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ABSTRACT
◥

Purpose: Urinary comprehensive genomic profiling (uCGP)
uses next-generation sequencing to identify mutations associated
with urothelial carcinoma and has the potential to improve patient
outcomes by noninvasively diagnosing disease, predicting grade
and stage, and estimating recurrence risk.

Experimental Design: This is a multicenter case–control study
using banked urine specimens collected from patients undergoing
initial diagnosis/hematuria workup or urothelial carcinoma sur-
veillance. A total of 581 samples were analyzed by uCGP: 333 for
disease classification and grading algorithm development, and 248
for blinded validation. uCGP testing was done using the UroAmp
platform, which identifies five classes ofmutation: single-nucleotide
variants, copy-number variants, small insertion-deletions, copy-
neutral loss of heterozygosity, and aneuploidy. UroAmp algorithms
predicting urothelial carcinoma tumor presence, grade, and recur-
rence risk were compared with cytology, cystoscopy, and pathology.

Results: uCGP algorithms had a validation sensitivity/specificity
of 95%/90% for initial cancer diagnosis in patients with hematuria
and demonstrated a negative predictive value (NPV) of 99%. A
positive diagnostic likelihood ratio (DLR) of 9.2 and a negative DLR
of 0.05 demonstrate the ability to risk-stratify patients presenting
with hematuria. In surveillance patients, binary urothelial carcino-
ma classification demonstrated an NPV of 91%. uCGP recurrence-
risk prediction significantly prognosticated future recurrence (haz-
ard ratio, 6.2), whereas clinical risk factors did not. uCGP demon-
strated positive predictive value (PPV) comparable with cytology
(45% vs. 42%) with much higher sensitivity (79% vs. 25%). Finally,
molecular grade predictions had a PPV of 88% and a specificity of
95%.

Conclusions: uCGP enables noninvasive, accurate urothelial
carcinoma diagnosis and risk stratification in both hematuria and
urothelial carcinoma surveillance patients.

Introduction
In the United States, bladder cancer is the fourth most common

cancer inmen and fifthmost common solid tumor overall (1). Though
rare subtypes exist, most bladder cancers will be diagnosed as urothe-
lial carcinoma (1). The most common symptom leading to initial
diagnosis of urothelial carcinoma is hematuria (2). Guidelines

recommend that hematuria severity and other clinical risk factors
guide the use of transurethral white-light cystoscopy (WLC) to
detect urothelial carcinoma (3). However, adherence to guidelines is
poor and many patients at risk for urothelial carcinoma are never
referred to urologists for evaluation (4, 5). High prevalence of
hematuria in the adult population combined with low incidence
of urothelial carcinoma and invasiveness of cystoscopy all contrib-
ute to under-evaluation (3, 6, 7). A noninvasive detection tool that
identifies those most likely to have urothelial carcinoma could
reduce the burden of evaluation, improving adherence to guidelines.
For patients referred to the urologist, evaluation by WLC occurs
only 35% of the time (8). A noninvasive diagnostic could help
urologists reduce cystoscopy in patients with low likelihood of
disease and prioritize patients with the highest risk.

WLC is also the standard of care for urothelial carcinoma surveillance
following initial diagnosis and treatment. Under American Urological
Association (AUA) guidelines, intermediate- andhigh-risk patientswith
urothelial carcinoma undergo post-treatment surveillance to visually
assess the bladder for recurrence every 3–6months for at least five years,
and annually thereafter (9, 10). The invasiveness and frequency of
surveillance is a challenge for many patients, who often have compli-
cating comorbidities, resulting in a 40% adherence to recommended
surveillance intensity (11). A noninvasive test that provides both
diagnostic and prognostic information could, therefore, improve guide-
line compliance and support implementation of risk-adapted care.

Urine-based comprehensive genomic profiling (uCGP) using next-
generation sequencing is well positioned to support these objectives for
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both initial diagnosis and surveillance, but challenges remain for
clinical adoption. Although there is typically a clear distinction
between tumor positive and negative in the initial diagnosis setting,
tumor status in the urothelial carcinoma surveillance setting is often
ambiguous. Because both muscle-invasive and non–muscle-invasive
urothelial carcinoma recurs at a high rate (50%–70%; refs. 12, 13),
minimal/molecular residual disease (MRD) following resection is
expected to be common. However, whereas uCGP can detect muta-
tions associated with these malignant cells before they become visually
apparent,WLCmay classify such patients as cancer negative until their
tumor grows large enough for endoscopic visualization. In these cases,
binary classification of cancer status becomes a matter of debate:
Should classification align with WLC or with molecular disease
presence and long-term recurrence outcomes? Prioritizing the detec-
tion of MRD maximizes test sensitivity but compromises specificity
relative to cystoscopy and can present clinical actionability challenges
for physicians. Favoring concordance with WLC allows for higher
specificity but imposes the sensitivity ceiling of visualization by WLC
(65%–71%; refs. 14, 15). Although detection of MRD for recurrence
prediction has recognized utility in leukemia and some solid tumors
(16–19), early implementation attempts for urothelial carcinoma
surveillance have not achieved the performance necessary to be widely
adopted.

In this study, we investigate the ability of the uCGP assay UroAmp
to diagnose urothelial carcinoma, predict tumor grade and invasive
potential, and stratify recurrence risk. UroAmp’s development and
technical performance were previously described in amatched tumor–
urine correlation studywith longitudinalmonitoring of diverse clinical
case studies (20). Here, we present blinded clinical validations of
multiple diagnostic algorithms across diverse patient scenarios for
detection and monitoring of bladder cancer. Test performance is
compared with cystoscopy and cytology with histopathology confir-
mation and long-term outcomes.

