑S

i= 1
expri , which sums up the output values into 

one. Categorical CE loss for Softmax function is acquired 
by integrating Eqs. (29) and (33). It is expressed as:

For a positive class v , the Softmax score is denoted as exprv 
in the above equation. If there are one-hot encoded labels, then 

(33)𝜒(r⃗)j =
exprj

∑S

i= 1
expri

(34)�
�
= −log

�

exprv

∑S

i
expri

�

just a positive class Sv maintains its loss expression in the clas-
sification of multi-class.

Proposed Multi‑Stage Classification Approach Using 
Faster RCNN and iSPLI

Faster RCNN gives the complete skin disease and its associ-
ated matches. The normal and abnormal classes of the entire 
skin disease are determined. During the application of a 
conventional multi-class classification algorithm for train-
ing, the dissimilarity between abnormal samples is more 
compared to the dissimilarity between abnormal samples 
and normal skin disease containing low-level divergence. 
This is mainly due to the changes in the dissimilarity levels 
for abnormal skin disease. The faster RCNN is employed 

Fig. 2   Architecture of iSPLIn-
ception
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directly to perform classification. This may heavily raise 
computation time and network complications. So, the 
iSPLInception model is applied in the multi-stage classifi-
cation. Here, training utilizes the normal skin disease sam-
ples, and then the skin disease that is abnormal or normal 
is decided using the iSPLInception architecture. During the 
classification, abnormal skin diseases are observed when 
the decision condition does not fulfill. VASC, MEL, NV, 
SCC, AKIEC, BCC, BKL, and DF are the classification of 
abnormal skin diseases. Figure 3 depicts the architecture of 
the faster RCNN-iSPLInception model.

Preprocessing is the initial and essential step for restrict-
ing redundant data and removing noise. This scenario is 
applied in medical images for removing air bubbles, arti-
facts, and noise and enhances the datasets to obtain real 
images. The noises obtained in the images are removed to 
perform a superior classification of skin cancer types. The 
features of the images are extracted to classify malignant 
and benign types [28].

Once the process of training is completed, subsequently 
the faster RCNN created entire skin disease images are 
obtained to perform feature extraction of regional images. 
The changes in the skin disease image are efficiently 
indicated by the image histogram data. Therefore, feature 
extraction is executed with the help of histogram data. The 
below-mentioned equation is utilized for evaluating gray 
histogram data.

From the above equation N  denotes the pixel values, 
grayscale is indicated as f  , the highest gray scale value 
of an image is indicated asT  , and the total pixels within 
an image containing gray scale f  is represented as M(f ) . 
To classify skin disease images, the iSPLInception model 

(35)H(d) =
M(f )

N
, f = 0, 1, ..., T

is applied. Then, for achieving the features of images, the 
normal skin disease images are processed initially within 
the training dataset. In the testing dataset, the image 
features that need to test are computed and given to the 
iSPLInception model. As a result, both the normal and 
abnormal skin cancer images are classified by this model.

Figure 4 depicts the flow chart for the proposed method 
with optimization methods. The images are considered as 
input and faster RCNN is obtained with ISIC 2019 and 
HAM10000 datasets for target detection. The RPN is 
determined by a sliding window mechanism to evaluate the 
candidate region based on the detection target. The regres-
sion and classification weight parameters are employed 
in RPN to validate the anchor positions. The overlapping 
of multiple images is controlled by the PDO approach 
and validated AI based on animal behavior. The features 
are extracted, and the images are classified to determine 
whether it is a benign or malignant stage.

Results and Discussion

For tackling the challenges posed by the skin cancer diag-
nosis and classification model, this paper presents the 
MFCRNN-is PLI method. For proving the influence of the 
MFCRNN-isPLI method, two skin diseases datasets like the 
ISIC 2019 Skin lesion image dataset and the HAM10000 
dataset were utilized. The accuracy of ISIC 2019, the 
HAM10000 dataset, and the speed of image processing 
have all somewhat improved when compared to another tar-
get identification system called faster RCNN. The network 
distributes the convolution elements when training is per-
formed based on faster RCNN and RPN which significantly 
decreases the number of parameters required for training 
and increases training effectiveness. The four existing clas-
sification methods like optimized CNN HDL, Inception v3, 

