Table 4.
Evaluation metrics for binary classification for best performing classifiers in each scenario
| Dataset | Classifier | Performance metric |
||||
|---|---|---|---|---|---|---|
| precision | recall | f1 | accuracy | AUC | ||
| clinical | GNB | 0.976 | 0.910 | 0.942 | 0.909 | 0.955 |
| T1 sterols | RFC | 0.849 | 0.963 | 0.902 | 0.829 | 0.664 |
| clinical + T1 sterols | RFC | 0.926 | 0.940 | 0.933 | 0.890 | 0.950 |
| MCL | 0.817 | 1.000 | 0.899 | 0.817 | 0.500 | |
See also Table S6. AUC, area under the ROC curve; f1, F1-score; GNB, Gaussian Naive Bayes; MCL, Majority Classifier; RFC, Random Forest.