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Abstract
Summary: We present PyDESeq2, a python implementation of the DESeq2 workflow for differential expression analysis on bulk RNA-seq data.
This re-implementation yields similar, but not identical, results: it achieves higher model likelihood, allows speed improvements on large
datasets, as shown in experiments on TCGA data, and can be more easily interfaced with modern python-based data science tools.

Availability and Implementation: PyDESeq2 is released as an open-source software under the MIT license. The source code is available on
GitHub at https://github.com/owkin/PyDESeq2 and documented at https://pydeseq2.readthedocs.io. PyDESeq2 is part of the scverse
ecosystem.

1 Introduction

Bulk RNA sequencing (RNA-seq) is one of the most common
molecular data modalities used in biomedical research. Most
RNA-seq datasets are used primarily for differential expres-
sion analysis (DEA) (Stark et al., 2019), which provides in-
valuable insight on the associations between the genes’
expression and a phenotype. Due to the inherent noise and
statistical challenges present in RNA-seq data, DEA methods
have become more sophisticated over the past decade, making
them difficult to re-implement or port over to new program-
ming languages. In practice, the community now relies pri-
marily on a handful of packages implementing state-of-the-art
methods, among which DESeq2 (Love et al., 2014).

While bioinformatics software is classically developed in R,
a recent trend has seen the arrival of python software.
Examples include the scanpy suite (Wolf et al., 2018) or the
squidpy package (Palla et al., 2022) for single-cell and spa-
tial RNA-seq, both of which are part of the scverse
(Virshup et al., 2023), an ecosystem of interoperable python
omics packages.

This shift is motivated by several advantages of the python
language: (1) the possibility to rely on well-maintained and ef-
ficient scientific computing packages such as numPy and
sciPy, (2) a greater interoperability with machine learning
and data science frameworks and (3) the potential to reach a
wider audience, as python is one of the most popular pro-
gramming languages (see, e.g. https://pypl.github.io/). Yet, to
the best of our knowledge, there is currently no available
python-native package for DEA with generalized linear mod-
els on bulk RNA-seq data.

A workaround consists in relying on python-to-R bindings,
i.e. calling R software and making back-and-forth data con-
versions from a python interface, using packages such as

rpy2 (https://rpy2.github.io/). However, this approach raises
several issues: (1) it requires the user to install and maintain
packages both in python and in R, which is cumbersome, (2)
it creates computational overhead, as data are being con-
verted and passed from one framework to the other, and (3) it
may lead to a loss of control for the user, as the options and
subroutines of the original packages are only accessible
through the binding layer.

In an effort to alleviate those issues and to benefit from the
advantages offered by python-based software, we present
PyDESeq2, a python implementation of the bulk RNA-seq
DEA methodology introduced by Love et al. (2014) and
implemented in the R package DESeq2 (PyDESeq2 and
DESeq2 are developed by independent groups.).

2 Implementation

PyDESeq2 implements the DEA methodology of Love et al.
(2014), which briefly consists in modeling raw counts using a
negative binomial distribution. Dispersion parameters are first
estimated independently for each gene by fitting a negative bi-
nomial generalized linear model (GLM), and then shrunk to-
ward a global trend curve. In turn, dispersions are used to fit
gene-wise log-fold changes (LFC) between cohorts and to per-
form Wald tests for differential expression.

2.1 Available features and code structure

In version 0.3.5, the features implemented in PyDESeq2 cor-
respond to default DESeq2 settings. More precisely, it imple-
ments the variance-stabilizing transformation, DEA for
single-factor and n-level multi-factor designs (with categorical
factors) using Wald tests, and LFC shrinkage using the
apeGLM prior (Zhu et al., 2019). Similarly to DESeq2,
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PyDESeq2 is structured around two classes of objects: a
DeseqDataSet class, handling data-modeling steps from
normalization to LFC fitting, and a DeseqStats class for
statistical tests and optional LFC shrinkage. To fit GLMs, we
rely on the popular scipy (Virtanen et al., 2020) and
statsmodels (Seabold and Perktold, 2010) python
packages.
PyDESeq2 is an scverse ecosystem package, and relies

on the anndata data structure (Virshup et al., 2021).
Because of this, PyDESeq2 analyses can be easily imported to
and from any scverse package.

2.2 Comparison with DESeq2 on TCGA datasets

In Fig. 1, we compare the results of PyDESeq2 and DESeq2
on eight bulk RNAseq datasets from The Cancer Genome
Atlas (TCGA, https://www.cancer.gov/tcga). More precisely,
we test differential expression between tissue samples corre-
sponding to non-advanced vs. advanced tumor grades (as per
TCGA’s clinical data), and focus on four criteria: retrieved
genes, enriched pathways obtained with the fgsea package
(Sergushichev, 2016), model likelihood, and speed.

As can be seen from Fig. 1, PyDESeq2 returns very similar
sets of significant genes and pathways, while achieving higher
model likelihood for dispersion and LFC parameters on a vast
majority of genes, and at comparable speeds (higher for large
cohorts, lower for small cohorts).

The data used in our experiments are publicly available on
the TCGA website: https://portal.gdc.cancer.gov/. We refer to
the Supplementary Material for additional details on the
experiments.

2.3 Conclusion and future perspectives

In conclusion, PyDESeq2 is a fast and reliable package for
bulk RNA-seq DEA. By releasing this package, we hope to fill
a gap in the python omics ecosystem, and contribute to popu-
larizing the usage of modern data science python tools in gene
expression analysis.

Finally, let us mention some of the features that we
plan to implement in PyDESeq2: future work includes
adding support for continuous covariates, and likelihood-
ratio tests.
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Figure 1. (A) Significantly differentially expressed genes (with padj � 0:05 and jLFCj � 2) according to PyDESeq2 and DESeq2. (B) Significantly enriched

pathways (padj � 0:05) obtained with the fgsea package, using Wald statistics as gene-ranking metric. Only top 10 enriched pathways (according to

adjusted P-value) of at least one cancer dataset are represented. If for a given cancer dataset, a pathway is not significantly enriched, the corresponding

square is left blank. The three pathways which are considered significantly enriched in one implementation but not the other on a given TCGA dataset are

highlighted by a surrounding box. (C) Distribution of relative log-likelihoods (
LðPyDESeq2Þ�LðDESeq2Þ

jLðDESeq2Þj ), with corresponding cumulative distribution functions. (D)

Time benchmark on an 8-core machine, averaged over 10 runs, using eight threads for each package. Numbers between parenthesis correspond to

dataset sample sizes. (A–D) We refer to the Supplementary Appendix for additional details on the experiments.
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