Fig. 3   Faster RCNN-iSPLIn-
ception model
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and VGG19 were chosen for comparing the output values 
of accuracy, precision, recall, ROC, and F1 score values. 
The lesion identification model used in this study works on 
hardware that includes an Intel i7 9700 processor, NVIDIA 
RTX2080 GPU, and 32 GB of RAM. The performance of 
the proposed method is evaluated using Windows 10, Python 
3.6, CUDA 9.0, Tensorflow, and Cuda Deep Neural Network 
(cuDNN) 7.3 software environments. In this paper’s train-
ing process, the number of iterations is arranged to 4000 
times. To acquire the skin lesion detection result. The train-
ing images are obtained in the image dataset to determine 
the faster result.

Evaluation Measures

The ratio of precisely classified images and whole images 
is represented as accuracy. The effectiveness of the model 
is directly evaluated. The validity of the accuracy is justi-
fied when all the class distributions are simultaneous. The 
predicted classes should match the actual class for accurate 
prediction. The proportion of images precisely marked as the 
belongings of the positive class to the whole images marked 
under the positive class is called precision. The fraction of 
true positives precisely predicted using the model over the 
images belonging to the positive class amounts to the recall 

metric. Since the F1 score ( DF ) is the trade-off between pre-
cision and recall, we might have to increase one over the 
other depending on the user requirements and application 
domain. The model’s higher classification power is shown 
by the higher F1 score values.

Dataset Description

ISIC 2019 Skin Lesion Images for Classification

It includes 25,331 dermoscopic images with nine various 
categories of cancer [29]. They are given as follows: basal 
cell carcinoma, melanoma, benign keratosis (solar lentigo/
seborrheic keratosis/lichen planus-like keratosis), vascular 
lesion, squamous cell carcinoma, melanocytic nevus, der-
matofibroma, actinic keratosis, and none of the above.

The HAM10000 Dataset

Factors such as lack of diversity and the small size of the 
dermatoscopic image dataset impact to detection of skin dis-
ease automatically in neural networks [30]. To tackle these 
issues, human against machine with 10,000 training images 
(HAM10000) dataset was utilized which was acquired from 
varied populations and stored using various modalities. It 
comprises 10,015 dermoscopic images for training. The 
various pigmented lesion diagnostic categories included in 
this dataset are basal cell carcinoma (bcc), dermatofibroma 
(df), melanocytic nevi (nv), vascular lesions (angiomas, 
angiokeratomas, and hemorrhage, vasc), actinic keratoses 
and intraepithelial carcinoma and Bowen’s disease (akiec), 
melanoma (mel), and benign keratosis-like lesions (solar 
lentigines and lichen-planus-like keratoses, bkl).

The training and testing are performed in the ratio of 80:20. 
The training of the image is performed with the HAM10000 
dataset and testing with ISIC 2019 skin lesion image.

Table 1 depicts the number of images of two datasets 
ISIC 2019 and HAM 10000 and classified the images with 
training and testing mechanisms for evaluation. The images 
of training will be high compared to testing.

The comparison of ISIC 2019 and HAM 10000 datasets 
based on AKIEC, BCC, BKL, DF, MEL, NV, SCC, and 
VASC classes are delineated in Tables 2 and 3. These are 
evaluated by training, testing, and validation method. The 
total number of images determined for training, testing, 
and validation is 20,267, 2532, and 2532. The overall class 
images are determined by 25,331.

Comparative Analysis

The proposed MFCRNN-isPLI technique evaluates the 
accuracy of the optimized CNN, HDL, Inception v3, and 

Fig. 4   Flow chart of the proposed method
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VGG19 while validating with ISIC 2019 Skin Lesion 
images dataset. Among them, the MFCRNN-isPLI method 
has higher accuracy of 96.25% which is 25% higher than 
CNN, 29% higher than hybrid DL, and 19% higher than 
the Inception v3. Similarly, the proposed MFCRNN-isPLI 
method achieves higher accuracy while examining the 
HAM10000 dataset the accuracy attained by the proposed 
method is 95.74%. The gained accuracies of existing meth-
ods are as follows: CNN gained 88.52%, hybrid DL gained 
84.31%, and Inception v3 gained 89.41%. Thus, the pro-
posed MFCRNN-isPLI method has better performance in 
terms of accuracy in both datasets.