Materials and Methods
Patients

We performed a blinded, case-controlled, multicenter validation
study comprising consented patients recruited from 10 urology clinics
in accordance with IRB-approved protocols and following the ethical
guidelines of U.S. Common Rule. Subject informed consent was

obtained verbally before participation, in accordance with the study’s
minimal risk designation. Validation cohort inclusion/exclusion cri-
teria were defined in a prospective analysis plan before clinical data
review and sample selection, and individual site PI’s identified patients
meeting inclusion criteria (Supplementary Table S1). Cases and con-
trols were recruited for two clinical contexts: initial diagnosis of
urothelial carcinoma and surveillance for urothelial carcinoma recur-
rence. Tumor-positive cases consisted of patients who underwent
cystoscopy leading to a de novo urothelial carcinoma diagnosis (for
the initial diagnosis context) or a recurrent urothelial carcinoma
diagnosis (for the surveillance context); patients were eligible if they
had pathologically confirmed urothelial carcinoma present in the
urinary tract at the time of urine collection and the urine sample was
collected before surgical resection of the lesion. For the initial diagnosis
context, negative controls consisted of urology patients with urine
samples collected at office visits for benign urologic conditions and
were excluded if they had pathologic, cystoscopic, or imaging evidence
of, or a known history of urothelial carcinoma; or pathologic, imaging,
or laboratory evidence of current or prior prostate or renal cancer; or
hematuria that was not evaluated to standard of care (cystoscopy and
imaging of the upper tract). For the surveillance context, negative
controls consisted of patients with prior definitive surgical treatment of
urothelial carcinoma and negative cystoscopy within one month of
urine collection, and a second negative cystoscopy 3–12 months
following the collection. Tumor positive and surveillance-negative
patients were excluded if they had prior history of pelvic radiation.

For validation, banked historical samples were provided to the
sponsor (Convergent Genomics) in a blinded fashion, ensuring that
the clinical status of samples was unknown by the sponsor laboratory
or data analysis personnel. Before processing validation samples, the
sponsor completed algorithm development and training, and all
algorithmswere “locked”with digital time stamps using theGit version
control system. Disease classification predictions were made by the
sponsor and returned to clinical site investigators for performance
analysis. This work was performed in accordance with STARD/
REMARK best practices for diagnostic accuracy studies (21, 22).

Clinical patient monitoring
All urothelial carcinoma treatment decisions were made in accor-

dance with clinical best practice guidelines for bladder cancer (10).
Initial diagnosis of urothelial carcinoma required cystoscopic identi-
fication followed by pathologic confirmation. WLC or augmented
endoscopy was permitted at the discretion of the treating physician.
Urothelial carcinoma surveillance was performed in accordance with
AUA risk stratification for non–muscle-invasive bladder cancer
(NMIBC) and muscle-invasive bladder cancer (MIBC; refs. 23, 24).
For example, surveillance of AUA high-risk patients with NMIBC was
performed by cystoscopy and cytology at 3-month intervals for two
years and 3- to 6-month intervals thereafter. Upper tract and abdom-
inal/pelvic-imaging baselines were established and repeated every 1–
2 years or as clinically indicated. Observed recurrences required
pathology confirmation as prespecified in the study inclusion criteria.

uCGP
Voided urine specimens were collected before standard-of-care

flexible WLC in clinic or rigid WLC at time of surgical resection. All
urine voids (mid-stream, first-void, etc.) were considered. Urine
samples provided by Ohio State University (OSU) and CURE clinical
sites were collected at the site in Enhanced PreservationMedia (20). All
samples from these institutions were maintained at room temper-
ature and shipped at ambient conditions by FedEx Clinical Pak, and

Translational Relevance

The implementation of risk-stratified care in themanagement of
urothelial carcinoma is amajor challenge. New tools are needed for
both primary diagnosis and detection of minimal residual disease
(MRD) for recurrence risk prediction. Quantification of somatic
genomic alterations in urine-derived DNA has notable promise to
enhance risk stratification. In this study, we validated a urine-based
test that performs urinary comprehensive genomic profiling
(uCGP) to predict the presence and pathologic grade of urothelial
carcinoma. In the initial diagnosis context, uCGP performance
exceeds available urine biomarkers and cytology. In the surveil-
lance context, uCGP significantly prognosticates future recurrence
using a non-tumor informed (urine only) MRD paradigm that
stratifies patients into high- and low-risk of recurrence. These
findings demonstrate the unique utility of genomics to inform
personalized risk stratification.
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samples were banked at –80�C within five days from collection.
Samples provided by Massachusetts General Hospital (MGH) and
Oregon Health and Science University (OHSU) were refrigerated
immediately after collection and frozen at –80�C within four hours.
Frozen samples were shipped to the sponsor laboratory on dry ice.
Urine samples were de-identified of any protected health informa-
tion at time of collection.

UroAmp (Convergent Genomics) testing methodology was per-
formed as previously described (20). Briefly, purified urine DNA
was fragmented by sonication (Covaris ME220, RRID:SCR_019818)
before undergoing library preparation using the KAPA Hyper Prep
Kit (Roche) protocol. xGen Dual Index adapters were synthesized
by IDT, and a custom xGen Lockdown Probe panel (Integrated
DNA Technology) was used for hybridization capture of DNA
libraries. Target-enriched libraries were analyzed using a 2100
Bioanalyzer (RRID:SCR_018043) and diluted for sequencing.
Libraries were loaded into a NextSeq 500/550 High Output Reagent
Cartridge (v2, 300 cycles) and sequenced on a NextSeq 550 (RRID:
SCR_016381).

