Table 2.
Metric | # of features | DT | LogR | RF | XGB | SVM |
---|---|---|---|---|---|---|
F1 | 8 | 0.489 ± 0.138 | 0.56 ± 0.13 | 0.429 ± 0.151 | 0.546 ± 0.127 | 0.361 ± 0.114 |
F1 | 12 | 0.502 ± 0.134 | 0.529 ± 0.123 | 0.316 ± 0.162 | 0.547 ± 0.135 | 0.409 ± 0.1 |
F1 | 16 | 0.493 ± 0.155 | 0.514 ± 0.13 | 0.31 ± 0.168 | 0.54 ± 0.134 | 0.483 ± 0.063 |
F1 | 20 | 0.49 ± 0.149 | 0.514 ± 0.125 | 0.214 ± 0.167 | 0.514 ± 0.145 | 0.483 ± 0.064 |
F1 | All | 0.421 ± 0.13 | 0.374 ± 0.117 | 0.064 ± 0.107 | 0.433 ± 0.145 | 0.487 ± 0.061 |
Performance is measured with F1 ± standard deviation (SD) for the test set.
Parameters of machine learning methods: RF, DT, SVM: class_weight = ‘balanced’, XGB: scale_pos_weight = counts[class1]/counts[class2]; LogR: max_iter = 10,000.
Significant values are in bold.