VGG19, Inception v3, CNN, and hybrid DL are the 
existing methods compared with the proposed MFCRNN-
isPLI method. Our proposed method achieved high preci-
sion of 97.6% than the existing methods VGG19, Inception 
v3, CNN, and hybrid DL. For the HAM10000 dataset, the 
MFCRNN-isPLI method is compared with existing meth-
ods such as VGG19, Inception v3, CNN, and hybrid DL. 
Comparing existing methods, the proposed MFCRNN-isPLI 
method has high precision of 95.55%

The recall performance of the proposed MFCRNN-isPLI 
and existing methods utilizing the ISIC 2019 Skin Lesion 
images dataset and HAM10000 dataset. The MFCRNN-
isPLI method has a recall value of 95.25%, and recall 
values of CNN, hybrid DL, and Inception v3 are 94.52%, 
84.41%, and 86.51%, respectively. During training and eval-
uating with the HAM10000 dataset, the MFCRNN-isPLI 
method achieved a 97.52% recall value and CNN acquired 
a 90.25% recall value which is 15.25% lesser than the pro-
posed method. The hybrid DL has 84.25% recall which is 
22.52% lesser. Inception v3 and VGG19 acquired 83.52% 
and 89.31% accuracies.

Table 4 depicts the existing CNN, hybrid DL, Inception 
v3, VGG19, and the proposed MFCRNN-isPLI method com-
parison with ISIC 2019 skin lesion image and HAM10000 
dataset. The comparison is performed with different param-
eter metrics for evaluating the performance.

Table 5 summarizes the outputs of testing the proposed 
MFCRNN-isPLI, CNN, hybrid DL, Inception v3, and 
VGG19 on both skin disease dermatoscopic image datasets. 
The proposed model performs greatly in both datasets. With 
95.824% accuracy, it attained the highest accuracy of all 
methods. The loss is 0.17523 which is the lowest among 
all the existing models. The accuracy validation for the 

proposed and existing methods is 5% higher than the CNN 
and 14% higher than the hybrid deep learning method. The 
other measures like the F1 score, recall, and precision scores 
of the proposed MFCRNN-isPLI methods exceed the exist-
ing methods with the mean F1 score value of 0.95%, recall 
value of 96.520, and 96.852 precision values.

Figure 5 shows the Receiver Operating Characteristic 
(ROC). The level of separability is represented by the ROC 
score. It shows how well the model can differ across classes. 
The ROC score has a range of 0 to 1. The best model is one 
with a ROC score of close to 1. We compare the MFCRNN-
isPLI method to existing methods VGG19, Inception v3, 
CNN, and hybrid DL. Comparing the proposed MFCRNN-
isPLI method to existing methods, the MFCRNN-isPLI 
method has a high value of ROC 0.97.

The training and testing accuracy and loss curve for 
MFCRNN-isPLI and VGG19 method is delineated in 
Figs. 6a, b and 7a, b. The presence of two curves represents 
the training and testing curves. Initially, the accuracy for 
testing is higher than training for a few epochs. The loss 
curve achieved for different epochs is presented in Figs. 6b 
and 7b. The lower loss rate depicts the improved generaliza-
tion capability and faster convergence within a few epochs 
without getting struck.

Table 1   Dataset comparison

Dataset Number of 
images

Training Testing

ISIC 2019 25,331 20,265 5,066
HAM 10000 10,015 8,012 2,003

Table 2   Different class comparison of the ISIC 2019 dataset

Class Training Testing Validation

AKIEC 693 87 87
BCC 2659 332 332
BKL 2100 262 262
DF 191 24 24
MEL 3618 452 452
NV 10,301 1287 1287
SCC 502 63 63
VASC 203 25 25
Total images 20,267 2532 2532
Overall images 25,331