UroAmp is a Clinical Laboratory Improvement Amendments–
certified urine test developed to aid in the diagnosis of bladder
cancer, predict risk of disease progression, and provide a longitu-
dinal measure of genomic disease burden (GDB) in the bladder
(20). Next-generation DNA sequencing is performed to measure
approximately 250,000 genome locations at a high depth averaging
approximately 10,000 molecules at each location, enabling highly
sensitive detection of low-abundance single-nucleotide variants (SNV),
insertion-deletions (INDEL), loss of heterozygosity (LOH), and copy-
number variants (CNV)mutations. Simultaneously, the whole genome
is sequenced at shallower depth (�0.3�) to identify large-scale genomic
alterations (aneuploidy). Mutation profiles serve as input features
to disease and molecular-grade prediction algorithms. UroAmp risk
algorithms are calculated independent of any clinical features.

Algorithm development
Three distinct algorithms are presented: An initial diagnosis test for

hematuria evaluation, a surveillance test for urothelial carcinoma
monitoring, and a molecular grade prediction test. Candidate samples
for algorithm training underwent chart review to confirm tumor status
and urothelial carcinoma history at time of collection, and samples
were selected to balance positive and negative tumor status. For each
sample, genomic features were extracted from UroAmp assay mea-
surements. Selected samples were partitioned into distinct sets for
initial diagnosis and surveillance algorithm training, which were then
further divided into train and test splits.

Models with varying hyperparameters were trained using 10-fold
cross validation. Themodels selected demonstrated good performance
generalization between cross-validation results and the held-out test
set. For initial diagnosis, several models achieved very high cross-
validated sensitivity; thus, a boosted random forest model was selected
that simultaneously optimized specificity while maintaining the high
sensitivity appropriate for use in screening. For surveillance, a logistic
regression model was chosen that optimized specificity and positive
predictive value (PPV). Trained and locked algorithms were then used
to make blinded predictions on validation cohorts.

The UroAmpmolecular-grade prediction algorithm was developed
to predict the presence of high-grade (HG) urothelial carcinoma. For
grade training, the cohort was partitioned into a single train/test split.
Genomic feature engineering and the optimization of a linear dis-
criminant model was conducted in the training partition and validated
on the test partition.

Statistical analysis
To ensure statistical confidence across the various clinical cohorts

and define a study size, a prospective power analysis was performed,
and 95% confidence intervals (CI) were calculated for each variable
being tested [sensitivity, specificity, negative predictive value (NPV),
and PPV]. Assuming an observed performance of 90%, cohort sample
sizes of 30 and 50 samples provided CIs of (73.5%–97.9%) and (78.2%–
96.7%), respectively. To minimize potential site selection bias between
training and validation cohorts, samples frommultiple sites are used in
both cohorts. OHSU samples were used exclusively in training,
whereas samples from MGH and OSU were used for independent
validation. CURE samples were used in both training and blinded
validations. To minimize selection bias between training and valida-
tion, CURE subjects were randomized according to their consent date.

The primary endpoints of the blinded validation study were
UroAmp diagnostic performance and grade prediction. Secondary
endpoints included: Likelihood ratios for initial diagnosis patients;
recurrence-free survival (RFS) and hazard ratios (HR) between
UroAmp recurrence-risk groups in WLC-negative surveillance
patients; and odds ratios (OR) demonstrating the association between
genomic features (e.g., disease burden, SNVs, CNVs, and INDELs) to
tumor grade and invasion status.

UroAmp test performance was assessed by calculating sensitivity,
specificity, PPV, and NPV. The Clopper–Pearson method was used to
compute CIs for each performance metric, and receiver operating
characteristic (ROC) curve analysis was used to assess overall classi-
fication accuracy. Time to recurrence was examined in survival
analyses using the UroAmp-risk group as a predictor. Cox propor-
tional hazard models were used to estimate the association between
UroAmp features andRFS. Statistical significance forORswas assessed
using the Fischer’s exact test. The P values were corrected for multiple
tests using the Benjamini/Hochberg method with values below 0.05
considered significant.

The prevalence of urothelial carcinoma among UroAmp surveil-
lance risk groups was compared with the prevalence of urothelial
carcinoma among AUA surveillance guideline-risk groups. Pre- and
post-test probabilities for urothelial carcinoma presence among AUA
hematuria-risk categorizations of patients in our cohort was calculated
as previously described (25) using the diagnostic likelihood ratio
(DLR) determined from UroAmp test characteristics. DLR is defined
in terms of the performance characteristics of the test, where positive
DLR ¼ Sensitivity/(1-Specificity) and negative DLR ¼ (1-Sensitivity)/
Specificity. DLRs relate pre-test odds to post-test odds, which then
determine post-test probability (25). GDB is a percentile ranking of the
sum of variant allele frequencies (VAF) for a urine specimen. To
calculate GDB, the sum ofVAFs was computed for all training samples
to generate a representative empirical distribution. Each test sample
was then ranked against that distribution to obtain its GDB percentile.

Data availability
Genomesequencingdata used in this studyhave beendeposited in the

Sequence Read Archive (RRID:SCR_001370) at the National Center for
Biotechnology Information (NCBI) and are available throughBioProject
ID PRJNA961222 (NCBI BioProject, RRID:SCR_004801).

Results
Characteristics of patients with urothelial carcinoma in the
study cohorts

A total of 581 participant urine specimens were analyzed across
all cohorts, with clinical and pathological characteristics detailed

Salari et al.
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in Table 1. The training cohort consisted of 398 participants.
Of these, 333 had analyzable test results, including pathology-
confirmed diagnoses of de novo urothelial carcinoma (n ¼ 56),
pathology-confirmed recurrent urothelial carcinoma (n ¼ 38),
participants with a history of urothelial carcinoma with a negative
surveillance cystoscopy (n ¼ 100), and individuals without urothe-
lial carcinoma but with other urologic morbidities, including
hematuria (n ¼ 139). The validation cohort included 286 partici-
pants, among which 248 had analyzable test results, consisting of
70 urothelial carcinoma positives (22 de novo tumors, 48 recurrent
tumors), 82 urothelial carcinoma surveillance negatives, and
96 urology control subjects without evidence of urothelial carci-
noma (Fig. 1). The UroAmp platform was used to determine urine-
based comprehensive genomic profiles of the validation cohort
(Supplementary Fig. S1A and S1B). Distribution of AUA risk
categories for patients with hematuria (low, intermediate, and
high) was consistent with those previously described (ref. 3; Sup-
plementary Table S2), ensuring generalizability of results. Stage
and grade distributions of tumor-positive cases were consistent

with the natural distribution of disease at primary diagnosis and
recurrence on surveillance (26, 27).

Urothelial carcinoma initial diagnosis clinical performance
The UroAmp disease classification algorithm for initial diagnosis

of urothelial carcinoma was trained to a sensitivity of 98% and
specificity of 96%. In the blinded validation cohort, the initial
diagnosis algorithm demonstrated a sensitivity of 95% and speci-
ficity of 90% among de novo tumor cases and urology negative
controls (Table 2; Supplementary Table S3). Among these patients,
UroAmp identified the most worrisome tumors (HG and muscle-
invasive tumors) with 100% sensitivity. NMIBC was identified with
a sensitivity of 94%, and low-grade (LG) disease was identified with
a sensitivity of 87%. The overall NPV for a de novo tumor was 99%
in patients with hematuria.

To investigate howUroAmpmay support screening of patients with
hematuria, we performed a DLR analysis considering levels of disease
prevalence across AUA hematuria-risk categories. UroAmp demon-
strated a positive DLR of 9.2 and a negative DLR of 0.05 (Table 3),

Table 1. Clinical demographics of training and validation cohorts.

Initial diagnosis Surveillance
Cohort Train Validation Train Validation
Cancer Status Negative Positive Negative Positive Negative Positive Negative Positive

No. subjects 139 56 96 22 100 38 82 48
Median age (IQR) 62 (31) 75 (16) 65 (24) 70 (17) 72 (14) 77 (13) 72 (13) 69 (13)
Sex (%)

Male/female 55/45 71/29 65/35 73/27 74/26 82/18 77/23 71/29
Race (%)

White 58 55 60 59 75 55 78 79
Black or African American 12 14 11 9 7 8 7 15
Asian 16 9 18 9 14 19 7 4
American Indian or Alaska Native 1 2 1 0 1 0 0 0
Hispanic or Latino 2 0 1 0 1 0 4 0
other 11 20 9 23 2 18 4 2

Smoking History (%)
Current 10 7 5 14 7 3 15 13
Former 18 14 26 45 36 47 52 50
Never 62 20 69 41 55 32 32 38
Unknown 10 59 0 0 2 18 1 0

Urologic comorbidities (%)a

UTI 17 0 10 5 13 3 1 4
LUTS 21 11 21 18 27 8 16 2
BPH 16 9 27 5 41 24 24 8

Kidney stone history (%)
Current 10 0 5 5 2 3 1 0
Past 16 4 11 0 5 3 1 2

Urine chemistry/microscopy (%)a

Hematuria 50 23 39 50 31 24 2 10
Leukocytes 35 13 15 5 25 16 1 6

Grade (%)b

LG — 25 — 36 45 47 49 65
HG — 75 — 64 32 45 51 35
Unknown — — 23 8 0 0

Stage (%)b

Cis — 5 — 0 6 5 7 11
Ta — 38 — 68 51 58 71 79
T1 — 25 — 14 15 8 17 8
T2 — 29 — 18 3 11 3 2
Unknown — 4 — 0 25 18 2 0

aAs reported at the time of sample collection, >1þ urine microscopy or >3 RBC/hpf or any gross.
bGrade and stage of surveillance negatives indicate the pathology of the primary tumor.

uCGP Validation: UC Diagnosis, Surveillance, Risk-Prediction
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numbers that compare favorably with FDA-approved and other
available biomarker approaches (Supplementary Table S4; ref. 25).
Critically, in AUA low- and intermediate-risk microhematuria, where
the natural prevalence of urothelial carcinoma is 0.5%–1%, respec-
tively, a negative UroAmp test result decreased the likelihood of
urothelial carcinoma to 0.03%–0.05%.

Urothelial carcinoma surveillance clinical performance
The UroAmp disease classification algorithm for urothelial carci-

noma surveillance was assessed among surveillance-positive (recur-
rent tumor) cases and surveillance-negative controls. Consistent with

the distinct clinical demographics of patients receiving an initial
diagnosis of urothelial carcinoma versus those undergoing surveillance
for urothelial carcinoma recurrence, a larger trade-off between sen-
sitivity and specificity was observed during surveillance algorithm
training. ROC analysis yielded an AUC of 0.921, as compared with the
initial diagnosis value of 0.987 (Fig. 2A). To optimize concordance
withWLC, we selected a surveillance model that prioritized specificity
and PPV. In training, this model produced a sensitivity of 74%, a
specificity of 89%, and a prevalence-adjusted PPV of 63% (Fig. 2B).
The ROC curve suggests that adjusting the classification threshold to
prioritize sensitivity over specificity could produce a model with a

Figure 1.

Standards for the reporting of diagnostic accuracy studies (STARD) diagram detailing training and validation specimen usage in this study.

Table 2. Initial diagnosis disease classification performance.