Table 3   Comparison of various classes of the HAM 10000 dataset

Class Training Testing Validation

AKIEC 261 33 33
BCC 412 51 51
BKL 879 110 110
DF 91 12 12
MEL 891 111 111
NV 5363 671 671
VASC 114 14 14
Total images 8011 1002 1002
Overall images 10,015
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To understand the results more clearly, the confusion 
matrix helps. The confusion matrix incorporates more details 
about the accuracy and performance of the MFCRNN-isPLI 
method as it is a correlation between the predicted values 
and the true label of the classification method. The confu-
sion matrix of the ISIC 2019 Skin Lesion images dataset and 
HAM10000 dataset is depicted in Figs. 8 and 9, respectively. 
The output of the classification is categorized as four. The 
misclassified positive image is called a false positive, and if 
it is predicted correctly, it is referred to as a true positive. 
If the healthy image is classified correctly as negative, it is 
called a true negative else it is called a false negative. The 
confusion matrix clearly explains the misclassification and 
accurate classification percentage values for the eight out-
put classes of the ISIC 2019 skin lesion image dataset and 
eight classes of the HAM10000 dataset. The misclassifica-
tion falls below 2% in all datasets. So the confusion matrix 
further confirms the diagnosing and classification accuracy 
of the model.

Statistical Analysis Using Friedman–Nemenyi Test

The differences among the different skin cancer classifica-
tion models are analyzed using the standard statistical test 
called Friedman–Nemenyi test. The analysis performance 
is based on accuracy while testing with the ISIC 2019 Skin 
Lesion images dataset and HAM10000 dataset. The analy-
sis outputs are plotted in Fig. 10. Every dataset distinctly 
classified all the classifiers based on their ranks, and the 

average ranks are compared in the Friedman test. Accord-
ing to the null hypothesis, the classifiers which have simi-
lar values are not taken into consideration. The postdoc 
test of Nemenyi compared all the classifiers through criti-
cal distance (CD). The CD is computed in Eq. 36,

where q is the critical value obtained from the Nemenyi 
distribution table for a specific significance level (e.g., 0.05 
for a 5% significance level) , k is the number of classifiers 
being compared, n is the number of samples or observations 
(e.g., number of instances in the dataset).

If the average value of the two classifiers exceeds their 
critical distance, then there is a difference between the 
same classifiers. The existing CNN has also greater accu-
racy, but it is lesser than the MFCRNN-isPLI method. 
VGG19 attained less accuracy among all the methods.

Statistical Analysis

The statistical analysis of the proposed method is determined 
by using Statistical Package for Social Science (SPSS) on 
IBM PC. The data is evaluated independently by ANOVA. 

(36)CD = q ∗
√

((k ∗ (k + 1))∕(6 ∗ n))

Table 4   Dataset comparison 
with different parameters for the 
proposed method

Datasets Methods Accuracy (%) Precision (%) Recall (%)

ISIC 2019 skin 
lesion image

CNN 87.32 86.82 94.52
Hybrid DL 84.91 94.54 84.41
Inception v3 89.93 86.72 86.51
VGG19 94.62 83.18 89.95
MFCRNN-isPLI 96.25 97.6 95.25

HAM 10000 CNN 88.52 91.83 90.25
Hybrid DL 84.31 85.62 84.25
Inception v3 89.41 83.41 83.52
VGG19 91.45 87.48 89.31
MFCRNN-isPLI 95.74 95.55 97.52

Table 5   Performance analysis of the proposed method

Method Accuracy (%) loss F1-score Recall
(%)

Precision
(%)

Proposed 95.824 0.17523 0.95 96.520 96.852
CNN 93.852 0.2574 0.90 92.522 90.841
Hybrid DL 86.238 0.29635 0.87 83.529 88.365
Inception v3 88.851 0.28635 0.85 81.963 86.742
VGG19 87.825 0.27584 0.89 89.417 85.254

Fig. 5   ROC curve
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Tables 6 and 7 depict the statistical analysis of ISIC 2019 
and HAM 10000 datasets. When compared with F ratio val-
ues, the combined dataset generates high dispersion result.