Initial diagnosis performance
Train Validation

Sensitivity (%; Sample No. Train/Validation)
Overall (56/22) 98 (90–100) 95 (77–100)
High grade (42/14) 100 (92–100) 100 (77–100)
Low grade (14/8) 93 (66–100) 87 (47–100)
NMIBC (38/18) 97 (86–100) 94 (73–100)
MIBC (16/4) 100 (79–100) 100 (40–100)
Upper tract UC (7/2) 100 (59–100) 100 (16–100)

Specificity (%; Sample No. Train/Validation)
All urology controls (139/96) 96 (91–98) 90 (82–95)
Controls with UTI (23/10) 100 (85–100) 90 (56–100)
Controls with hematuria (71/37) 96 (88–99) 87 (71–96)
Controls with BPH (23/26) 96 (77–100) 85 (65–96)
Controls with Leukocytes (48/14) 98 (89–100) 86 (57–98)
Controls with LUTS (29/20) 93 (77–99) 80 (56–94)

Positive predictive value (%)
Hematuria/initial diagnosis (10% prevalence) 72 51

Negative predictive value (%)
Hematuria/initial diagnosis (10% prevalence) 100 99

Note: Clinical demographic subsets, including non-muscle invasive bladder cancer (NMIBC), muscle invasive bladder cancer (MIBC), urologic tract infection (UTI),
benign prostatic hyperplasia (BPH), and lower urologic tract symptoms (LUTS). Values in parenthesis denote 95% confidence intervals.
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sensitivity as high as 95% while still maintaining 76% specificity in the
training cohort (Fig. 2A, ROC point 2).

With the selected high-specificity model, in the blinded validation
cohort of surveillance patients, HG disease was detected with 76%
sensitivity, whereas sensitivity for LG disease was 58%, and the overall
prevalence-adjusted NPV and PPV were 91% and 59%, respectively.
The single MIBC surveillance case was correctly detected (Fig. 2B).
Overall, surveillance cases were classified with a specificity of 89%,
demonstrating generalizability of the high-specificity performance
observed in the training cohort, and a sensitivity of 65%, consistent
with the performance ceiling imposed by WLC as the reference
standard.

To better understand performance limitations in the surveillance
cohort, we compared the mutation profiles of true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN). As
expected, TP and TN patients largely demonstrated distinct mutation
profiles, with TPs accumulatingmoremutations (mean of 12 vs. 3) and
much higher GDBs (mean of 67 vs. 12) than TNs (Fig. 2C and 2D).
Outliers—TNs with high signal and TPs with low signal—were found
in each group. To assess limitations to sensitivity, we evaluated FN
patients. Among these FNs, some patients had low signal, aligningwith
the majority of TNs. We also saw samples with modest GDBs and
mutation counts; these samples look similar to both some TNs and
someTPs (Fig. 2E). Finally, to explore specificity, we reviewed the nine
FP patients.We saw substantial diversity inmutation signal from these
samples but, on average, these patients had mutation and GDB values
indistinguishable from TPs (Fig. 2F). Of note, two FP patients with a
history of HG primary tumors (stage Ta and T1) had extremely high
mutation signals, including the strongest overall mutation signal in the
entire study cohort. Though WLC negative, the strong mutation
signals present in the urine of these samples was consistent with the
presence of minimal residual disease (MRD), leading us to consider
whether such mutations are predictive of future recurrence.

RFS by uCGP-predicted risk
We next asked whether uCGP-detected MRD can be used to risk-

stratify patients to predict likelihood of future recurrence. In related
clinical scenarios, liquid biopsy MRD mutations have been shown to
serve as predictive markers for future recurrence and therapy
response (18, 19, 28, 29). To assess the prognostic potential of
uCGP-identified mutations, we implemented a two-class recurrence
risk model—low and high risk—defined by the binary surveillance
algorithm output and the presence of HG-associated mutations (Sup-
plementary Table S5).

In an analysis of individuals in the validation group with at least
three months of follow-up, UroAmp recurrence risk was assigned to
patients undergoing urothelial carcinoma surveillance who were neg-
ative by WLC at time of collection (n ¼ 55). The stage and grade

distribution of the primary tumor at diagnosis was Ta (76%), CIS (2%),
T1 (16%), T2 (2%), T3 (2%), Tx (2%), with concomitant CIS in 9%, and
49/51% LG/HG (Supplementary Table S6). Median follow-up after
specimen collection was 30 months. UroAmp-predicted high-recur-
rence–risk subjects (n ¼ 14) had a Kaplan–Meier recurrence rate
estimate of 63% at five years, whereas low-recurrence–risk subjects
(n ¼ 41) had a recurrence rate estimate of 12%, resulting in a
statistically significant difference in RFS (P ¼ 0.0025, log-rank test,
Fig. 3A). In the low-recurrence–risk group, no recurrences were
observed within the first 12 months of surveillance. A sub-analysis
by key clinical demographics (primary tumor grade and intravesical
therapy history) supports generalizability of the recurrence prediction
(Supplementary Fig. S2A–S2D).UnivariableCoxproportional hazards
regression demonstrated that UroAmp risk was a significant predictor
of recurrence (HR, 6.2), whereas no clinical features showed significant
predictive value (Fig. 3B; Supplementary Table S7).

uCGP versus urine cytology
Validation specimens with available urine cytology results (n¼ 66)

were investigated to compare cytology to UroAmp classification.
Cytology returned atypical findings in 32% of samples, whereas
UroAmp provided definitive findings in all samples. We evaluated
performance characteristics of cytology under three scenarios where
atypical findings were either omitted, deemed negative, or deemed
positive. When atypical findings were omitted, cytology correctly
identified 50% of HG urothelial carcinomas and 13% of LG urothelial
carcinomas with a specificity of 94% (Supplementary Table S8). When
atypical findings were interpreted as negative, cytology correctly
identified 29% of HG urothelial carcinomas and 8% of LG urothelial
carcinomas with a specificity of 96%. When interpreted as positive,
71%ofHGurothelial carcinomas and 42%of LGurothelial carcinomas
were correctly identified whereas specificity was 66%. In contrast,
UroAmp correctly identified 100% of HG urothelial carcinomas and
67% of LG urothelial carcinomas with a specificity of 83%. Among
samples with an atypical cytology result, UroAmp correctly identified
100% of HG urothelial carcinomas and 75% of LG urothelial carci-
nomas with a 71% specificity.

Molecular grade and stage prediction
The grade algorithm was optimized for specificity. Among disease

positive training subjects, it performed with a PPV of 94% and
specificity of 94%. In the blinded validation cohort, molecular pre-
diction ofHGachieved aPPVof 88%, a specificity of 95%, and anORof
15.2 (P < 0.0001; Table 4).

In the aggregated set of tumor-positive subjects (train and valida-
tion, n ¼ 164), UroAmp identified genomic features associated with
grade and stage (Table 5; Supplementary Table S5). The presence
of urinary mutations in both TP53 and TERT in combination with

Table 3. Initial diagnosis disease classification performance.

Initial diagnosis likelihood ratios

AUA-risk group
Pre-test
UC prob. Positive DLR

Post-test UC prob.
UroAmpþ Negative DLR

Post-test UC prob.
UroAmp�

Low 0.5% 9.2 (5.1–16.6) 4.4% 0.05 (0.01–0.34) 0.03%
Intermediate 1.0% 8.5% 0.05%
High (microhematuria) 3.0% 22.1% 0.16%
High (gross hematuria) 10.0% 50.5% 0.56%

Note: Pre- and post-test probability of urothelial carcinoma given UroAmp diagnostic likelihood ratios (DLR) for a positive or negative test. Pre-test probability of
urothelial carcinoma based on Woldu et. al. 2021 (25). Values in parenthesis denote 95% confidence intervals; AUA, American Urological Association.
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Figure 2.

Binary classification of urothelial carcinoma surveillance patients.A,ROC curves for the training of initial diagnosis (n¼ 195) and surveillance (n¼ 138) cohorts. Points
1 and 2 denote performance for the specificity-prioritized and sensitivity-prioritized models, respectively. B, Disease classification performance for the surveillance
cohort. Clinical demographic subsets include non-muscle invasive bladder cancer (NMIBC) andmuscle invasive bladder cancer (MIBC). Values in parenthesis denote
95% confidence intervals. C–F, Mutation number, type, and genomic disease burden (GDB) for patients in the surveillance validation cohort. Stage and grade are
indicated for the original primary tumor for (C) True Negative and (F) False Positive or the recurrent tumors in (D) True Positive and (E) False Negative. Mean
mutation count and mean GDB are indicated for each group.
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wild-type (WT) FGFR3 was indicative of invasion and was the
strongest indicator of HG disease, with an OR of 28.4 (P < 0.0001).
In general, mutations in TP53 were strong indicators of muscle
invasion, with TP53 mutations enriched in MIBC compared the
NMIBC (OR, 7.4; P ¼ 0.0004) and in HG T1–4 disease compared
the HG Ta/CIS disease (OR, 6.0; P ¼ 0.0025). Gene-level CNV and
whole-genome aneuploidy were all enriched in HG and muscle-
invasive disease, and CDKN1A and RB1mutations were found almost
exclusively in HG lesions. Among CIS lesions, mutations in TP53, as
well as TERT mutations combined with WT FGFR3, were enriched

compared with Ta tumors (Supplementary Table S5). Finally, the
strongest predictor of LG disease wasmutation in FGFR3 (OR, 0.3; P¼
0.0035), with FGFR3 mutation combined with WT TERT being
observed exclusively in NMIBC.

Discussion
This study constitutes the first blinded clinical validation of the

UroAmp cancer diagnostic platform. Compared with published
reports of currently available tests, we report superior performance
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uCGP predicted recurrence risk. Urothelial carcinoma
surveillance patients with negative cystoscopy and
long-term follow-up with outcomes were analyzed for
recurrence risk (n ¼ 55, validation cohort). A, Kaplan–
Meier curves for recurrence-free survival by UroAmp-
predicted risk. Significance: P ¼ 0.0025 (Log-rank test).
B, Univariable Cox proportional-hazard regression anal-
ysis of UroAmp recurrence-risk groups and clinical-risk
factors. For stage, T1þ indicates the grouping of patients
with T1, T2, and T3 disease.

uCGP Validation: UC Diagnosis, Surveillance, Risk-Prediction

AACRJournals.org Clin Cancer Res; 29(18) September 15, 2023 3675



metrics for the detection of urothelial carcinoma during initial diag-
nosis, with higher combined sensitivity and specificity and improved
DLRs. This performance is paired with high-PPV grade prediction. In
the urothelial carcinoma surveillance setting, UroAmp significantly
prognosticated future recurrence.

Initial diagnosis
Clinical evidence makes it clear that better tools are needed to

accurately risk-stratify patients with hematuria. Despite recommen-
dations, patients with hematuria continue to be under-referred for
evaluation, and urologists continue to underuse cystoscopy in inter-
mediate- and high-risk patients (4, 5, 8). As a result, the prevalence of

muscle-invasive urothelial carcinoma has been stable for the last
30 years (27), despite significant advances in other types of cancer (1).
Clearly, new approaches to early detection are needed to improve
compliance with guidelines among primary care physicians and
change the paradigm of diagnosis.

We know that detecting urothelial carcinoma in patients with
microhematuria correlates with a lower stage of disease compared with
those with gross hematuria (30). Therefore, increasing evaluation of
microhematuria is likely to improve outcomes overall. However, due to
the high prevalence of microhematuria, referring every case for cysto-
scopic evaluation would overwhelm urology practices. Instead, patient
referral should be strategic and use of cystoscopy for evaluation should
be selective. Clinical-risk factors, such as smoking history and hematuria
severity, are helpful, and risk calculators developed to assign bladder
cancer likelihood to patients with hematuria have demonstrated impres-
sive performance (3, 31, 32). But the adoption of these calculators has
been poor, as the necessary clinical risk factors are not routinely charted
or accurately collected (33). Although these calculators are helpful at
identifying extremes (very low-risk or very high-risk), they still rely on
population averages rather than measuring individual biologic risk.
UroAmp’s high sensitivity and specificity (95%/90%) in initial diagnosis
means it could be used to triage patients with microhematuria, reducing
the burden of evaluation while identifying those most likely to have
urothelial carcinoma. Furthermore, because UroAmp does not use
clinical demographics or risk factors, it can complement clinical-risk
stratification systems, as demonstrated in Table 3.