Discussion

Skin cancer affection is determined based on various issues, 
and a huge number of people are affected due to environmen-
tal conditions. The additional growth of abnormal cells in the 
skin leads to skin cancer. Based on their features and serious-
ness, it classifies the type. To categorize the type of skin can-
cer, various methods are discussed by the authors for accu-
rate classification [16, 28, 31]. So it is significant to detect 
skin cancer at an early stage, and this helps to prevent the 
serious affection of cancer. To perform better classification, 

the deep learning method is more effective and it validates 
with multiple images. CNN, HDL, deep CNN, and VGG are 
some of the existing methods to detect and classify the type 
of skin cancer. But these methods were not detecting skin 
cancer accurately due to some of the limitations. To attain 
better performance, it requires huge training data sets as well 
as maximized consumption time. The multi-class classifica-
tion is performed with high computational time as well as it 
does not satisfy real-world applications. So MFRCNN-iSPLI 
method is proposed to classify the type of skin cancer as 
well as the stage such as malignant or benign. The classi-
fication of the image is performed with faster RCNN. The 
datasets such as ISIC 2019 skin lesion image classification 
and HAM10000 are obtained to evaluate the efficiency of the 
proposed method with the existing method. The overfitting  

Fig. 6   Accuracy and loss curve validation of VGG19

Fig. 7   Accuracy and loss curve evaluation for the proposed MFCRNN-isPLI method
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of the data features is prevented by the faster RCNN method 
by integrating with iSPLInception. The accuracy and the 
computational speed are enhanced which supports real-time 
skin cancer prediction.

Usually, when dealing with a class-imbalanced dataset 
in multi-class classification, enhancing stability for the  
method becomes a significant challenge. To address this, 
a two-CNN model is generated in parallel to analyze the 

Fig. 8   Confusion matrix of the 
ISIC 2019 Skin lesion image 
dataset

Fig. 9   Confusion matrix of the 
HAM10000 dataset
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performance of MFRCNN-iSPLI based on ResNet50 and 
VGG16 architectures. To enhance the training dataset, vari-
ous augmentation techniques such as flipping, scaling, and 
traditional rotation methods are employed. This enlarged 
dataset is then used for training the model. For testing, both 
labeled and unlabeled data are used.

The classification of skin cancer is employed by the deep 
learning method. The proposed MFRCNN-iSPLI method is 
used to classify the type of skin cancer and also it reduces the 
overfitting issue. The datasets ISIC 2019 and HAM10000 are 
obtained to evaluate the performance. The proposed method 
is validated with various metrics and the comparison is per-
formed with existing methods CNN, hybrid DL, Inception 
v3, and VGG19. The existing method requires more training 
time, the segmented images are not able to classify the type 
of skin cancer, as well as the presence of multiple images 
was not able to detect the skin cancer type accurately. This 
diminished the performance of the state-of-the-art methods. 
The increase in accuracy will improve the efficiency of the 
proposed method and obtain superior results.

After validating the accuracy of the proposed method 
attained 95.824% and the existing methods reduced the 
accuracy by 93.852%, 86.238%, 88.851%, and 87.825%, 
respectively. However, the proposed model does not per-
form feature extraction using different biomarkers such as 

pathological data, genomic profiles, and protein sequences. 
Another limitation of this model is that it is not evaluated 
using skin cancer images with low illumination and complex 
background retrieved from smartphones. So in the future, 
this method is extended to identify other disorders with large 
samples and we also plan to incorporate a lightweight secu-
rity technique for efficient information sharing.

Conclusion

Over recent years, skin cancer incidences are growing rap-
idly. Thus, there is an urgent necessity to resolve this health 
challenge. Existing skin disease classification models poses 
various challenge in terms of accuracy, time taken, etc. Thus, 
an efficient method called MFCRNN-isPLI is presented in 
this paper. Instead of using the traditional selective search 
approach, the RPN is utilized by the FRCNN which reduces 
time overhead while selecting candidate regions, thus 
enhancing detection speed. For justifying this approach two 
skin disease datasets of ISIC 2019 Skin lesion image clas-
sification (includes eight classes and a normal class) and the 
HAM10000 dataset (includes seven different skin diseases) 
are taken. Accuracy, precision, recall, and F1-score values of 
the method are computed, and the outputs are compared with 
those of the four existing methods of CNN, hybrid DL, Incep-
tion v3, and VGG19. The output analysis of every measure 
confirmed the prediction and classification efficiency of the 
method with 95.82% accuracy, 96.85% precision, 96.52% 
recall, and 0.95% F1 score values. The Friedman–Nemenyi 
test is conducted to further analyze the performance which 
again confirms the proposed method’s accuracy. Thus, 
MFCRNN-isPLI is a promising approach for the classifica-
tion and diagnosis of skin cancer. In the future, this technique 
expanded to varied diseases including more output classes 
which will increase the accuracy of the method.
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