Historically, urothelial carcinoma tests have positioned themselves
as either “rule-out” (identify low-risk patients) or “rule-in” (identify

Table 4. uCGP molecular-grade prediction performance.

Molecular-grade prediction performance
Train Validation

Percentage of PPV (for high-grade) 94 (80–99) 88 (62–98)
PPV [%] (for high-grade) and
Specificity [%]

94 (79–99) 95 (83–99)

Odds ratio 17.8 (3.9–81.4) 15.2 (3.1–74.5)
Total samples (HG/LG) 91 (59/32) 70 (31/39)

Note: Percentage of PPV is UroAmp-predicted HG that is confirmed by HG
pathology. Specificity is the percent of pathologically LG samples not classified
as HG by UroAmp. Odds ratio is the fold-increase in odds that a tumor is
pathologically HG when predicted UroAmp HG. Values in parenthesis denote
95% confidence intervals.

Table 5. uCGP molecular-grade prediction features.

Grade-associated features

Note: UroAmp test features predictive of tumor grade. Results calculated from aggregated cohorts. (WT) denotes an unmutated gene. (Padj)
denotes FDR-adjusted P value.
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high-risk patients). Our results suggest that uCGP has the potential to
act as both. UroAmp has a high prevalence-adjusted NPV (99%) and a
low negative DLR (0.05), which means AUA low-risk patients with
hematuria who test negative by UroAmp have only a 0.03% chance of
being urothelial carcinoma positive. This noninvasive rule-out test
would dramatically ease the burden of evaluation and focus WLC on
the patients most at risk. Existing noninvasive WLC adjuncts, such as
cytology, UroVysion FISH, and NMP22, struggle to effectively stratify
patients with microhematuria. The much higher negative DLRs of
these tests (0.35–0.42; ref. 25) mean that a negative result only reduces
a patient’s chance of having cancer from 0.5% (pre-test) to approx-
imately 0.2% (post-test). UroAmp thus has the potential to provide an
order-of-magnitude improvement at ruling out urothelial carcinoma
compared with these legacy tests.

Rule-in tests rely on their high prevalence-adjusted PPV and
positive DLR to identify patients who are urothelial carcinoma pos-
itive. This is particularly true of cytology, which can return the
diagnostic result of “atypical”—lying somewhere between positive
and negative—and trades sensitivity in favor of optimizing specificity.
Cytology’s high specificity affords it a robust positive DLR (7.67).
UroAmp, which also has high prevalence-adjusted PPV (51%) and a
positive DLR (9.2) that exceeds even cytology, can similarly help
identify urothelial carcinoma–positive patients, but does so without
compromised sensitivity. Moreover, UroAmp gives only clear positive
or negative results for initial diagnosis and has demonstrated the ability
to correctly stratify patients with “atypical” results by cytology. Thus,
uCGP can identify those most likely to have urothelial carcinoma
(effective rule-in) in addition to reducing the burden of evaluation
(effective rule-out).

Recurrence surveillance
Comparedwith initial diagnosis, tumor detection in the surveillance

setting provides multiple additional challenges. One cubic centimeter
of urothelial carcinoma tumor consists of approximately one billion
cells (34). This means that patients who develop a WLC-visible
recurrence will have visually occult malignant cells (potentially many
millions) present during negative cystoscopies preceding eventual
clinical detection. Molecular testing can detect the mutations arising
from these malignant cells before they achieve the critical mass
necessary to become visually apparent. Furthermore, roughly 60% of
patients will experience recurrence during the first five years of
surveillance (12, 13). Hence, a urine marker with predictive power
is more likely to correlate with long-term outcomes than current
cystoscopy status.

Genomic insights provide opportunities for enhanced clinical man-
agement, but their application to binary (positive/negative) disease
classification continues to be constrained by the limited sensitivity of
WLC, and specificity is similarly hindered by the absence of long-term
follow-up. In meta-analyses comparing WLC with mapping biopsy or
photodynamic enhanced cystoscopy, WLC had an estimated sensi-
tivity of 65%–71% and specificity of approximately 81% in bladder
cancer surveillance (14, 15, 35). Confounding factors, such as operator
thoroughness, equipment, and condition of the bladder, all lead to a
high degree of ambiguity in recurrence diagnosis. These sources of
inconsistency may not correlate with any particular genomic profile,
confounding a quantitative algorithm’s ability to learn a tumor-
associated pattern. We are thus faced with the challenge of developing
a quantitative diagnostic tool using a qualitative and mercurial
reference standard. As prior work has shown, urologists are approx-
imately six times more likely to find recurrent tumors by WLC if
they are given positive biomarker test results before cystoscopy (36).

The tradeoff of concordance with WLC is illustrated in the sur-
veillance classification ROC curve (Fig. 2A). Point 2 on the curve
shows thatUroAmpmight attainmuch higher sensitivity (�95%)with
the compromise of modest specificity (�76%). To achieve this, a
sample would be called positive based on lower levels of mutations.
This would result in more FN samples (Fig. 2E) being correctly called
positive (improved sensitivity) but would also lead to TN samples with
similar profiles (Fig. 2C) being incorrectly called positive (lower
specificity). To limit such apparent false negatives, we chose a model
represented by point 1 on the ROC curve, giving high specificity and a
sensitivity that approximates that of WLC.

Improving this performance requires an alternative reference stan-
dard to WLC and the study of long-term recurrence outcomes. Our
study of recurrence among negative cystoscopy surveillance patients
identifies a high rate of recurrence among subjects with a UroAmp
algorithm-positive prediction.When clinical-risk factors of age, smok-
ing history, gender, grade, and stage were assessed in a univariable
model, they did not achieve significance in prediction of future
recurrence, suggesting that UroAmp MRD recurrence prediction has
significant potential to enable the delivery of personalized and risk-
stratified care.

Molecular grading
The predictive capability of uCGP comes with the challenge of how

to best manage patients whose disease is months from being visibly
apparent. Watchful waiting may be appropriate for low-risk disease
whereas treatment escalation may be required for occult but high-risk
disease. Urine-based biomarker tests, which have similarly struggled
with positive test results in cystoscopy-negative patients, have adopted
“anticipatory positives” for false-positive test results. Biomarker antic-
ipatory positives, whether true or not (37), have proven to have limited
clinical utility in part due to tests relying on generic indicators of
malignancy that cannot distinguish one tumor from another or predict
severity. In contrast, urine cytology, which can also yield anticipatory
positives, maintains its value because it informs potential cancer
severity with tumor grading. Similarly, MRD detection with uCGP
assigns amolecular fingerprint to a cancer based on the tumor’s unique
constellation of mutant alleles, allowing for uCGP to not only distin-
guish new tumors from recurrent tumors, but also to calculate risk
based on a mutation profile associated with stage and grade. Here,
UroAmp provides a molecular grade assessment with 88% PPV
(UroAmp HG predictions are confirmed by pathology 88% of the
time) and characterizes molecular features associated with increased
risk of invasion (Supplementary Table S5). Within our training and
validation cohorts, multiple instances of disease progression were
observed, including the case of an initial Ta LG tumor that recurred
as T4a HG. UroAmp identified this patient as high-risk 18 months
ahead of diagnosis, noting their elevated risk for HG recurrence.
Intensification of WLC, BLC, or mapping biopsies may have been
warranted if UroAmp had been clinically available. Moving forward, a
positive UroAmp test may prompt consideration of additional diag-
nostic investigations or altered therapeutic strategies, enabling per-
sonalized care.

Comprehensive genomic profiling
The comprehensive nature of the genomic profile provides much

more information than traditional urinary biomarkers. uCGP, as
validated here, measures diverse mutation types, including SNVs,
INDELs, gene level CNV, copy-number neutral LOH, and whole-
genome chromosomal aneuploidy. In addition, it detects somatic
variants at low allele frequencies along with germline variants.
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These diverse mutation types are interpreted with annotations from
The Cancer Genomic Atlas Project, AACR Project GENIE, and
large population-level studies such as The Genome Aggregation
Database (38–40). The breadth of measurement provides a genomic
fingerprint of each tumor that provides insight into its etiology. For
example, tumors with high numbers of INDELs are more likely to
be driven by defects in DNA mismatch repair genes (41), whereas
tumors with high aneuploidy are likely to have errors in chromo-
some segregation during cell division (42). Tumors may also be
driven primarily by mutation of a single gene, such as a case with
high level ERBB2 (HER2) amplification.

Such genomic profiles also have the potential to identify molecular
subtypes of cancer and predict response to FDA-approved therapies.
For example, detection of FGFR3mutationsmay indicate therapy with
FGFR3 inhibitors, whereas mutations in genes such as ERBB2 orATM
could identify candidates for clinical trials and drugs approved in other
indications (e.g., trastuzumab or olaparib). By leveraging the broad
and diverse measurements of a genomic profile for diagnosis and
prognosis in cancer, pattern recognition algorithms can learn to
prioritize certain genes above others and, with sufficient data, could
discover complex interactions of genes in tumor development. For
example, in Supplementary Fig. S1 we observe chromatin-modifying
enzymes like KMT2D and KMT2C are commonly mutated in tumor-
positive patients but also constitute the most frequent mutations in
cystoscopy-negative patients. In contrast, an oncogene like FGRF3 is
one of the most frequently mutated genes in tumor-positive patients
but is almost never seen in cystoscopy-negative patients. Ultimately,
these algorithms may identify previously unknown tumor sub-types
and their correlation to prognosis or response to therapies.

Limitations
Study limitations include likely interobserver variation in patho-

logical grading due to absence of centralized pathology review (43, 44).
Clinical sites received inclusion criteria to collect patients with hema-
turia, but the histories of hematuria, urine microscopy, and smoking
pack-years were not uniformly charted in the EHR, limiting our ability
to define AUA hematuria-risk categories in some subjects (2). Char-
acterization of clinical demographics was limited by variable clinical
documentation of benign diseases. Patients with upper tract urothelial
carcinoma (UTUC) were included in the study, but their sample size
was too small to enable UTUC-specific analyses. Likewise, certain
urothelial carcinoma stages (CIS, T3/T4) are not well represented, and
we are underpowered to assess performance in these clinically mean-
ingful subtypes. In the surveillance monitoring cohort, long-term
surveillance times were variable: Recurrence events were observed for
some patients beyond 36 months, whereas many patients were lost to
follow-up before 36 months. Finally, identification of patients at high-
risk for disease progression would have great utility to guide risk-
stratified care, but the current cohort is underpowered to identify these
rare cases.

Conclusion
The findings presented here provide strong evidence for the utility

of uCGP to diagnose urothelial carcinoma among patients with
hematuria, identify risk of HG cancer, and detect MRD to predict
future recurrence risk in patients under surveillance for urothelial
carcinoma. UroAmp-risk assessment is calculated independent of
any clinical features, providing novel information for physicians to
integrate with clinical-risk factors. Considering its performance in
multiple areas of urothelial carcinoma diagnosis and monitoring,
uCGP shows great promise to enhance delivery of risk-stratified

care. Ongoing studies are expected to support the generalizability of
these findings.
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